

Booklet No. :

CE - 16

Civil Engineering

Max. Marks : 120
Hall Ticket No.
ONR Answer Sheet No. :
Signature of the Invigilator

INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3 Each question carries one mark. There are no negative marks for wrong answers.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall
- 8 Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9 No part of the Booklet should be detached under any circumstances.
- 10 The seal of the Booklet should be opened only after signal/hell is given.

CE-16-A

CIVIL ENGINEERING (CE)

1.	A sys	tem of homog	eneou	s linear equatio	ns A.	λ = 0 has a no	ntrivia	d solution if	
	(A)	A = -1	(B)	$ A \neq 0$	(C)	A = +1	(D)	A =0	
2.		500						ird eigen value is	
	(A)	1 - 21	(B)	1 + 1	(C)	2 + 3 i	(D)	1/2	
3.	$\begin{array}{l} \text{lf} \ f \\ \epsilon = \end{array}$	x = 1x - 1)(x -	-2) sa	tisfy Lagrange	Mean	Value theorem	n at c i	n the interval [1.3], t	hen
				1			(D)	0	
4.	If x =	$r\cos\theta$, $y=r$	$\sin\theta$,	; = ; , then the	! Value	$= \frac{\partial(x, y, z)}{\partial(x, \theta, z)}$			
	(A)	E^{2}	(B)	l r	(C)	r an heta	(D)	r	
5.	If y =	$=cx-c^3$ is the	gener	al solution of t	he diff	ferential equati	on		
	(A)	$\sqrt{-xy'} - y =$: ()		(B)	() 1 - 11 + 2	y = 0		
	(C)	(-xy-y)	= 0		([)	y = ()			
				ion of $y^* - 2y$					
	(A)	$c_1 \cos x + c_2 \sin x$	1.1		(B)	0.1 * * 0.1			
	(C)	$(c_1x+c_2)e^x$			(D)	$(+^{-1}f)=(-1)f(x)$			
7.	If X i	s a Poisson di	stribut	ed variable and	P(X	$=0)=\frac{1}{1}$, the	n the p	orobability distributio	n
	funct					t			
	(A)	$\frac{e^{-2}2^{\epsilon}}{x!}$	(B)	$\frac{e^{-3}\mathfrak{Z}^{1}}{x!}$	(C)	$\frac{2}{x!}$	(D)	$\frac{1}{x!}$	
8.		mean and var bility distribut		of a binomial d	listrib	tion are 4 and	3 resp	ectively, then the	
		$C_{i}^{s} \left(\frac{3}{4}\right)^{s} \left(\frac{1}{4}\right)^{s}$			(B)	$C_{x}^{16} \left(\frac{3}{4}\right)^{x} \left(\frac{1}{4}\right)$	16 - 1		
		77							
	(C)	$C_s^s \left(\frac{1}{4}\right)^s \left(\frac{3}{4}\right)^s$			(D)	$C_{x}^{16} \left(\frac{1}{4}\right)^{3} \left(\frac{3}{4}\right)$			
9.	One 1	oot of the equ	ation	$f(x) = 2x^2 - 5.$	v + 2 =	0 lies in the ir	nterval		
	(A)	(0.1)	(B)	(1, 2)	(C)	(-1,0)	(D)	(-2,0)	
Set - [A				2			(Έ

10.	The me	thod of succ	essive appr	oximation x_{i+1}	$= \phi(x_i)$ conve	erges ii		
	(A) 1	$ \phi(x) < 1$		(B)	$\phi(x) \ge 1$			
	(C) 1	$\theta \in (0,1)$		(D)	$i\phi(x) \approx 2$			
11.	A canti diagran		s subjected	to a moment a	t the free end	The sh	ape of the s	hear force
	_	traight line		(B)	Rectangle			
	(C) I	riang le		(D)	Parabola			
12.				ojected to diagram will be	loadin e similar	g , the	shapes of th	ne shear force
	(A) U	niformly dis	tributed	(B)	Uniformly v	arying		
	(C) E	xponential		([)+	Sinusoidal			
13.	(A) S	um of all the	forces is z	210	n equilibrium		and a supple	
	(C) A		n of the ver	tical and horiz	es in vertical o ontal compone			
14.	is	times the	span of the	beam.	rected to unif	of.		load
	(A) = 0	2	(B) 0.33	(C)	0.4	(D)	11.5	
15.	is 0.00		the same be	eam is subjecte	am subjected to ed at an end mo			
	(A) 1	.5mm	(B) 2.5n	ım (C)	3.5mm	(D)	4.5mm	
16.		nmetrical I sa op flange	ection, the	maximum shea	ar stress is carr	red by		
	(B)	a the junction	n of top flai	nge and web				
	(C) V							
	(D) S	hear centre						
17.	The rat	io of elongat	ion of a cor	tical bar due to	its own weigl	nt and t	hat of a pri	smatic bar is
	$(A) = \frac{1}{2}$		$(B) = \frac{1}{3}$	(C)	<u>1</u>	(D)	1 5	
18.	a beam	15			oint along the			med shape of
			$\frac{d^2y/dx^2}{dx^2}$	(B) (D)	$\pm (d^2y/dx^2)/(\pm (dy/dx))/(1-$	1+(dy/d +d²y/dx	$(x)^2)^{3/2}$	
Set -[A			3				CE

19.	1 wo peams of rectangular section are 3500×300 mm. The ratio of torsional st	rength	of beam A o	B is	18
20.	(A) 1.0 (B) 2.0 The bending stress in a beam is (A) More than section modulus (B) Equal to section modulus	(5.)	1/2	(D) 3	
	(C) Directly proportional to section in (D) Inversely proportional to section	modul	us		
21.	43.7.1	(B)	$\frac{pd}{2tE}(\frac{5}{2} - \frac{2}{m})$		
22.	(C) $\frac{3pd}{4tE} \left(1 - \frac{1}{m}\right)$ The slenderness ratio of a vertical column		$\frac{3\text{pd}}{4\text{tE}}\left(\frac{5}{2} - \frac{2}{\text{m}}\right)$		an I
44.	3 metre effective length is (A) 120 (B) 240				and
23.	The buckling load does not depend on (A) Modulus elasticity of the material (B) Cross sectional dimension of the (C) Length of column (D) Compressive strength of material	colum	n		
24.	A three hinged arch isstru (A) Curved beam in elevation (C) Statically determinate	(B)			
25.	Abeam is kinematically de (A) Cantilever (C) Propped cantilever	(B)	nate but static Simply supp Fixed beam	ported	
26.	If U is the total strain energy of the true the deflection under the applied load is (A) 1 (B) 2	$\Delta = k$	$\binom{\mathbb{Z}}{w}$ where k is	s a constant and its value is	
27.	A square , singlebay, fixed portal frame top of column AB towards right. The state (A) = $((M_{AB}+M_{BA})/L)+((M_{BC}+M_{CB})/L)+((M_{CD}+M_{DC})/L)$ (B) = $((M_{AB}+M_{BA})/L)+((M_{CD}+M_{DC})/L)$ (C) = $((M_{AB}+M_{BA})/L)+((M_{CD}+M_{DC})/L)$ (D) = $((M_{AB}+M_{BA})/L)+((M_{CD}+M_{DC})/L)$	tear eq +P=() +P=0 +P=0	-	l to a horizontal load P at tl	10
Set -[Α	4			CE

40.		nexionity co-e. Geometry: loa					enus on	
		Geometry and	20 10 20 1		1			
		Loading and s						
		Geometry and						
		e content, une	11 212					
29.	In St	iffness method	of Ma	atrix Analysis	of Stru	ictures, the unl	knowns to be determined	are
	(A)	Stresses			(B)	Strains		
	(C)	Forces			(D)	Displacemen	ts	
30.	Whe	n a concentrate	d loac	l W moves ove	er a rai	lway bridge oi	span L, the equivalent	
	unife	rmly distribute	ed is_	(W1	ـ)			
	(A)	I	(B)	2	1(~)	4	(D) 8	
31.	The:	approximate co	mpre:	ssive strength	of com	erete at 7 days	to 28 days is perce	nt
	(A)	30	(B)	50	(C)	70	(D) 80	
32.	An R	C rectangular	slab h	as the dimensi	ons ily	in longer spar	a and A_{x} along the short	21
	span	respectively.	The ra	tio (l_y/l_x) <2 ar	d it is	supported on (opposite longer sides and	the
	other	two sides are	free. I	t is to be desig	ned as			
	(A)	Elastically res	traine	d slab	(B)	Flat slah		
	(C)	One way slab			(D)	Two was state	5	
		#####################################				**************************************		
33.	The	permissible stre	ess in	concrete of an	RC be	am under shea	ar is computed from	
	perce	entage of		and				
		Tensile steel.						
		Shear reinforc			ide			
		Compression						
		Compression			trade			
		80						
34.	The:	short term defle	ection	of an RC bear	m is ca	lculated using	the value of modular rat	io 'm'
	as							
	(A)	E/E	(B)	280/3 о.н.	(C)	E./E.	(D) 3σ _{cbs} /280	
)(5)((5)((5)())						
35.	In ar	RC element.	8 mi	n diameter ba	irs are	to be provide	ed at 80 mm centre to	centre.
						•	pacing ismm.	
	(A)	100				150		
							1150 (T.). (150 (TEX.)	
Set -	\mathbf{A}				5			CE

30.		is the modular					io and ii (α=mp then	the clastic	neutrai
	axis_	tim	es the	enectiv	e dept	1)	2			
	(A)	$-\alpha \pm \sqrt{\alpha^2 + 2}$ $mp^2 + \sqrt{mp^2}$	200			(B)	(t = ± /	α	-	
	(C)	$mp^* + \sqrt{mp^*}$	+ 2 <i>n</i>	1-p		(D)	$mp^2 + \sqrt{2}$	$\alpha^2 + 2mp$)	
37.	In the	load balancin buted load is	g metl	iod app (Pe	hed to /I²)	PSC l	eams wit	h parabolic	cables, the	equivalent
	(A)	buted load is_ 6	(B)	4		(C)	8	(D)	2	
38.	The n	ninimum and i			entage	e of co	mpressio	n reinforce	ment in col	lumn is
	(A)	0.8% and 4%	a sesser da			(B)	(LS') an	160		
		0.8% and $8%$					(),8°, an			
39,	The n	naximum spac	ing of	vortical	stierm	NC 16				
8.21		L0 d	me or				0.75 do	. 300 mm v	ehic hever i	s less
		300 mm						300 mm wl		
40.	Critic of	al section for	one wa	ay shear	in foo	ting is	taken fro	in the face	of column	at a distance
	(A)	d/2	(B)	d/3		$({\color{red}C})$	d	(D)	cl. i	
41.	tensil	operty class of e stress of 800/800 MPa 88/880 MPa		and yi	eld stre	ess of			nber ≤ indi	cate ultimate
42.		number of plast	k hin	ges requ	iires to	form	a mechan	ism in case	of proppe	d cantilever
	(A)	1	(B)	2		(C)	3	(D)	4	
43.	(A) (B) (C)	ingles are used Reduce the jo Increase the s Increase the jo Increase the s	int len trengtl sint le	n of join ngth		lag				
44.	In the	analysis of be	am çe	dunms.	princip	ole of_		is not v	alid.	
	(A)	D'Alembert				(B)	Virtual v	vork		
	(C)	Superposition				(D)	Transmi	ssibility		
45.		conomical der OMPa is appro			plate g		or M=680 nm	00 kNm. (d	/tw)=180 a	nd
	(A)	1500	(B)	1700		(C)	2000	(D)	1250	
Set -[Α					6				CE

40.	in the design of colu-	nn pases the beam	ig stre	ngm or concret	e as per 15 5990 is taken a	15
	(A) 0.7 fck	B) 5000 fek	(C)	0.45 fck	(D) 0.6 fck	
47.	The lacing bars in but of the column load art (A) 1/50,180 (nd the stenderness i	ratio o	f the lacing sho		
48.	The design compress 800-2007 is based on (A) Euler's (C) Perry Robertson	formul:	(B)	loaded compre Merchant Rai Secant	ession member as per IS ikine	
49.			be less	than	_ nim and more than	
	thickness o	plate.	, D -	5. 1.5 times		
	(C) 6, 2 times		1177	8. 3 times		
50,	In the plastic analysis (A) Compatibility a (B) Mechanism and (C) Yield and equil (D) Mechanism and	nd equilibrium l equilibrium ibrium			istyconditions	
51.					noisture content of 30%	and a
	specific gravity of 2.					
	(A) 1.89	B) 0.945	(C)	0.81	(D) 0.405	
52.	respectively. The rela	•	soil fe	or the in-situ vo	st conditions are 0.4 an iid ratio of 0.6 will be (D) 80%	d 1.2
5.3	To 6 11 La 30 and	Cald and annual		C	Legender I be	
53.		hod ent method			retermined by	
	(A) 1, 2, 3 and 4			1 and 2 only		
	(C) 2 and 3 only		(D)	2 and 4 only		
54.	The liquid limit and prespectively. The nationdex will respectivel (A) 20% and 0.5	ural moisture cont	ent is		are 40% and 20% icity index and consistent	z)
	(C) 30% and 0.72			20% and 0.38	8	
	(C) 50 a allu 0.72		(D)	ZU w and U.Sc	Lef	
Set -	A		7			CE

	(A)	large volume change	(B)	moderate vo	lume change	
	(C)	low volume change	(1)	no volume c	hange	
56.	Cons	ider the following statem	ents			
******	1.	Organic matter decrease		ty of soil		
	2.	Entrapped air decreases		*		
		ch of these statements is/a				
		l only		2 only		
		Both 1 and 2	(D)	Neither I no	г 2	
57.	Effec	ctive stress on soil				
	(A)	increases void ratio and	decreases perme	sability		
		increases both void ratio				
		decreases both void ratio				
	(D)	decreases void ratio and	increases permi	eability		
58.	The	soils most susceptible to l	iquefaction are			
		saturated dense sands				
		saturated fine sands of u		size		
		saturated clays of unifor				
	(D)	saturated gravels and col	bbles			
59.	Duri	ng consolidation process	of clayey soils.	indicate the s	equence of the following in	the
	orde	r from first to last.				
	1.	Load being taken up by				
	<u> </u>	Load being taken up by		12		
	3.	Drainage of water from			B 3 - 13	
	(A)	1, 2 and 3 (B) 2,3	and f (C)	1, 3 and 2	(D) 2, 1 and 3	
60.	A bo	errow pit soil has a dry de quired to construct an em	ensity of 16 kN/ bankment of 10	m³. How man 0 m³ with a d	ny cubic meters of this soil by density of 17 kN/m.	will
	(A)			100	(D) 90	
61.		nstead of single drainag onding soils, the rate of co			faces is increased to two	in (
	(A)	4 times slower	(B)	2 times slow	er	
	(C)	4 times faster	(D)	2 times faste	r	
62.		a sample of dry cohesioned to the major principal			e. O. the failure plane will	be
	(A)			45"		
	(C)	45'' - 0/2	(D)	45'' + 0/2		
Set -	A		8		(CE

32.

n son is uned beyond shirmkage timin, it will show

Set -	A			9				CE
101	(C)	cohesion and	adhesion	(D)	cohesion or	adhesic	n	
71.	(A)	uce tension is c cohesion		1355 30	adhesion			
		2 and 3 only		(D)	1 and 3 only	Ý		
		1. 2 and 3			1 and 2 only	7		
	W_{his}	ch of these stat	ements are c	orrect 1				
	3.	The group ef 100%	ficiency of a	pile group ma	ıy be either le	ss than	100' or more th	nan
		Minimum nu					1000	Line
	1.	Friction piles				20-1-1-1-1		
70.	Con:	sider the follow	The state of the s					
	IX I	nicrease and	ACT I I CHICATOTTI V	(17)	transier tile	TOTAL .		
		reduce the se increase the p			accelerate t transfer the		endation	
69.		drains are use		/D:	and alamite to	h	ali.latian	
20	c		7					
	(C)	Illite		(D)	Halloysne			
	(A)	Kaolinite		(B)	Montmorall			
68.	Ame	ngst the clay r	ninerals, the	one having th	e maximum s	welling	tendency is	
	(11)	1. • till() J	(D) 1	uid + (C)	eº 000 ≠	(17)	1. L. P HIN →	
		Width of fool	No.	and 4	2.3 mil 1	713)	1 2 3 and 1	
		Depth of foot	207.00					
		Angle of inte		of soil				
		Density of so		# 100AV				
67.		ch of the follow		affect the bear	ring capacity (of cohes	sive soils !	
	1000	Tell stell	(12) 14(1)	The second		4.77		
		Ko <ka<kp< td=""><td></td><td></td><td>K < K < Ka</td><td>(D)</td><td>K-<k-<k-< td=""><td></td></k-<k-<></td></ka<kp<>			K < K < Ka	(D)	K- <k-<k-< td=""><td></td></k-<k-<>	
66.		lateral earth p Ko for at rest c			oil. K. tor a	ciive sti	ate. K _i for pas-	sive state
303	***	GEN ANAGORION SERVICIO ANGORIO	90009 - 215 Day 19- 201 17-24 Day 201	words and the second	27 P. 10 P.		MATERIAL PROPERTY AND	
		40 kN/m^2						
	1() k	N/m¹. The effe	ctive vertica	Lstress at 5 m	from the top	of sand	bed is	
65.	Ап	ver 5 m deep	consists of	a sand bed v	ath saturated	unit w	eight of 20 kN	/m³. Y :
	101	mark Cone I	encuation I	c2t (D)	vane onear	1621		
		Standard Pen Static Cone I			Plate Load			
64.							strength of a sof	t clay is
		Horavier Manager			An Markon Markon Markon			
		200 kPa		(A) (E) (A) *	600 kPa	(D)	800 kPa	
		ining pressure				- white state of	and the state of	p.c.u.
0.5.							ailure for the sa	

		both steady ar	nd unsi	teady flows					
		real fluids	a	4	. 1				
		all fluids and				1			
	(D)	steady flow of	I ideal	fluids along a	stream	n tube			
73.		vater jet of an ed on the plate		2 m² strikes a	t 10 n	n/s normally o	n a st	ationary plate	e, the force
	(A)	200 N	(B)	1000 N	(C)	2000 N	(D)	20000 N	
74.	(A) (B) (C)	oss of head in inversely as th inversely as the directly as the directly as the	ne squa ne squa squar	are of the velo are of the dian e of the veloci	city of neter o	flow f pipe			
75.	regin modi	proposed to in ie. If all othe fied flow relati	er fac ive to t	tors remain the original flo	unchar w wo	iged. power o uld increase by	consun	mption to m	
	1.4)	10%	(D)	20%	1(_)	445c	(D)	2-1	
76.	0.018 times	verage drag co If all other fa its original va	actors lue, th	remain uncha e average drag	nged. g coeft	and the length icient would c	of the hange	e plate is inci to	
	(E_i)	0.0036	(B)	0.0056	(C)	0.008	(D)	1) ()()()	
77.	Singi	ng of telephon	e wire	s in the wind	occurs	due to			
353666F		vibrations cau					the end	ds	
	(C)	Magnus effec	i .			generation of			et
	1. 2. 3. 4. Whice	alternate dept conjugate dep	hs are hs are ths are ths are stater	the depths have the depths have the depths have the depths have ments are corre	ing sa ring sa tving s tving s ect?	me kinetic end me specific en ame specific fo ame momentu	nergy orce m forc		
79.	flow			•			ydraul	ic radius to d	epth of
	(A)	$1/2\sqrt{2}$	(B)	$2\sqrt{2}$	(C)	$\sqrt{2}$	(D)	1/2	
Set -	A				10				CE

14.

т не венющи в еquation із аррисавіе то

ou.	VY 1110	en of the follow	mg c	ovr pro	инех а	e draw	аоми рготи	res r		
	(A)	M_i , S_i , C_i				(B)	M2, S2, H2,	. A ₂		
	(C)	Mi, Si, Hi, A	t			(D)	none of the	3sc		
81.	A hs	draulic jump o	cents	when t	ere is	a breal	in arode fro	ODY 9		
01,		mild to steep		· mair t	iici C III		steep to mi			
		steep to steep					mild to mil			
		steep to steep	•			(1)	mina to min	ider		
82.	асто	measurement ss the flow whi ow is								75 - 100 E
	(A)	uniform irrota	ationa	1		+B)	unitorm ro	tational		
	(C)	non-uniform i	rrotat	ional		(\Box)	non-unifer	m retat i o	nal	
83.		100 model of a otype in m³/s is		way, th	e disch	arge is	0.1 m 's Ti	ie oures	ponding dis	charge in the
	(A)	10	(B)	100		$_{\gamma}(C)$	1()()()	(D)	10000	
84. 85.	1. 2. 3. The (A)	Francis Pelton with a Kaplan sequence of the 1, 3 and 2	single tur (B)	e jet rbines i 2. 1 au ach cap	n the in nd 3 able of	(C)	1, 2 and 3 ring 0.2 cur	(D)	2. 3 and 1	
		sected in paralle					IS			
		0.4 cumed ago								
		0.4 cumee aga								
		0.2 cumee aga								
	(D)	0.2 cumed aga	unst :	i head c	ot 60 m					
86.	cn√c	rainfall on fou lay, the direct r	unoff	from th	ie catch	iment i	S			m. If $\emptyset = 5$
	(A)	2 cm	(13)	> cm		(C)	6 cm	(12)	9 cm	
87.	to an	e peak of a 2 h n effective rainf 25 m ³ /s	all of	2 cm o	f 2 hou	r durat	ion with a bi	ase flow	5 m/s is	drograph due
Set -	A					11				CE
20 ES 18						200				3.55

Set -	(A) A	1.7 MPa	(15)	2.4 MIr a	12	2.0 MF a	(D) 4.8 M	Pa CE
95.	If the is no	downstream tail water, the	face o maxii	f the dam l num princi	has a slop ipal stress	e of 0.707 he at the toe of	orizontal : 1 ver the dam is	nd to be 2.4 MPa. tical, and if there
94.	theor finer (A) (B) (C)		e same U vill hav vill hav and N	quantum e steeper le e steeper le can have s	of dischar ongitudin ongitudina ame longi	ge. But the l al slope al slope	bed material of	pased on Lacey's M is found to be
		9.5		0.7		0.5	(D) 0.2	
93.		i clayey soil, il to potential				drop in the	available mois	sture, the ratio of
		0.63 cumec			-73	0.70 cumes		
92.	disch The r	-	d to gr	row them a	are 0.36 a is		ectively. The t	eat. The average ime factor is 0.9
		tion requirem 25 cm		20 cm	iC)	18,67 cm	(D) 175¢	11)
91.	appli	cation efficie	ncy is					14 cm, the water 70%. The gross
	(B) (C)	attenuated per increased per increased per	ak wit ak with	h increased i increased	l time bas time base			
90,	A flo	ood wave wit voir The outf	h a kr low hy	drograph v	w hydrog vill have		0.000.000.000	arge uncontrolled
	(\hat{A})	er material is specific yield specific stora	I			specific ret		
89.				at can be	extracted	by force of	gravity from	a unit volume of
		arge of 0.4 m ³ /s	(B)			36 m²/s	(D) 40 m ³	/s
								h carries a peak

Set -	A				13				CE		
	(D)	domestic sev	vage, industria	al waste	es and	storm wa	ter				
	ıCı	el influence esta estado estado estado en la constanción de la constanción de la constanción de la constanción									
	(B)	domestic sev	vage and indu	strial w	astes						
	(A)										
103.	А со	combined sewer is one which carries									
	(D)	230 mg/I car	оопате паганс	iss and	100 m	gri non-ca	arvonate	naruness			
		250 mg/l carbonate hardness and 350 mg/l non-carbonate hardness 250 mg/l carbonate hardness and 100 mg/l non-carbonate hardness									
	(B)	STATE OF THE PROPERTY.									
		127									
102.				vee and	zara n	an sechos	nata har	Inacc			
102.		The alkalimity and the hardness of a water sample are 250 mg/l and 350 mg/l as CaCO ₃ , respectively. Then water has									
		maximum da	5.0				177				
	(A)	maximum ho	ourly demand		(B)	average	hourly	demand			
101.	The	water distribu	tion mains are	design	ed for						
	(C)	fluoride			(D)	lead					
		chlorides				nitrates					
100.		Blue baby disease in children is caused by the presence of excess									
	ici	dissorred sar	C.I.		7.10	GI SSELL	.u gase.				
		dissolved sal			dissolve	al ancos					
99.		suspended in			· R v	colour					
00	Anna	tion of water	ie dana ta ran	La Nich							
	(C)	Dissolved ox	tygen content		(1)	Hardne					
		Coliform bac				BOD:					
101. 102.	MPN	Nindex is a m	easure of one	of the	follow	ing					
	101	F2 F 52-	→RSF→RM-	((D)	PS→Kr	VI	(D) 7 (M). flocculation(F). lorination(C) and ration water treatment plant (M → RSF → SS → C) +F → SS → RSF → C excess ourly demand ally demand ally demand (mg/l and 350 mg/l as C) e hardness e hardness onate hardness onate hardness onate hardness	•€		
	filtra	sedimentation(PS), secondary sedimentation(SS), chlorination(C) and rapid sand filtration(RSF) (first to last) commonly used in a convention water treatment plant is (A) $PS \rightarrow RSF \rightarrow F \rightarrow RM \rightarrow SS \rightarrow C$ (B) $PS \rightarrow F \rightarrow RM \rightarrow RSF \rightarrow SS \rightarrow C$									
97.		The order of unit processes, rapid mixing(RM), flocculation(F), primary									
	1.17	124	1107		(0)		11.7	(15)			
	is (A)	10	(B) 5		10	1.5		(D) 7			
701	resid										
90.	III UI	e treatment of	EUDDOO HEAD	TA OL W	ater, u	ic amoun	II (5) CHE	MILIE UNCU	is 12 kg/day. The		

104.	(BOD) and chemical oxygen demand (COD) is given by										
		TOD>BOD>	700	T			TOD>COL)>BOD			
		COD>BOD>					BOD>COI				
105.	Criti	cal factors for	the ac	tivated s	sludge t	reatm	ent process :	are			
	(A) maximum hourly flow rate										
	(B) maximum and minimum flow rates										
	(C) maximum hourly flow rate and maximum daily organic load										
	(D) minimum hourly flow rate and minimum daily organic load										
106.	The main constituents of gas generated during the underable digestion of the sludge are										
		carbon dioxid		-		*		•			
	(B) methane and ethane										
					monoxi	ide					
	(C) carbon dioxide and carbon monoxide (D) carbon monoxide and nitrogen										
107.	Duri	ng temperatur	e inver	sion in 1	the atm	osphe	re, air pollut	ants ten	d to		
		accumulate a								laver	
	(C) disperse laterally						disperse ve				
	ADMINISTRAL SALES	1						,			
108.	Ozone layer depletion is because of										
	(A) hydrocarbons						(B) carbon monoxide				
	(C) chlorofluro carbons) carbon dioxide				
						(-)					
109.	- AND PART OF THE										
		bility for					200-0-807-4-V0-0000-4-00-5				
		land filling					composting				
	(C)	incineration				(D)	pyrolysis				
110.		sources gener					nd 94 dB re	spective	ly. The cu	imulative e	ffect
		iese noise level									
	(A)	<90 dB	(B)	90 dB		(C)	94 dB	(D)	>94 dB		
111.	The rate of super elevation for a horizontal curve of radius 500 m in a national highway for										
		sign speed of 1		•			the section of the		to the farmer state of		
	(A)	0.04	(B)	0.063		(C)	0.07	(D)	0.70		
112.	Bitu	men of grade 8	80/100	means							
(S) \$18 ³ 1		Its penetratio			nı						
		Manage and All Sand									
		its penetratio									
		its penetratio									
	10000	an promittee	ALCOHOLDS	w. 110,560,350	120000011						
Set -	A					14					CE
111111111111111111111111111111111111111											

	(B)	below the sub	-base								
	 (C) over the sub-grade but below the sub-base (D) over the wearing course when renewal of surface is needed 										
		- BUSH (BUNGOOD NOON NOON SE					s needed				
114.	Traf	fic capacity is t	he								
	(A) ability of road way to accommodate traffic volume in terms of vehicles per hour										
	 (B) number of vehicles occupying a unit length of road way at a given instant expressed as vehicles/km 										
	(C)	capacity of la	ne to accom	modate	the veh	icles acro	ss the road				
	(D)	maximum atta	ainable spee	d of veh	nicles						
115.	When two roads with two-lane, two-way traffic, cross at an uncontrolled intersection, the total number of potential major conflict points would be										
	(A)	4	(B) 16		(C)	24	(D)	32			
116.	origi	plan of a surve nally 10 cm los The actual area	ng now mea	sures 9	eni Th						
		656				1000	(D)	10,000			
117.		whole circle be om AB to BC is		e AB is	50° an	d of line I	3C is 120°.	. The deflecti	on angle at		
	(A)	50°	(B) 70 ⁰		(C)	11()	(D)	1.20)			
118.	(A) (B) (C)	rise and fall me Intermediate s back sights ar back sights, in back sights ar	sights only nd fore sight ntermediate	s sights a	nd fore		rovides ari	thmetic check	on		
119.	static The	r fixing the pla on are 1. Levell correct sequence	ing 2. Orier te of these o	itation peration	3. Cent is is	ering		1.5 1.50 - 1.50 - 1.50	plane table		
	(A)	3.1.2	(B) 1.5.	2	(C)	1, 2, 3	(D)	2, 3, 1			
120.	upsic	of a floor is 20 de down agains	t the bottom	of the i	oof is .	3.305 m. I	leight of th	ne ceiling is	e staff held		
	(A)	3.5 m	(B) 4.0 n	1	(C)	5.0 m	(D)	6.0 m			
Set -	A .				15				6.11		
Set -[/1				15				CE		

113. The position of base course in a flexible pavement is

(A) over the sub-base

SPACE FOR ROUGH WORK

