CBSE Class 12 Chemistry Answer Key 2013 (March 11, Code - 56/1/1)

Del hi - 1 2013

CHEMSTRY MARKING SCHEME DELHI - 2013 SET 56/1/1

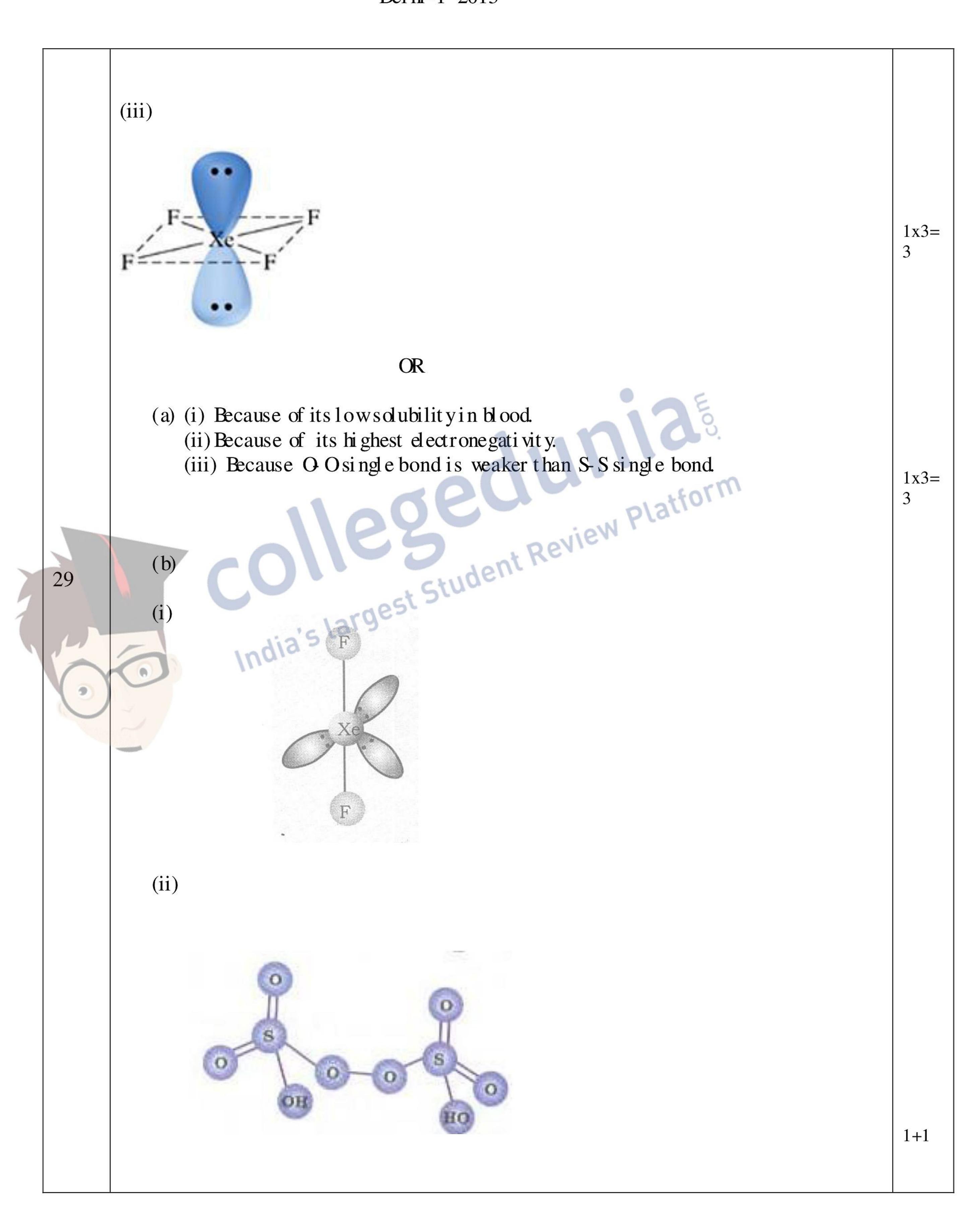
Q no.	Ans wers	Marks
1	4	1
2	Mond Process/ Vapour phase refining met hod	1
3	4	1
4	4-chl or opent - 1-ene	1
5	CH ₃ CN is for med or ethanenitrile is for med.	1
6	H ₃ C- CH(CH ₃)- CH ₂ - CHO	1
7	(CH ₃) ₃ N < CH ₃ NH ₂ < (CH ₃) ₂ NH	1
8	mRNA, r RNA, t RNA	1
9	$\Delta T_b = K_b m$	1/2
	$T_b - T_b^0 = 0.52 \text{ K kg mol}^{-1} \text{ x} \frac{18 \text{ g}}{180 \text{ g mol}^{-1}} \text{ x} \frac{1}{1 \text{ kg}}$	1/2
	$T_b - 373.15 K = 0.052 K$	1/2
	$T_b = 373.202 K$	1/2
1		
10	$\Lambda_{\rm m} = \kappa / C$	1/2
	$\Lambda_{\rm m} = 0.025 {\rm S cm}^{1} \over 0.20 {\rm mol L}^{1}$	1/2
	$\Lambda_{\rm m} = 125 \mathrm{Scm}^2 \mathrm{mol}^{-1}$	1
	(deduct ½ mark for wrong or no unit)	
	1	

11		Dspersed phase	Dspersion Medium	
	(i) Smoke (ii) Mlk	Soli d Li qui d	Gas Ii qui d	1
11		OR		
		ttracting sols whereas Lyo	phobic sols are Sol vent repelling	1/2 + 1/2
	Lyophobic sds can be easil	y coagul ated	35.	1
12				
	Physis or pti on	11085	Che misorpti on	
	It is not very specific.) I student	It is highly specific.	
	It is usually takes pla decreases with increasing t	ce at low temperature are merature	nd It takes place at high temperature.	
	It is reversible.	To Tripor de de C.	It is irreversible.	
	Lowent halpy of adsorption	n.	High enthalpy of adsorption.	½ x4=2
13	(a) Na CN sol ution (b) CO			1+1
14				
	(i)			
	$PCl_5 \xrightarrow{heat} PCl_3 + Cl_2$			1
	(ii)			
	4H ₃ PO ₃ heat 3H ₃	PQ + PH		1
		(Full marks may be give	en if equation is not balanced)	

15	(a) Cu, because in +1 oxidation state it has stable $3d^{10}$ configuration. (b) Mh^{2+} , V^{3+} : because of the presence of unpaired electrons. (if only one ion is mentioned deduct $\frac{1}{2}$ mark)	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$
16	 (i) Due to resonance / diagrammatic representation, C- Cl bond acquires a partial double bond character which is difficult to cleave. (ii) Due to sp² hybri disation of 'C of C Cl bond. (iii) Due to unstable phenyl cation. (iv) Due to repulsion bet ween nucleophile and electron rich arenes. 	1+1
17	(ii) $CH_3-CH_2-\overset{\bullet}{\circ}-H + \overset{\bullet}{H} CH_3-CH_2-\overset{\bullet}{\circ}-H$ (iii) $CH_3CH_2-\overset{\bullet}{\circ}: + CH_3-\overset{\bullet}{C}H_2-\overset{\bullet}{\circ}-CH_3-CH_2-\overset{\bullet}{\circ}-CH_3-CH_3-H_2-\overset{\bullet}{\circ}-CH_3-H_2-\overset{\bullet}{\circ}-CH_3-H_2-\overset{\bullet}{\circ}-CH_3-H_3-H_2-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-H_3-\overset{\bullet}{\circ}-CH_3-H_3-H_3-H_3-H_3-H_3-H_3-H_3-H_3-H_3-$	1/2
	$(iii) CH_3CH_2 \xrightarrow{\bullet} O - CH_2CH_3 \xrightarrow{\bullet} CH_3CH_2 - O - CH_2CH_3 + H$ $(iiii) CH_3CH_2 \xrightarrow{\bullet} O - CH_2CH_3 \xrightarrow{\bullet} CH_3CH_2 - O - CH_2CH_3 + H$	1
18	(i) CH ₃ - CH = CH ₂ H OH OH	
	(ii)	
	Conc. HNO ₃ O ₂ N NO ₂ NO ₂	
	(or by any other correct suitable method)	1+1

10	(a) n tyma ga mi a andysat on	
19	(a) p-t ype se mi conduct or (b) Ferrorm queties m	
	(b) Ferromagnetis m(c) I mpurity defect / Cation vacancy defect	
	(c) I fipulity defect / Califoli vacancy defect	1x3=3
		133-3
20		
20	When K₂SQ is dissolved in water, ions are produced.	
	Total number of ions produced = 3	
	Total number of folis produced – 3	
	i = 3	1/2
		12
	$\pi = i CRT = i x \underline{n} x R x T$	1/2
	$\pi = 3 \text{ x}$ $2.5 \times 10^{2} \text{ g}$ x 1 x $0.0821 \text{ Lat mK}^{1} \text{ mol}^{-1} \text{x } 298 \text{ K}$	
	174 g mol^{-1} 2L	1
	a aview.	
	$\pi = 5.27 \times 10^3$ at m	
	to a in	1
	(doduct 16 mork for vector or no unit)	
	(deduct ½ mark for wrong or no unit)	
21		
	The cell reaction: $Fe(s) + 2H^{\dagger}(aq) \rightarrow Fe^{2+}(aq) + H_2(g)$	
	$E_{cell} = 0.44 \text{ V}$	
	Nonnet aquati on	
	Nernst equation	
	\mathbf{F} \mathbf{F} 0.0501 as \mathbf{F} \mathbf{F}^{2+1}	1
	$E_{\text{cell}} = E_{\text{cell}}^{\circ} - 0.059 \log [Fe^{2+}]$	
	$2 \qquad \left[H^{\dagger}\right]^{2}$	90W 65
	$\mathbf{F} = 0.44 \mathbf{M} \cdot 0.050 1_{0.00} (.0.001 \mathbf{N})$	1/2
	$E_{\text{cell}} = 0.44 \text{ V} - \underline{0.059} \log \underline{(0.001 \text{ M})}$	
	$2 \qquad (1 M)^2$	
	$\mathbf{z}_{\mathbf{z}} = \mathbf{z}_{\mathbf{z}}^{\mathbf{z}}$	
	$= 0.44 \text{ V} - \underline{0.059} \log (10^{-3})$	
	2	1/2
		1/2
	= 0.44 V + 0.0885 V	
	_A 5005XI	1
	=0.5285 V (deduct 1/2 mark for varong or no unit)	
	(deduct ½ mark for wrong or no unit)	

22	 (i) Due to incomplete filling of d-orbitals, transition metals show variable oxidation states. (ii) Because of Lanthanoid Contraction. (iii) Because of their ability to show multiple / variable oxidation states. 	1 x 3=3
	OR	
22	(i) $G_2 O_1^{2-} + 6Fe^{2+} + 14H^{\dagger} \rightarrow 2G^{3+} + 6Fe^{3+} + 7H_2 O_1^{2-}$	
	(ii) $2G'O_4^{2-} + 2H' \rightarrow G_2Q^{2-} + HO$	
	(iii) $2 \text{Mn } Q_1^- + 5 \text{C}_2 Q_1^{2-} + 16 \text{H}^{\dagger} \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2 \text{O}$	1 x 3=3
	(Accept only bal anced equation)	
23	(i) Tri a mmi netri chl ori dochr o mi u m(III)	1
	(ii) Pot assi um hexacynoferrat e(III)	1
	(iii) D bro mi dobi s-(et hane- 1, 2-di a mi ne) cobalt (III) / D bro mi dobi s-(et hyl enedi a mi ne) cobalt (III)	1
24	(i) A=C ₆ H ₃ CN B=C ₆ H ₃ COOH C=C ₆ H ₃ CONH ₂	½x3=1 ½
	(ii) $A=C_6 H_5 NH_2$ $B=C_6 H_5 N_2^+ C^ C=C_6 H_5 - OH$	½x3=1 ½
25	(i) Buna-S: 1,3- But adi ene and Styrene	1/2+1/2
	$CH = CH_2$ $CH_2 = CH - CH_2 \text{ and }$	
	(ii) Ne oprene: Chl or oprene	
	$CH_{2} = C - CH = CH_{2}$	1/2+1/2


	(iii) Nylon-6, 6: Hexa met hylene dia mine and Adipic acid H ₂ N (СН ₂) ₆ - NH ₂ HOOC-(СН ₂) ₄ - COOH	1/2+1/2
26	(i) Sonali: Concerned for the society, socially active and helpful to others.	1
	Principal: Caring commanding and serious about the welfare of students.	1
	(or any other suitable values)	
	(ii) Vitamins Band C	$\frac{1}{2} + \frac{1}{2}$
27.	(a) Sodi u m Benzoat e	
	(b) To impart antiseptic properties (c) Tranquilizers	1 x 3=3
	CO student Review	
	India's largest	

28	(a) (i) rate = $k[A]^2 [B]$	
	(ii) Rate will increase 9 times of the actual rate of reaction. (iii) Rate will increase 8 times of the actual rate of reaction.	1x3=
	(b) $k = 2.303 \log \left[A_{\underline{0}} \right]$ $t \qquad [A]$	1/2
	$k = \underbrace{2303 \log 100}_{40 \min n}$	
	$k = 2303 \times 0.155 = 0.00892 \text{ mi n}^{-1}$ $t_{1/2} = 0.693$	1/2
	k India's largest	1/2
(0)	$\frac{0.693}{0.00892}$ min $\frac{0.693}{0.00892}$	
	$t_{1/2} = 77.7 \mathrm{min}$	1/2
28	OR	
	(a) $t_{99\%} = 2303 \log 100$ k	1/2
	$t_{90\%} = \underbrace{2\ 303}_{k} \ \log \underbrace{100}_{10}$	1/2
	on comparision $ \underline{t}_{99\%} = \underline{\log 100} $ $ \underline{t}_{90\%} = 10g 10 $	1/2
	Hence $t_{99\%} = 2 t_{90\%}$ (or solved by any other correct suitable method)	1/2
	colleged India's largest Student Re	unia ia view Platform

~			
		(b) Stope = $\frac{-Ea}{2303R}$	1
		$-4250 \text{ K} = - \frac{\text{Fa}}{2303\text{x}8314\text{J}\text{K}^{1}\text{mol}^{-1}}$	1
		Ea= 81375 J mol ⁻¹ or 81.375 kJ mol ⁻¹	1
	29.	 (i) Because of smaller size of F-atom/ shorter bond length, the electron —electron repulsion a mong the lone pairs is greater in F₂ than G₂ (ii) Due to hydrogen bonding in NH₃. (b) 	1+1
		(i) India's largest Fludent Br	
		(ii)	
		но Р он	

30.	(a)(i) Resonating structures of carboxylate ion are more stable than phenoxide ion structures.	
	(ii)—ve charge is dispersing on two electronegative oxygens in carboxylate ion whereas on one oxygen in phenoxide ion.	1+1
	(b)	
	Zn- Hg i) CH₃- CO CH₃ → CH₃- CH₂- CH₃ conc. HCl	
	ii)	
	CHO Pd - BaSO ₄ Repyaldebyde	
	Benzoyl chloride Student Benzaldehyde	
	dil. Na OH Δ	1x3
	iii) CH₃- CHO → CH₃- CHႂ OH) - CH₂ - CHO → CH₃- CH= CH CHO H₂ O	=3
	(or by any other correct suitable met hod)	
	OR	
30	(a)	
	(i)	
	H—C—OH + H—C	
	H OK	
	(ii)	
	Br - CH ₂ COOH	

(iii)

(b)

$$O_2N$$
 \longrightarrow
 $-CHO$

 $1 \times 3 = 3$

(i) <u>It hand and Propanal</u>: It hand gives yellow ppt of Iodof or m(CHI₃) on addition of NaOH/ I₂ whereas Propanal does not give this test.

(or any other suitable test)

(ii) <u>Benzoi c aci d and Phenol</u>: Add neutral Fe Ω_3 to both, phenol gives purple/violet colouration whereas Benzoi c aci d does not give this test or / Add NaHCO₃ to both, Benzoi c aci d will give brisk efferves cence whereas phenol does not give this test.

1+1

(or any other suitable test)

Sh. S K Munj d

Prof. RD Shukla

Dr. K N Uppadhya

Mr. Rakesh Dhawan

Ms. Neeru Sofat

Mr. Virendra Singh

Dr (Mrs.) Sangeet a Bhatia

Mr. K. M. Abdul Raheem

M. D. A Mshra

Mr. Deshbir Singh

Mr. Akhileshwar Mishra

