MATHEMATICS - CET 2020 - VERSION Code - D-2 SOLUTION

1. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{3-y}{-4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is
(A) $\frac{3}{50}$
(B) $\frac{4}{5 \sqrt{2}}$
(C) $\frac{\sqrt{2}}{10}$
(D) $\frac{3}{\sqrt{50}}$

Ans (C)
Given line is $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$
and plane is $2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}=5$
w.k.t. $\sin \theta=\left|\frac{\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{n}}|}\right|$
$\sin \theta=\frac{(3 \hat{i}+4 \hat{j}+5 \hat{k}) \cdot(2 \hat{i}-2 \hat{j}+\hat{k})}{\sqrt{9+16+25} \sqrt{4+4+1}}$

$$
=\frac{6-8+5}{\sqrt{50} \sqrt{9}}=\frac{3}{5 \sqrt{2} .3}=\frac{1}{5 \sqrt{2}}=\frac{1}{5 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{10}
$$

2. If a line makes an angle of $\frac{\pi}{3}$ with each of x and y-axis, then the acute angle made by z-axis is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) $\frac{\pi}{4}$

Ans (D)
Given $\alpha=\beta=\frac{\pi}{3} \quad \gamma=$?
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\cos ^{2} \gamma=1$
$\frac{1}{4}+\frac{1}{4}+\cos ^{2} \gamma=1$
$\cos ^{2} \gamma=\frac{1}{2} \Rightarrow \cos \gamma= \pm \frac{1}{\sqrt{2}}$
$\Rightarrow \gamma=\frac{\pi}{4} \quad[\because \gamma$ is acute $]$
3. The distance of the point $(1,2,-4)$ from the line $\frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6}$ is
(A) $\frac{\sqrt{293}}{7}$
(B) $\frac{293}{49}$
(C) $\frac{\sqrt{293}}{49}$
(D) $\frac{293}{7}$

Ans (A)
Given point is $(1,2,-4)$ and the line is $\frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6}$
$\frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6}=K$
\therefore Dr's of the line are $(2 \mathrm{~K}+3,3 \mathrm{~K}+3,6 \mathrm{~K}-5)$

Dr's of $\mathrm{AB}(2 \mathrm{~K}+2,3 \mathrm{~K}+1,6 \mathrm{~K}-1)$
Since $A B$ is perpendicular to the given line $(2 K+2) 2+(3 K+1) 3+(6 K-1) 6=0$
$4 K+4+9 K+3+36 K-6=0$
$49 \mathrm{~K}=-1 \quad \mathrm{~K}=\frac{-1}{49}$
\therefore distance $=\sqrt{\left(\frac{96}{49}\right)^{2}+\left(\frac{46}{49}\right)^{2}+\left(\frac{43}{49}\right)^{2}}$

$$
=\sqrt{\frac{9216+2116+3025}{(49)^{2}}} \sqrt{\frac{14357}{49 \times 49}}=\frac{\sqrt{293}}{7}
$$

4. The feasible region of an LPP is shown in the figure. If $Z=11 x+7 y$, then the maximum value of Z occurs at

(A) $(3,3)$
(B) $(5,0)$
(C) $(3,2)$
(D) $(0,5)$

Ans (C)
The corner points are $(0,5),(0,3),(3,2)$
At $(0,5) \quad Z=35$
At $(0,3) \quad Z=21$
At $(3,2) \quad Z=47$
5. Corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$. Let $\mathrm{z}=\mathrm{px}+\mathrm{qy}$, where $\mathrm{p}, \mathrm{q}>0$. Condition on p and q so that the minimum of z occurs at $(3,0)$ and $(1,1)$ is
(A) $\mathrm{p}=\frac{\mathrm{q}}{2}$
(B) $p=3 q$
(C) $p=q$
(D) $p=2 q$

Ans (A)
Given corner points are $(0,3),(1,1),(3,0)$
$\mathrm{z}=\mathrm{px}+\mathrm{qy}$
At $(3,0) \quad z=3 p$
At $(1,1) \quad \mathrm{z}=\mathrm{p}+\mathrm{q}$
$\Rightarrow 3 \mathrm{p}=\mathrm{p}+\mathrm{q}$
$2 \mathrm{p}=\mathrm{q} \Rightarrow \mathrm{p}=\frac{\mathrm{q}}{2}$
6. If A and B are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{6}$, then $\mathrm{P}\left(\frac{\mathrm{A}^{\prime}}{\mathrm{B}}\right)$ is
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{1}{12}$
(D) $\frac{2}{3}$

Ans (D)

Given $\mathrm{P}(\mathrm{A})=\frac{1}{3} \quad \mathrm{P}(\mathrm{B})=\frac{1}{2} \quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{6}$
$\mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}\right)=1-\mathrm{P}(\mathrm{A} \mid \mathrm{B})$
$=1-\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=1-\frac{1}{3}=\frac{2}{3}$
7. A die is thrown 10 times, the probability that an odd number will come up atleast one time is
(A) $\frac{1023}{1024}$
(B) $\frac{11}{1024}$
(C) $\frac{1013}{1024}$
(D) $\frac{1}{1024}$

Ans (A)
Given $\mathrm{n}=10 \quad \mathrm{p}=\frac{1}{2}, \quad \mathrm{q}=\frac{1}{2}$
Required probability $=1-P(X=0)$

$$
\begin{aligned}
& =1-{ }^{10} \mathrm{C}_{0}\left(\frac{1}{2}\right)^{10-0}\left(\frac{1}{2}\right)^{0} \\
& =1-\frac{1}{2^{10}}=1-\frac{1}{1024} \\
& =\frac{1023}{1024}
\end{aligned}
$$

8. The probability of solving a problem by three persons A, B and C independently is $\frac{1}{2}, \frac{1}{4}$ and $\frac{1}{3}$ respectively. Then the probability of the problem is solved by any two of them is
(A) $\frac{1}{4}$
(B) $\frac{1}{24}$
(C) $\frac{1}{8}$
(D) $\frac{1}{12}$

Ans (A)
Required probability $=\mathrm{P}\left(\mathrm{ABC}^{\prime}\right)+\mathrm{P}\left(\mathrm{AB}^{\prime} \mathrm{C}\right)+\mathrm{P}\left(\mathrm{A}^{\prime} \mathrm{BC}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{3} \\
& =\frac{1}{12}+\frac{1}{8}+\frac{1}{24}=\frac{2+3+1}{24}=\frac{1}{4}
\end{aligned}
$$

9. Events E_{1} and E_{2} form a partition of the sample space S. A is any even such that $\mathrm{P}\left(\mathrm{E}_{1}\right)=\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)=\frac{1}{2}$ and $\mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{2}{3}$, then $\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right)$ is
(A) $\frac{2}{3}$
(B) 1
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$

Ans (D)
Given $P\left(E_{1}\right)=P\left(E_{2}\right)=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{E}_{2} \mid \mathrm{A}\right)=\frac{1}{2} \quad \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{2}{3}$
Using Baye's theorem $P\left(E_{2} \mid A\right)=\frac{P\left(E_{2}\right) P\left(A \mid E_{2}\right)}{P\left(E_{1}\right) P\left(A \mid E_{1}\right)+P\left(E_{2}\right) P\left(A \mid E_{2}\right)}$

$$
\begin{gathered}
\frac{1}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}{\left(\frac{1}{2}\right) \mathrm{x}+\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)} \Rightarrow \frac{1}{2}=\frac{\frac{1}{3}}{\frac{\mathrm{x}}{2}+\frac{1}{3}} \\
\begin{aligned}
\frac{\mathrm{x}}{2}+\frac{1}{3}= & =\frac{2}{3} \Rightarrow \frac{\mathrm{x}}{2}=\frac{1}{3} \Rightarrow \mathrm{x}=\frac{2}{3} \\
\mathrm{P}\left(\mathrm{E}_{1} \mid \mathrm{A}\right) & =\frac{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)}{\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{E}_{2}\right)} \\
& =\frac{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}{\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)+\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)}=\frac{1}{2}
\end{aligned}
\end{gathered}
$$

10. The value of $\sin ^{2} 51^{\circ}+\sin ^{2} 39^{\circ}$ is
(A) 0
(B) $\sin 12^{\circ}$
(C) $\cos 12^{\circ}$
(D) 1

Ans (D)
$\sin ^{2} 51^{\circ}+\sin ^{2} 39^{\circ}=\cos ^{2} 39^{\circ}+\sin ^{2} 39^{\circ}=1$
11. If $\tan A+\cot A=2$, then the value of $\tan ^{4} 4+\cot ^{4} A=$
(A) 1
(B) 4
(C) 5
(D) 2

Ans (D)

$$
\begin{aligned}
& \tan x+\cot x=2 \\
& \tan ^{2} x+\cot ^{2} x+2 \tan x \cot x=2^{2} \\
& \tan ^{2} x+\cot ^{2} x=2 \\
& \tan ^{4} x+\cot ^{4} x+2 \tan ^{2} x \cot ^{2} x=4 \\
& \tan ^{4} x+\cot ^{4} x=2
\end{aligned}
$$

12. If $A=\{1,2,3,4,5,6\}$, then the number of subsets of A which contain atleast two elements is
(A) 63
(B) 57
(C) 58
(D) 64

Ans (B)
Subsets of A are $2^{6}=64$
Subsets of A which contain atleast two elements $=64-7=57$
13. If $n(A)=2$ and total number of possible relations from set A to set B is 1024 , then $n(B)$ is
(A) 20
(B) 10
(C) 5
(D) 512

Ans (C)
$\mathrm{n}(\mathrm{A})=2$
$2^{\mathrm{mn}}=1024$
$\left(2^{2}\right)^{n}=2^{10}$
$2^{2 \times 5}=2^{10}$
$\mathrm{n}(\mathrm{B})=5$
14. The value of

$$
{ }^{16} \mathrm{C}_{9}+{ }^{16} \mathrm{C}_{10}-{ }^{16} \mathrm{C}_{6}-{ }^{16} \mathrm{C}_{7} \text { is }
$$

(A) 1
(B) ${ }^{17} \mathrm{C}_{10}$
(C) ${ }^{17} \mathrm{C}_{3}$
(D) 0

Ans (D)

$$
{ }^{16} \mathrm{C}_{9}+{ }^{16} \mathrm{C}_{10}-{ }^{16} \mathrm{C}_{6}-{ }^{16} \mathrm{C}_{7}={ }^{17} \mathrm{C}_{10}-{ }^{17} \mathrm{C}_{7}={ }^{17} \mathrm{C}_{10}-{ }^{17} \mathrm{C}_{10}=0
$$

15. The number of terms in the expansion of $(x+y+z)^{10}$ is
(A) 142
(B) 11
(C) 110
(D) 66

Ans (D)
Number of terms in the expansion of $(x+y+z){ }^{10}={ }^{10+3-1} \mathrm{C}_{10}={ }^{12} \mathrm{C}_{10}=\frac{12!}{2!10!}=66$
16. If $\mathrm{P}(\mathrm{n}): 2^{\mathrm{n}}<\mathrm{n}$!

Then the smallest positive integer for which $\mathrm{P}(\mathrm{n})$ is true if
(A) 3
(B) 4
(C) 5
(D) 2

Ans (B)
$\mathrm{P}(\mathrm{n}): 2^{\mathrm{n}}<\mathrm{n}$!
$\mathrm{n}=4,2^{4}<4$!
$\mathrm{n}=4$
17. If $z=x+i y$, then the equation $|z+1|=|z-1|$ represents
(A) a parabola
(B) x-axis
(C) y-axis
(D) a circle

Ans (C)
$|z+1|=|z-1|$
$|x+i y+1|=|x+i y-1|$
$\sqrt{(x+1)^{2}+y^{2}}=\sqrt{(x-1)^{2}+y^{2}}$
$(x+1)^{2}+y^{2}=(x-1)^{2}+y^{2}$
$x^{2}+2 x+1=x^{2}+1-2 x$
$4 \mathrm{x}=0$
$\mathrm{x}=0$
y-axis
18. If the parabola $x^{2}=4$ ay passes through the point $(2,1)$, then the length of the latus rectum is
(A) 4
(B) 2
(C) 8
(D) 1

Ans (A)
$x^{2}=4 a y$
equation (1) passing through $(2,1)$
$4=4 \mathrm{a}(1)$
$\mathrm{a}=1$
length of latus rectum $=4 a=4(1)=4$
19. If the sum of n terms of an A.P. is given by $S_{n}=n^{2}+n$, then the common difference of the A.P. is
(A) 1
(B) 2
(C) 6
(D) 4

Ans (B)
$\mathrm{S}_{\mathrm{n}}=\mathrm{n}^{2}+\mathrm{n}$
$\mathrm{S}_{1}=1+1=2=\mathrm{T}_{1}$
$\mathrm{S}_{2}=2^{2}+2=6=\mathrm{T}_{1}+\mathrm{T}_{2}$
$\mathrm{T}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=6-2=4$
$\mathrm{d}=\mathrm{T}_{2}-\mathrm{T}_{1}=4-2=2$
20. The two lines $l \mathrm{x}+\mathrm{my}=\mathrm{n}$ and $l^{\prime} \mathrm{x}+\mathrm{m}^{\prime} \mathrm{y}=\mathrm{n}^{\prime}$ are perpendicular if
(A) $l \mathrm{~m}^{\prime}=\mathrm{m} l^{\prime}$
(B) $l \mathrm{~m}+l^{\prime} \mathrm{m}^{\prime}=0$
(C) $l m^{\prime}+m l^{\prime}=0$
(D) $l l^{\prime}+\mathrm{mm}^{\prime}=0$

Ans (D)
The two lines $l \mathrm{x}+\mathrm{my}=\mathrm{n}$ and $l^{\prime} \mathrm{x}+\mathrm{m}^{\prime} \mathrm{y}=\mathrm{n}^{\prime}$ are perpendicular if $l l^{\prime}+\mathrm{mm}^{\prime}=0$
21. The standard deviation of the data $6,7,8,9,10$ is
(A) $\sqrt{10}$
(B) 2
(C) 10
(D) $\sqrt{2}$

Ans (D)
$\overline{\mathrm{x}}=\frac{6+7+8+9+10}{5}=\frac{40}{5}=8$
$\sigma=\sqrt{\frac{1}{5}[4+1+0+1+4]} \quad \because \sigma=\sqrt{\frac{1}{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}$
$\sigma=\sqrt{\frac{10}{5}}=\sqrt{2}$
22. $\lim _{\mathrm{x} \rightarrow 0}\left(\frac{\tan \mathrm{x}}{\sqrt{2 \mathrm{x}+4-2}}\right)$ is equal to
(A) 3
(B) 4
(C) 6
(D) 2

Ans (D)
$\lim _{x \rightarrow 0}\left(\frac{\tan x}{\sqrt{2 x+4}-2}\right)$ L H' Rule

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{\sec ^{2} x}{\frac{1}{2 \times \sqrt{2 x+4}} \times 2-0}\right) \\
& =\lim _{x \rightarrow 0}\left(\sqrt{2 x+4} \sec ^{2} x\right) \\
& =\sqrt{2 \times 0+4} \times\left(\sec ^{2} 0\right) \\
& =2 \times 1 \\
& =2
\end{aligned}
$$

23. The negation of the statement "For all real numbers x and $y, x+y=y+x$ " is
(A) for some real numbers x and $y, x+y=y+x$
(B) for some real numbers x and $y, x+y \neq y+x$
(C) for some real numbers x and $y, x-y=y-x$
(D) for all real numbers x and $y, x+y \neq y+x$

Ans (B)
Negation : For some real numbers x and $y, x+y \neq y+x$
24. Let $\mathrm{f}:[2, \infty) \rightarrow R$ be the function defined by $f(x)=x^{2}-4 x+5$, then the range of f is
(A) $[1, \infty)$
(B) $(1, \infty)$
(C) $[5, \infty)$
(D) $(-\infty, \infty)$

Ans (A)
Let $f(x)=y$
$x^{2}-4 x+5=y$
$x^{2}-2 \cdot x \cdot 2+4+1=y$
$x^{2}-2 \cdot x \cdot 2+4=y-1$
$(x-2)^{2}=y-1$
$x-2=\sqrt{y-1}$
$x=\sqrt{y-1}+2$
$\therefore \mathrm{y}-1 \geq 0$
$\mathrm{y} \geq 1$
Range is $[1, \infty)$
25. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three mutually exclusive and exhaustive events of an experiment such that $\mathrm{P}(\mathrm{A})=2 \mathrm{P}(\mathrm{B})=3 \mathrm{P}(\mathrm{C})$, then $\mathrm{P}(\mathrm{B})$ is equal to
(A) $\frac{2}{11}$
(B) $\frac{3}{11}$
(C) $\frac{4}{11}$
(D) $\frac{1}{11}$

Ans (B)
$\mathrm{P}(\mathrm{A})=2 \mathrm{P}(\mathrm{B})=3 \mathrm{P}(\mathrm{C})$
$\mathrm{P}(\mathrm{A})=2 \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{C})=\frac{2}{3} \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$-\mathrm{P}(\mathrm{A} \cap \mathrm{C})-\mathrm{P}(\mathrm{B} \cap \mathrm{C})+\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
$1=2 \mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{B})+\frac{2}{3} \mathrm{P}(\mathrm{B})-0-0-0+0$
$1=\mathrm{P}(\mathrm{B})\left[3+\frac{2}{3}\right]$
$1=\mathrm{P}(\mathrm{B})\left(\frac{11}{3}\right)$
$\mathrm{P}(\mathrm{B})=\frac{3}{11}$
26. If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,1)\}$, then R is
(A) Reflexive and transitive
(B) Symmetric and transitive
(C) Only symmetric
(D) Reflexive and symmetric

Ans (B)
$\mathrm{R}=\{(1,1)\}$ on a set $\{1,2,3\}$
R is symmetric and Transitive
27. The value of $\cos \left(\sin ^{-1} \frac{\pi}{3}+\cos ^{-1} \frac{\pi}{3}\right)$ is
(A) 1
(B) -1
(C) Does not exist
(D) 0

Ans (D)
$\cos \left(\sin ^{-1} \frac{\pi}{3}+\cos ^{-1} \frac{\pi}{3}\right)=\cos \frac{\pi}{2}=0$
28. If $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$, then A^{4} is equal to
(A) 2 A
(B) I
(C) 4 A
(D) A

Ans (B)
$A^{2}=A A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]=I$
$A^{3}=A^{2} \times A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]=I$
$A^{4}=A^{3} A=I \times A=I$
29. If $A=\{a, b, c\}$, then the number of binary operations on A is
(A) 3^{6}
(B) 3^{3}
(C) 3^{9}
(D) 3

Ans (C)
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
The number of binary operations are $\mathrm{n}^{\mathrm{n}^{2}}=3^{3^{2}}=3^{9}$
30. The domain of the function defined by $f(x)=\cos ^{-1} \sqrt{x-1}$ is
(A) $[0,2]$
(B) $[-1,1]$
(C) $[0,1]$
(D) $[1,2]$

Ans (D)
$f(x)=\cos ^{-1} \sqrt{x-1}$
$-1 \leq \cos ^{-1} x \leq 1$
and $-1 \leq \sqrt{x-1} \leq 1$
$0 \leq(\mathrm{x}-1) \leq 1$
$1 \leq \mathrm{x} \leq 2$
31. If $f(x)=\left|\begin{array}{ccc}x^{3}-x & a+x & b+x \\ x-a & x^{2}-x & c+x \\ x-b & x-c & 0\end{array}\right|$ then
(A) $f(2)=0$
(B) $f(0)=0$
(C) $f(-1)=0$
(D) $f(1)=0$

Ans (B)
$\mathrm{f}(0)=\left|\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \mathrm{c} \\ -\mathrm{b} & -\mathrm{c} & 0\end{array}\right|$
by |skew - symmetric matrix|
$\mathrm{f}(0)=0$
32. If A and B are square matrices of same order and B is a skew symmetric matrix, then $A^{\prime} B A$ is
(A) Null matrix
(B) Diagonal matrix
(C) Skew symmetric matrix
(D) Symmetric matrix

Ans (C)
Given
$\mathrm{B}=-\mathrm{B}^{\prime}$
Now $\left(\mathrm{A}^{\prime} \mathrm{BA}\right)^{\prime}=(\mathrm{BA})^{\prime}\left(\mathrm{A}^{\prime}\right)^{\prime}\left[\because(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}\right]$

$$
\begin{gathered}
=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{A} \\
=-\mathrm{A}^{\prime} \mathrm{BA}
\end{gathered}
$$

33. If $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then the matrix A is
(A) $\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
(B) $\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)$
(C) $\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right)$
(D) $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$

Ans (A)
We know that $\mathrm{A}^{-1} \mathrm{~A}=\mathrm{AA}^{-1}=\mathrm{I}$ or $\mathrm{BA}=\mathrm{AB}=\mathrm{I}$
Let $B=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right) \Rightarrow|B|=4-3=1$
$\operatorname{adj} B=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
$\mathrm{B}^{-1}=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
$\therefore \mathrm{A}=\mathrm{B}^{-1}=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
34. If $f(x)=\left\{\begin{array}{cll}\frac{1-\cos K x}{x \sin x} & , \text { if } x \neq 0 \\ \frac{1}{2} & , \text { if } x=0\end{array}\right.$ is continuous at $x=0$, then the value of K is
(A) 0
(B) ± 2
(C) ± 1
(D) $\pm \frac{1}{2}$

Ans (C)
Given
$\lim _{x \rightarrow 0} f(x)=f(0)$
$\lim _{x \rightarrow 0}\left(\frac{1-\cos K x}{x \sin x}\right)=\frac{1}{2}$
By L'H rule
$\lim _{x \rightarrow 0}\left(\frac{\sin K x \cdot K}{x \cos x+\sin x}\right)=\frac{1}{2}$
By L'H rule
$\lim _{x \rightarrow 0}\left(\frac{\cos K x \cdot K^{2}}{-x \sin x+\cos x+\cos x}\right)=\frac{1}{2}$
$\frac{1 \cdot \mathrm{~K}^{2}}{0+1+1}=\frac{1}{2} \Rightarrow \mathrm{~K}^{2}=1$
$\mathrm{K}= \pm 1$
35. If $a_{1} a_{2} a_{3} \ldots \ldots a_{9}$ are in A.P. then the value of $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right|$ is
(A) $\mathrm{a}_{1}+\mathrm{a}_{9}$
(B) $\log _{e}\left(\log _{e} e\right)$
(C) 1
(D) $\frac{9}{2}\left(\mathrm{a}_{1}+\mathrm{a}_{9}\right)$

Ans (B)
Let a be first term and d be common difference

$$
G E=\left|\begin{array}{ccc}
a & a+d & a+2 d \\
a+3 d & a+4 d & a+5 d \\
a+6 d & a+7 d & a+8 d
\end{array}\right|
$$

by applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$

$$
\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
a & d & d \\
a+3 d & d & d \\
a+6 d & d & d
\end{array}\right| \\
& =0 \\
& =\log \left(\log _{e} e\right)[\because \log 1=0]
\end{aligned}
$$

36. If A is a square matrix of order 3 and $|A|=5$, then $|A \operatorname{adj} A|$ is
(A) 125
(B) 25
(C) 625
(D) 5

Ans (A)
$|\mathrm{A} \operatorname{adj} \mathrm{A}|=|\mathrm{A}||\operatorname{adj} \mathrm{A}|$

$$
\begin{aligned}
& =|\mathrm{A} \| \mathrm{A}|^{3-1} \\
& =5 \cdot 5^{2} \\
& =125
\end{aligned}
$$

37. If $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$, then $f^{\prime}(\sqrt{3})$ is
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{3}}$
(C) $-\frac{1}{\sqrt{3}}$
(D) $-\frac{1}{2}$

Ans (A)
Put $\mathrm{x}=\tan \theta \Rightarrow \theta=\tan ^{-1} \mathrm{x}$
$f(x)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$=\sin ^{-1}(\sin 2 \theta)$
$=2 \theta$
$\mathrm{f}(\mathrm{x})=2 \tan ^{-1} \mathrm{x}$
$f^{\prime}(x)=\frac{2}{1+x^{2}}$
$\mathrm{f}^{\prime}(\sqrt{3})=\frac{2}{1+3}=\frac{1}{2}$
38. The right hand and left hand limit of the function $f(x)=\left\{\begin{array}{cl}\frac{e^{1 / x}-1}{e^{1 / x}+1} & , \text { if } x \neq 0 \\ 0 & , \text { if } x=0\end{array}\right.$ are respectively
(A) 1 and -1
(B) -1 and -1
(C) -1 and 1
(D) 1 and 1

Ans (D)
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}\right)$
By dividing both numerator and denominator by $\mathrm{e}^{\frac{1}{x}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0}\left(\frac{1-\mathrm{e}^{-\frac{1}{x}}}{1+\mathrm{e}^{-\frac{1}{x}}}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{1-0}{1+0}\right)\left[\begin{array}{c}
\because \mathrm{e}^{\infty}=\infty \\
\mathrm{e}^{-\infty}=\frac{1}{\infty}=0
\end{array}\right] \\
& =1
\end{aligned}
$$

$$
\therefore \mathrm{LHL}=\mathrm{RHL}=1
$$

39. If $2^{x}+2^{y}=2^{x+y}$, then $\frac{d y}{d x}$ is
(A) -2^{y-x}
(B) 2^{x-y}
(C) $\frac{2^{y}-1}{2^{x}-1}$
(D) 2^{y-x}

Ans (A)
We know that,
If $a^{x}+a^{y}=a^{x+y}$ then $\frac{d y}{d x}=-a^{y-x}$
$\therefore \frac{d y}{d x}=-2^{y-x}$
40. If the curves $2 x=y^{2}$ and $2 x y=k$ intersect perpendicularly, then the value of K^{2} is
(A) $2 \sqrt{2}$
(B) 2
(C) 8
(D) 4

Ans (C)
$2 \mathrm{x}=\mathrm{y}^{2}$
$2 x y=k$
Solve (1) and (2)
(2) $\Rightarrow y^{3}=k$

$$
y=k^{\frac{1}{3}}
$$

(1) $\Rightarrow x=\frac{y^{2}}{2}=\frac{\mathrm{k}^{\frac{2}{3}}}{2}$
$(x, y)=\left(\frac{\mathrm{k}^{\frac{2}{3}}}{2}, \mathrm{k}^{\frac{1}{3}}\right)$
Differentiate (1) w.r.t x
$\mathrm{y}^{\prime}=\frac{1}{\mathrm{y}}$
$\mathrm{m}_{1}=\frac{1}{\mathrm{k}^{\frac{1}{3}}}$
Differentiate (2) w.r.t x
$y^{\prime}=-\frac{y}{x}$
$m_{2}=\frac{2 \mathrm{k}^{\frac{1}{3}}}{\mathrm{k}^{\frac{2}{3}}}=\frac{-2}{\mathrm{k}^{\frac{1}{3}}}$

Given
$\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$\frac{1}{\mathrm{k}^{\frac{1}{3}}} \times \frac{-2}{\mathrm{k}^{\frac{1}{3}}}=-1$
$\mathrm{k}^{\frac{2}{3}}=2$
$\mathrm{k}^{2}=8$
41. If $(x e)^{y}=e^{x}$, then $\frac{d y}{d x}$ is
(A) $\frac{1}{(1+\log x)^{2}}$
(B) $\frac{\log x}{(1+\log x)}$
(C) $\frac{e^{x}}{x(y-1)}$
(D) $\frac{\log x}{(1+\log x)^{2}}$

Ans (D)
$(x e)^{y}=e^{x}$
$\Rightarrow \mathrm{y}(\log \mathrm{x}+1)=\mathrm{x}$
$\Rightarrow \mathrm{y}=\frac{\mathrm{x}}{\log \mathrm{x}+1}$
$\therefore \frac{d y}{d x}=\frac{\log x}{(\log x+1)^{2}}$
42. If $y=2 x^{n+1}+\frac{3}{x^{n}}$, then $x^{2} \frac{d^{2} y}{d x^{2}}$ is
(A) $n(n+1) y$
(B) $x \frac{d y}{d x}+y$
(C) y
(D) $6 n(n+1) y$

Ans (A)
$\mathrm{y}=2 \mathrm{x}^{\mathrm{n}+1}+3 \mathrm{x}^{-\mathrm{n}}$
$\Rightarrow \frac{d y}{d x}=2(n+1) x^{n}-3 n x^{-n-1}$
$\Rightarrow \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=2 \mathrm{n}(\mathrm{n}+1) \mathrm{x}^{\mathrm{n}-1}+3 \mathrm{n}(\mathrm{n}+1) \mathrm{x}^{-\mathrm{n}-2}$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}=n(n+1)\left[2 x^{n+1}+\frac{3}{x^{n}}\right]$
$\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}=n(n+1) y$
43. The value of $\int \frac{1+x^{4}}{1+x^{6}} d x$ is
(A) $\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{3}+C$
(B) $\tan ^{-1} x-\frac{1}{3} \tan ^{-1} x^{3}+C$
(C) $\tan ^{-1} x+\frac{1}{3} \tan ^{-1} x^{2}+C$
(D) $\tan ^{-1} \mathrm{x}+\tan ^{-1} \mathrm{x}^{3}+\mathrm{C}$

Ans (A)

$$
\begin{aligned}
\int \frac{1+x^{4}}{1+x^{6}} & =\int \frac{1+x^{4}-x^{2}+x^{2}}{\left(1+x^{2}\right)\left(1-x^{2}+x^{4}\right)} d x \\
& =\int \frac{\left(1-x^{2}+x^{4}\right)}{\left(1+x^{2}\right)\left(1-x^{2}+x^{4}\right)}+\frac{x^{2}}{\left(1+x^{2}\right)\left(1-x^{2}+x^{2}\right)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(\frac{1}{1+x^{2}}+\frac{x^{2}}{1+x^{6}}\right) d x \\
& =\int\left(\frac{1}{1+x^{2}}+\frac{1}{3} \frac{3 x^{2}}{1+\left(x^{3}\right)^{2}}\right) d x \\
& =\tan ^{-1} x+\frac{1}{3} \tan ^{-1}\left(x^{3}\right)+C
\end{aligned}
$$

44. The maximum value of $\frac{\log _{e} x}{x}$, if $x>0$ is
(A) 1
(B) $\frac{1}{\mathrm{e}}$
(C) $-\frac{1}{\mathrm{e}}$
(D) e

Ans (B)
$y=\frac{\log x}{x}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1-\log \mathrm{x}}{\mathrm{x}^{2}}$
$\frac{d y}{d x}=0$
$\Rightarrow 1-\log \mathrm{x}=0$
$\Rightarrow \mathrm{x}=\mathrm{e}$
$\therefore \mathrm{y}_{\text {max }}=\frac{1}{\mathrm{e}}$
45. If the side of a cube is increased by 5%, then the surface area of a cube is increased by
(A) 60%
(B) 6%
(C) 20%
(D) 10%

Ans (D)
$A=6 x^{2} \quad \frac{d x}{d t}=\frac{5 x}{100}$
$\frac{\mathrm{dA}}{\mathrm{dt}}=12 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}=12 \mathrm{x} \times \frac{5 \mathrm{x}}{100}=\frac{60 \mathrm{x}^{2}}{100}$
$\Rightarrow=\frac{10}{100} \times 6 x^{2}=\frac{10}{100} \mathrm{~A}$
$\therefore 10 \%$
46. The value of $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos ^{-1} x d x$ is
(A) $\frac{\pi}{2}$
(B) 1
(C) $\frac{\pi^{2}}{2}$
(D) π

Ans (A)

$$
\begin{aligned}
\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos ^{-1} \mathrm{xdx} & =\left.\mathrm{x} \cos ^{-1} \mathrm{x}\right|_{-\frac{1}{2}} ^{\frac{1}{2}}+\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}} \mathrm{dx} \\
& \left.=\frac{1}{2} \cos ^{-1}\left(\frac{1}{2}\right)+\frac{1}{2} \cos ^{-1}\left(-\frac{1}{2}\right)-\frac{1}{2} \cdot 2 \sqrt{1-\mathrm{x}^{2}}\right]_{-\frac{1}{2}}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{\pi}{3}+\frac{1}{2} \cdot \frac{2 \pi}{3}-0 \\
& =\frac{\pi}{6}+\frac{\pi}{3}=\frac{\pi}{2}
\end{aligned}
$$

47. If $\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x=A \log |x-1|+B \log |x-2|+C \log |x-3|+C$, then the values of A, B and C are respectively,
(A) $2,-7,-5$
(B) $5,-7,5$
(C) $2,-7,5$
(D) $5,-7,-5$

Ans (C)
$\frac{3 x+1}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}$
$\Rightarrow 3 \mathrm{x}+1=\mathrm{A}(\mathrm{x}-2)(\mathrm{x}-3)+\mathrm{B}(\mathrm{x}-1)(\mathrm{x}-3)+\mathrm{C}(\mathrm{x}-1)(\mathrm{x}-2)$
$x=1 \Rightarrow A=2, x=2 \Rightarrow B=-7, x=3 \Rightarrow C=5$
48. The value of $\int e^{\sin x} \sin 2 x d x$ is
(A) $2 \mathrm{e}^{\sin \mathrm{x}}(\sin \mathrm{x}+1)+\mathrm{C}$
(B) $2 \mathrm{e}^{\sin x}(\cos \mathrm{x}+1)+C$
(C) $2 e^{\sin x}(\cos x-1)+C$
(D) $2 \mathrm{e}^{\sin x}(\sin \mathrm{x}-1)+C$

Ans (D)
$\int e^{\sin x} \sin 2 x d x=2 \int e^{\sin x} \sin x \cos x d x==2 \int t e^{t} d t$

$$
\begin{array}{lr}
=2\left[\mathrm{te}^{\mathrm{t}}-\mathrm{e}^{\mathrm{t}}\right]+\mathrm{c} \\
=2[\sin \mathrm{x}-1] \mathrm{e}^{\sin \mathrm{x}}+\mathrm{c} & \sin \mathrm{x}=\mathrm{t} \\
=\cos \mathrm{xdx}=\mathrm{dt}
\end{array}
$$

49. The area of the region bounded by the curve $y^{2}=8 x$ and the line $y=2 x$ is
(A) $\frac{4}{3}$ sq. units
(B) $\frac{3}{4}$ sq. units
(C) $\frac{8}{3}$ sq. units
(D) $\frac{16}{3}$ sq. units

Ans (A)
$y^{2}=8 x$ and $y=2 x$
$\Rightarrow 4 \mathrm{x}^{2}=8 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}-2 \mathrm{x}=0$
$\Rightarrow \mathrm{x}=0,2$
$R A=\int_{0}^{2}\left(\sqrt{8} \cdot x^{\frac{1}{2}}-2 x\right) d x$
$\left.=2 \sqrt{2} \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}}-x^{2}\right]_{0}^{2}=\frac{4 \sqrt{2}}{3} 2^{\frac{3}{2}}-2^{2}-0$
$=\frac{4 \sqrt{2}}{3} 2 \sqrt{2}-4=\frac{16}{3}-4$
$=\frac{4}{3}$ sq. units
50. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+e^{x}} d x$ is
(A) 0
(B) 1
(C) -2
(D) 2

Ans (B)
$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1+e^{x}} d x$
$I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \left(\frac{\pi}{2}-\frac{\pi}{2}-x\right)}{1+e^{\frac{\pi}{2}-\frac{\pi}{2}-x}} d x$
$\mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{-x}} d x=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{x} \cos \mathrm{x}}{1+\mathrm{e}^{x}} d x$
$(1)+(2) \Rightarrow 2 I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\left(e^{x}+1\right) \cos x}{e^{x}+1} d x$
$2 I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x=\left.\sin x\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}$
$2 \mathrm{I}=\sin \frac{\pi}{2}-\sin \left(-\frac{\pi}{2}\right)$

$2 \mathrm{I}=1-(-1)=2$
$\therefore \mathrm{I}=1$
51. The value of $\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x$ is
(A) $\frac{\pi}{4} \log 2$
(B) $\frac{1}{2}$
(C) $\frac{\pi}{8} \log 2$
(D) $\frac{\pi}{2} \log 2$

Ans (C)
$\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x \quad \left\lvert\, \begin{aligned} & x=\tan \theta \\ & d x=\sec ^{2} \theta d \theta\end{aligned}\right.$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) \mathrm{d} \theta \\
& =\frac{\pi}{8} \log 2
\end{aligned}
$$

52. The general solution of the differential equation $x^{2} d y-2 x y d x=x^{4} \cos x d x$ is
(A) $y=x^{2} \sin x+c$
(B) $y=\sin x+c x^{2}$
(C) $y=\cos x+c x^{2}$
(D) $y=x^{2} \sin x+c x^{2}$

Ans (D)
$x^{2} d y-2 x y d x=x^{4} \cos x d x$

Strategic Academic Alliance with

$\frac{d y}{d x}=\frac{x^{4} \cos x+2 x y}{x^{2}}$
$\frac{d y}{d x}-\frac{2}{x} y=x^{2} \cos x$
$\mathrm{IF}=\mathrm{e}^{-\frac{2}{\mathrm{x}} \mathrm{dx}}=\mathrm{e}^{-2 \log \mathrm{x}}=\frac{1}{\mathrm{x}^{2}}$
General solution is $y\left(\frac{1}{x^{2}}\right)=\int \frac{1}{x^{2}}\left(x^{2} \cos x\right) d x+c$
$\frac{y}{x^{2}}=\sin x+c$
53. The area of the region bounded by the line $y=2 x+1, x$-axis and the ordinates $x=-1$ and $x=1$ is
(A) 2
(B) $\frac{5}{2}$
(C) 5
(D) $\frac{9}{4}$

Ans (B)

$$
\begin{aligned}
\text { Area bounded by } \mathrm{y}=2 \mathrm{x}+1 \text { with } \mathrm{x} \text {-axis } & =\frac{1}{2}\left(\frac{1}{2}\right)(1)+\frac{1}{2}\left(\frac{3}{2}\right)(3) \\
& =\frac{1}{4}+\frac{9}{4} \\
& =\frac{10}{4} \\
& =\frac{5}{2} \text { sq. units }
\end{aligned}
$$

54. The order of the differential equation obtained by eliminating arbitrary constants in the family of curves $c_{1} y=\left(c_{2}+c_{3}\right) e^{x+c_{4}}$ is
(A) 2
(B) 3
(C) 4
(D) 1

Ans (D)
$\mathrm{c}_{1} \mathrm{y}=\left(\mathrm{c}_{2}+\mathrm{c}_{3}\right) \mathrm{e}^{\mathrm{x}+\mathrm{c}_{4}}$
$y=\left(\frac{c_{2}+c_{3}}{c_{1}} e^{c_{4}}\right) e^{x}$
$y=A e^{x}$
Order $=$ number of arbitrary constants

$$
=1
$$

55. If \vec{a} and \vec{b} are unit vectors and θ is the angle between \vec{a} and \vec{b}, then $\sin \frac{\theta}{2}$ is
(A) $\frac{|\vec{a}+\vec{b}|}{2}$
(B) $\frac{|\vec{a}-\vec{b}|}{2}$
(C) $|\vec{a}-\vec{b}|$
(D) $|\vec{a}+\vec{b}|$

Ans (B)
$|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a}| | \vec{b} \mid \cos \theta$

$$
=2(1-\cos \theta)(\because|\vec{a}|=|\vec{b}|=1)
$$

$|\vec{a}-\vec{b}|^{2}=2\left(2 \sin ^{2} \frac{\theta}{2}\right)$
$\sin \frac{\theta}{2}=\frac{|\vec{a}-\vec{b}|}{2}$
56. The curve passing through the point $(1,2)$ given that the slope of the tangent at any point (x, y) is $\frac{2 x}{y}$ represents
(A) Parabola
(B) Ellipse
(C) Hyperbola
(D) Circle

Ans (C)
Slope $=\frac{d y}{d x}=\frac{2 x}{y}$
$\Rightarrow \mathrm{ydy}=2 \mathrm{xdx}$
$\Rightarrow \int y d y=\int 2 x d x+A$
$\Rightarrow \frac{\mathrm{y}^{2}}{2}=\mathrm{x}^{2}+\mathrm{A} \Rightarrow \frac{\mathrm{y}^{2}}{2}-\mathrm{x}^{2}=\mathrm{A}$
\Rightarrow curve is hyperbola
57. The two vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+5 \hat{k}$ represent the two sides $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ respectively of a $\triangle \mathrm{ABC}$. The length of the median through A is
(A) 14
(B) 7
(C) $\sqrt{14}$
(D) $\frac{\sqrt{14}}{2}$

Ans (C)
$\overrightarrow{\mathrm{AB}}=(1,1,1) \quad \overrightarrow{\mathrm{AC}}=(1,3,5)$
$\overrightarrow{\mathrm{BC}}=(0,2,4)$
$\overrightarrow{\mathrm{BD}}=(0,1,2)$
$\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BD}}$

$$
\begin{aligned}
= & (1,2,3) \\
|\overrightarrow{\mathrm{AD}}| & =\sqrt{1+4+9} \\
= & \sqrt{14}
\end{aligned}
$$

58. The point $(1,-3,4)$ lies in the octant
(A) Third
(B) Fourth
(C) Eighth
(D) Second

Ans (B)
$(1,-3,4)$
Fourth octant

CET2020Mathematics(D-2)

59. If the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}, 2 \hat{i}+j-\hat{k}$ and $\lambda \hat{i}-\hat{j}+2 \hat{k}$ are coplanar, then the value of λ is
(A) -5
(B) -6
(C) 5
(D) 6

Ans (D)
Vectors are coplanar

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
2 & -3 & 4 \\
2 & 1 & -1 \\
\lambda & -1 & 2
\end{array}\right|=0 \\
& \Rightarrow 2(1)+3(4+\lambda)+4(-2-\lambda)=0 \\
& \Rightarrow 2+12+3 \lambda-8-4 \lambda=0 \\
& \Rightarrow \lambda=6
\end{aligned}
$$

60. If $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}=144$ and $|\vec{a}|=6$, then $|\vec{b}|$ is equal to
(A) 3
(B) 2
(C) 4
(D) 6

Ans (B)
$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|^{2}+(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}})^{2}=144$
$\Rightarrow|\vec{a}|^{2}|\vec{b}|^{2}=144$
$\Rightarrow|\overrightarrow{\mathrm{b}}|^{2}=\frac{144}{36}=4$
$\Rightarrow|\overrightarrow{\mathrm{b}}|=2$

