## Sample Paper

|    | ANSWERKEY |    |     |    |     |    |     |    |     |    |     |    |     |    |     |    |     |    |     |
|----|-----------|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|-----|
| 1  | (c)       | 2  | (d) | 3  | (d) | 4  | (d) | 5  | (b) | 6  | (d) | 7  | (c) | 8  | (a) | 9  | (c) | 10 | (c) |
| 11 | (d)       | 12 | (d) | 13 | (c) | 14 | (a) | 15 | (a) | 16 | (b) | 17 | (b) | 18 | (b) | 19 | (c) | 20 | (d) |
| 21 | (b)       | 22 | (a) | 23 | (b) | 24 | (d) | 25 | (a) | 26 | (b) | 27 | (d) | 28 | (b) | 29 | (b) | 30 | (a) |
| 31 | (a)       | 32 | (d) | 33 | (b) | 34 | (d) | 35 | (a) | 36 | (a) | 37 | (b) | 38 | (c) | 39 | (d) | 40 | (b) |
| 41 | (d)       | 42 | (a) | 43 | (d) | 44 | (c) | 45 | (b) | 46 | (a) | 47 | (b) | 48 | (a) | 49 | (c) | 50 | (a) |



(c) Let the speed of the boat in still water be x km/hr and 1. the speed of the stream be y km/hr then speed of boat in downstream is (x + y) km/hr and the speed of boat upstream is (x - y) km/hr.

Ist case: Distance covered upstream = 12 km

$$\therefore \text{ time} = \frac{12}{x - v} \text{hr}$$

Distance covered downstream = 40 km

$$\therefore \text{ time} = \frac{40}{x+y} \text{hr}$$

Total time is 8 hr : 
$$\frac{12}{x-y} + \frac{40}{x+y} = 8$$
 ...(i)

IInd case:

Distance covered upstream = 16 km

$$\therefore \text{ time} = \frac{16}{x - v} \text{ hr}$$

Distance covered downstream

= 32 km :: time = 
$$\frac{32}{x+y}$$
 hr

Total time taken = 8 hr

$$\therefore \frac{16}{x - y} + \frac{32}{x + y} = 8 \qquad ...(ii)$$

Solving (i) and (ii), we get,

x =speed of boat in still water = 6 km/hr,

y = speed of stream = 2 km/hr

**2.** (d) 
$$A(\sqrt{3}+1,\sqrt{2}-1), B(\sqrt{3}-1,\sqrt{2}+1)$$

$$AB = \sqrt{\left(\sqrt{3} - 1 - \sqrt{3} - 1\right)^2 + \left(\sqrt{2} + 1 - \sqrt{2} + 1\right)^2}$$

$$= \sqrt{(-2)^2 + (2)^2}$$
$$= \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$$

- (d) isosceles and similar 3.
- 4. (d) Let us first find the H.C.F. of 210 and 55.

Applying Euclid's division lemma on 210 and 55, we get

$$210 = 55 \times 3 + 45$$
 ..... (i)

Since, the remainder  $45 \neq 0$ . So, we now apply division lemma on the divisor 55 and the remainder 45 to get  $55 = 45 \times 1 + 10$ 

We consider the divisor 45 and the remainder 10 and apply division lemma to get

$$45 = 4 \times 10 + 5$$
 ..... (iii)

We consider the divisor 10 and the remainder 5 and apply division lemma to get

$$10 = 5 \times 2 + 0$$
 ..... (iv)

We observe that the remainder at this stage is zero. So, the last divisor i.e., 5 is the H.C.F of 210 and 55.

$$\therefore 5 = 210 \times 5 + 55y \implies y = \frac{-1045}{55} = -19$$

**(b)** There are a total of six digits (1, 2, 2, 3, 4, 6) 5. out of which four are even (2, 2, 4, 6)

So, required probability =  $\frac{4}{6} = \frac{2}{3}$ 

- 6. (d)
  - (a) It is quadratic polynomial

[: the graph meets the x-axis in two points]

(b) It is a quadratic polynomial

[: the graph meets the x-axis in two points]

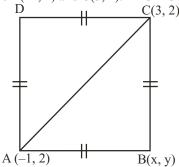
(c) It is a quadratic polynomial

[: the graph meets the x-axis in two points]

(d) It is a not quadratic polynomial

[: the graph meets the x-axis in one point]

7. (c) Let ABCD be a square and two opposite vertices of it are A(-1, 2) and C(3, 2). ABCD is square.



$$\Rightarrow$$
 AB = BC

$$\Rightarrow$$
 AB<sup>2</sup> = BC<sup>2</sup>

$$\Rightarrow$$
  $(x+1)^2 + (y-2)^2 = (x-3)^2 + (y-2)^2$ 

$$\Rightarrow$$
  $x^2 + 2x + 1 = x^2 - 6x + 9$ 

$$\Rightarrow 2x + 6x = 9 - 1 = 8$$

$$\Rightarrow$$
 8x = 8  $\Rightarrow$  x = 1

ABC is right  $\Delta$  at B, then

 $AC^2 = AB^2 + BC^2$  (Pythagoras theorem)

$$\Rightarrow$$
  $(3+1)^2 + (2-2)^2$ 

$$= (x + 1)^2 + (y - 2)^2 + (x - 3)^2 + (y - 2)^2$$

$$\Rightarrow$$
 16 = 2(y-2)<sup>2</sup> + (1+1)<sup>2</sup> + (1-3)<sup>2</sup>

$$\Rightarrow$$
 16 = 2(y - 2)<sup>2</sup> + 4 + 4

$$\Rightarrow$$
  $(y-2)^2 = 4 \Rightarrow y-2 = \pm 2$ 

$$\Rightarrow$$
 y = 4 and 0

i.e., when x = 1 then y = 4 and 0

Coordinates of the opposite vertices are :

B(1, 0) or D(1, 4)

- 8. (a)
- 9. (c) In right angled triangle POR

$$PR^2 = PO^2 + OR^2 = (6)^2 + (8)^2 = 36 + 64 = 100$$

$$\therefore$$
 PR = 10 cm

Again in right angled triangle

$$POR$$
,  $OR^2 = (26)^2 = 676$ 

$$PQ^2 + PR^2 = (24)^2 + (10)^2 = 576 + 100 = 676$$

$$\therefore OR^2 = PO^2 + PR^2$$

 $\therefore$   $\triangle$ PQR is a right angled triangle with right angle at P.

i.e., 
$$\angle QPR = 90^{\circ}$$

10. (c) 
$$\frac{\pi r_1^2}{\pi r_2^2} = \frac{25}{16} \Rightarrow \frac{r_1}{r_2} = \frac{5}{4} \Rightarrow \frac{2\pi r_1}{2\pi r_2} = \frac{5}{4} = \frac{5 \times 125}{4 \times 125} = \frac{625}{500}$$

11. (d) For any rational number  $\frac{p}{q}$ , where prime factorization

of q is of the form  $2^n.5^m$ , where n and m are nonnegative integers, the decimal representation is terminating.

12. (d) Let the y-axis divides the line segment joining (4, 5) and (-10, 2) in the ratio k : 1.

x coordinate will be zero on y-axis.

We know that the coordinates of the point dividing the line segment joining  $(x_1, y_1)$  and  $(x_2, y_2)$  in the

ratio m: n are given by 
$$\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)$$

Here, x coordinate of the point

dividing the line segment joining (4, 5) and (-10, 2) is equal to zero.

So, 
$$\frac{\mathbf{k} \times (-10) + 1 \times 4}{\mathbf{k} + 1} = 0 \implies -10\mathbf{k} = -4 \implies \mathbf{k} = \frac{2}{5}$$

Therefore, the line segment joining (4, 5) and (-10, 2) is cut by the y-axis in the ratio 2:5.

13. (c) There are 4 cards of king and 4 cards of Jack n(S) = 52, n(E) = 4 + 4 = 8

$$P(E) = \frac{n(E)}{n(S)} = \frac{8}{52} = \frac{2}{13}$$

- 14. (a) The graph of  $y = ax^2 + bx + c$  is a parabola open upward if a > 0. So, for  $y = x^2 6x + 9$ , a = 1 > 0, the graph is a parabola open upward.
- **15.** (a) If 1, 1 and 2 are sides of a right triangle then sum of squares of any two sides is equal to square of third side

Case 1 (1)<sup>2</sup> + (1)<sup>2</sup> = 2 
$$\neq$$
 (2)<sup>2</sup>  
Case 2 (1)<sup>2</sup> + (2)<sup>2</sup> = 1 + 4 = 5  $\neq$  (1)<sup>2</sup>  
Case 3 (2)<sup>2</sup> + (1)<sup>2</sup> = 5  $\neq$  (1)<sup>2</sup>

**16. (b)**  $n(S) = 6 \times 6 = 36$   $E = \{(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5)\}$ n(E) = 10

$$P(E) = \frac{n(E)}{n(S)} = \frac{10}{36} = \frac{5}{18}$$

17. (a)  $\sqrt{2}$  is not a rational number. It can't be expressed in the fractional form.

**18. (b)** Area = 
$$\frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{30^{\circ}}{360^{\circ}} \times \pi (7)^2 = \frac{49\pi}{12}$$

- 19. (c) Inconsistent system
- **20.** (d)  $S = \{1, 2, 3, 4, \dots, 25\}$  n(S) = 25  $E = \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$ n(E) = 9

$$\therefore P(E) = \frac{9}{25}$$

21. **(b)**  $\frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{\alpha^3 + \beta^3}{(\alpha\beta)^3} = \frac{\frac{3abc - b^3}{a^3}}{\left(\frac{c}{a}\right)^3}$   $\Rightarrow \frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{3abc - b^3}{a^3}$ 

Solutions

s-31

22. (a)  $S = \{S, M, T, W, Th, F, Sa\}$ n(S) = 7

A non-leap year contains 365 days, i.e., 52 weeks + 1 day.

 $E = \{Sa\}$ 

n(E) = 1

 $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{1}{7}$ 

**23. (b)** Let the given points be A(4, 3) and B(x, 5) Since A and B lies on the circumference of a circle with centre O(2, 3), we have

OA = OB

$$\Rightarrow$$
 OA<sup>2</sup> = OB<sup>2</sup>

$$\Rightarrow (4-2)^2 + (3-3)^2 = (x-2)^2 + (5-3)^2$$

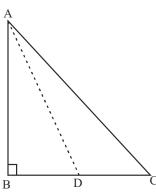
$$\Rightarrow 4+0=(x-2)^2+4$$

 $\Rightarrow$   $(x-2)^2 = 0 \Rightarrow x = 2$ 

24. (d) Since

$$\frac{13}{125} = \frac{13}{53} = \frac{132^3}{(2)^3(5)^3} = \frac{104}{1000} = 0.104$$

25. (a)



Given : A  $\triangle$ ABC in which  $\angle$ B = 90° and D is the midpoint of BC.

Join AD.

In  $\triangle ABC$ ,  $\angle B = 90^{\circ}$ .

$$\therefore AC^2 = AB^2 + BC^2$$

....(i) [by Pythagoras' theorem]

In  $\triangle ABD$ ,  $\angle B = 90^{\circ}$ 

$$\therefore AD^2 = AB^2 + BD^2$$

(ii)

[by Pythagoras' theorem]

$$\Rightarrow$$
 AB<sup>2</sup> = (AD<sup>2</sup> – BD<sup>2</sup>).

$$\therefore AC^2 = (AD^2 - BD^2) + BC^2 \qquad [using (i)]$$

$$\Rightarrow$$
 AC<sup>2</sup> = AD<sup>2</sup> - CD<sup>2</sup> + (2CD)<sup>2</sup>

$$[:: BD = CD \text{ and } BC = 2CD]$$

 $\Rightarrow$  AC<sup>2</sup> = AD<sup>2</sup> + 3CD<sup>2</sup>

Hence,  $AC^2 = AD^2 + 3CD^2$ 

**26. (b)**  $\frac{3}{x} + \frac{4}{y} = 1$  ...(i)  $\frac{4}{x} + \frac{2}{y} = \frac{11}{12}$  ...(ii)

Multiplying (ii) by 2

$$\Rightarrow \frac{8}{x} + \frac{4}{y} = \frac{22}{12} \qquad \dots(iii)$$

Subtracting (i) from (iii)  $\Rightarrow \frac{5}{x} = \frac{10}{12}$ 

$$\therefore x = \frac{5 \times 12}{10} = 6$$

Substituting x = 6 in (i)

$$\Rightarrow \frac{3}{6} + \frac{4}{y} = 1 \Rightarrow \frac{4}{y} = 1 - \frac{1}{2} = \frac{1}{2} \therefore y = 8.$$

Hence, x = 6 and y = 8

- 27. (d)
- **28. (b)**  $n(S) = 6 \times 6 = 36, E = \{(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)\}$  n(E) = 12

$$P(E) = \frac{n(E)}{n(S)} = \frac{12}{36} = \frac{1}{3}$$

**29. (b)** Put x + 1 = 0 or x = -1 and x + 2 = 0 or

x = -2 in p (x)

Then, p(-1) = 0 and p(-2) = 0

 $\Rightarrow$  p(-1) =

 $\Rightarrow -1+3+2\alpha+\beta=0 \Rightarrow \beta=-2\alpha-2....(i)$ 

$$p(-2) = (-2)^3 + 3(-2)^2 - 2\alpha(-2) + \beta = 0$$

$$\Rightarrow$$
  $-8+12+4\alpha+\beta=0 \Rightarrow \beta=-4\alpha-4$  .... (ii)

By equalising both of the above equations, we get

$$-2\alpha - 2 = -4\alpha - 4$$

$$\Rightarrow$$
  $2\alpha = -2$   $\Rightarrow$   $\alpha = -1$ 

put  $\alpha$  in eq. (i)

$$\Rightarrow$$
  $\beta = -2(-1) - 2 = 2 - 2 = 0$ 

Hence,  $\alpha = -1$ ,  $\beta = 0$ 

**30.** (a) Let D be the window at a height of 9m on one side of the street and E be the another window at a height of 12 m on the other side.

In ΔADC

$$AC^2 = 152 - 92 = 225 - 81$$

$$AC = 12 \text{ m}$$

In ΔECB

$$CB^2 = 15^2 - 12^2 = 225 - 144$$

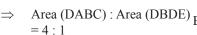
$$CB = 9 \text{ m}$$

Width of the street = (12 + 9)m = 21 m

- 31. (a)
- 32. (d) All equilateral triangles are similar

$$\Rightarrow \frac{\text{Area of } \Delta \text{ABC}}{\text{Area of } \Delta \text{BDE}} = \frac{\text{BC}^2}{\text{BD}^2}$$

$$=\frac{2BD^2}{BD^2}=\frac{4}{1}$$





**33. (b)** As A lies on x-axis and B lies on y-axis, so their coordinates are (x, 0) and (0, y), respectively. Then,

$$\frac{x+0}{2} = 4$$
 and  $\frac{0+y}{2} = -3 \implies x = 8$  and  $y = -6$ 

Hence, the points A and B are (8, 0) and (0, -6).

s-32

- (d) If  $6^x$  ends with 5, then  $6^x$  would contain the prime 5. But  $6^x = (2 \times 3)^x = 2^x \times 3^x$ .
  - $\Rightarrow$  The only prime numbers in the factorization of 6x
  - .. By uniqueness of fundamental theorem, there are no primes other than 2 & 3 in  $6^x$ . So,  $6^x$  will never end

35. (a) (a) Area = 
$$\frac{\theta}{360^{\circ}} \times \pi r^2 = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (6)^2 = \frac{132}{7} \text{ cm}^2$$

(b) Area of minor sector =  $\frac{\theta}{360^{\circ}} \times \pi r^2$ 

$$= \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 = 102.57 \text{ cm}^2$$

Area of major sector

= Area of circle – Area of minor sector

$$=\frac{22}{7}(14)^2-102.57$$

- $= 615.44 102.57 = 512.87 \text{ cm}^2$
- (c)  $\frac{C}{A} = \frac{2\pi(5)}{\pi(5)^2} = \frac{2}{5}$
- (d) Given,  $\left(\frac{\theta}{360^{\circ}}\right) 2\pi r = 22$

$$\therefore \text{ Area of sector} = \left(\frac{\theta}{360^{\circ}}\right) \pi r^2 = \left(\frac{\theta}{360^{\circ}}\right) \frac{\pi r}{2} (2r)$$
$$= \left(\frac{\theta}{360^{\circ}}\right) 2\pi r \left(\frac{r}{2}\right) = \frac{22 \times 6}{2} = 66 \text{ cm}^2$$

**36.** (a) Let AD = 5x cm and DB = 4x cm.

AB = (AD + DB) = (5x + 4x) cm = 9x cm.

In  $\triangle$ ADE and  $\triangle$ ABC, we have

$$\angle ADE = \angle ABC$$
 (corres.  $\angle s$ )

 $\angle AED = \angle ACB$ (corres,  $\angle$ s) [by AA-similarity]

$$\therefore \quad \Delta ADE \sim \Delta ABC \qquad [b]$$

$$\Rightarrow \quad \frac{DE}{BC} = \frac{AD}{AB} = \frac{5x}{9x} = \frac{5}{9}$$

$$\Rightarrow \frac{DE}{PC} = \frac{5}{9} \qquad ...(i)$$

In  $\triangle DFE$  and  $\triangle CFB$ , we have

$$\angle EDF = \angle BCF$$
 (alt. int.  $\angle s$ )

$$\angle DEF = \angle CBF$$
 (alt. int.  $\angle s$ )

 $\Delta DFE \sim \Delta CBF$ 

$$\Rightarrow \frac{\text{ar}(\Delta \text{DFE})}{\text{ar}(\Delta \text{CFB})} = \frac{\text{DE}^2}{\text{CB}^2} = \frac{\text{DE}^2}{\text{BC}^2} = \left(\frac{\text{DE}}{\text{BC}}\right)^2 = \left(\frac{5}{9}\right)^2 = \frac{25}{81}$$

 $\Rightarrow$  ar ( $\triangle$ DFE): ar ( $\triangle$ CFB) = 25:81

**37. (b)** Let  $f(x) = 6x^3 - 11x^2 + kx - 20$ 

$$f\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right)^3 - 11\left(\frac{4}{3}\right)^2 + k\left(\frac{4}{3}\right) - 20 = 0$$

$$\Rightarrow 6.\frac{64}{27} - 11.\frac{16}{9} + \frac{4k}{3} - 20 = 0$$

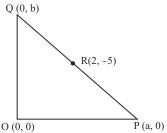
$$\Rightarrow 128 - 176 + 12k - 180 = 0$$

$$\Rightarrow$$
 12k + 128 - 356 = 0 12 k = 228  $\Rightarrow$  k = 19

(c) For coincident lines,  $\frac{3}{6} = \frac{-1}{-k} = \frac{8}{16}$ 

$$\frac{1}{2} = \frac{1}{k} \implies k = 2$$

39. (d) Let the line  $\frac{x}{a} + \frac{y}{b} = 1$  meet x-axis at P(a, 0) and y-axis at Q(0, b). Since R is mid point at PQ.



$$\frac{a+0}{2} = 2, \ \frac{0+b}{2} = -5$$

$$\therefore$$
 a = 4, b = -10  $\therefore$  P is (4, 0), Q is (0, -10)

a = 4, b = -10 : P is (4, 0), Q is (0, -10) **40. (b)**  $\frac{21}{45} = \frac{21}{9 \times 5} = \frac{21}{3^2 \times 5}$ 

Clearly, 45 is not of the form 2m × 5n. So the decimal expansion of  $\frac{21}{45}$  is non-terminating and repeating.

(d) Sample space = {HH, HT, TH, TT} Total number of elementary events = 4Favourable event E = HHn(E) = 1

$$P(E) = \frac{1}{4}$$

42. (a) Favourable event  $E = \{TH, HT\}$ n(E) = 2

$$P(E) = \frac{2}{4} = \frac{1}{2}$$

- **43. (d)** Favourable event  $E = \{TT\}$ n(E) = 1 $P(E) = \frac{1}{4}$
- **44.** (c) At most one head =  $\{HT, TH, TT\}$  $P = \frac{3}{4}$
- 45. (b) At least one head {HH, HT, TH}

$$P = \frac{3}{4}$$

- 46. 47. (b) 48. (a)
- 49. **50.**