DU MA MSc Mathematics #### Topic:- DU_J19_MA_MATHS - 1) The order of Sylow subgroups of a finite group G of order 56 are [Question ID = 24519] - 1. 2 and 28 [Option ID = 38076] - 2. 7 and 8 [Option ID = 38074] - 3. 8 and 14 [Option ID = 38077] - 4. 4 and 14 [Option ID = 38075] #### Correct Answer :- - 7 and 8 [Option ID = 38074] - 2) The remainder when 5^{2019} is divided by 11 is [Question ID = 24520] - 1. 6 [Option ID = 38080] - 2. 9 [Option ID = 38081] - 3. 1 [Option ID = 38078] - 4. 4 [Option ID = 38079] #### Correct Answer :- - 9 [Option ID = 38081] - 3) The smallest positive integer n, which leaves remainders 2,3 and 4 when divided by 5,7 and 11 respectively, is [Question ID = 24521] - 1. 751 [Option ID = 38083] - 2. 1136 [Option ID = 38085] - 3. 176 [Option ID = 38082] - 4. 367 [Option ID = 38084] #### Correct Answer :- - 367 [Option ID = 38084] - 4) Suppose that the equation $x^2 \cdot a \cdot x = a^{-1}$ is solvable for a in a group G. Then, there exists b in G such that ### [Question ID = 24515] - 1. $a = b^3$ [Option ID = 38059] - 2. $a = b^5$ [Option ID = 38061] - 3. $a = b^4$ [Option ID = 38060] - 4. $a = b^2$ [Option ID = 38058] #### Correct Answer :- - $a = b^3$ [Option ID = 38059] - 5) Consider the following statements: - (i) Every metric space is totally bounded. - (ii) A totally bounded metric space is bounded. ## Then ## [Question ID = 24536] - 1. neither (i) nor (ii) is true [Option ID = 38145] - 2. only (ii) is true [Option ID = 38143] - 3. only (i) is true [Option ID = 38142] - 4. both (i) and (ii) are true [Option ID = 38144] #### Correct Answer :- • only (ii) is true [Option ID = 38143] #### Consider the following statements: - Every minimal generating set of a vector space is a basis. - (ii) Every maximal linearly independent subset of a vector space is a basis. - (iii) Every vector space admits a basis. #### Then #### [Question ID = 24510] - 1. all of (i), (ii) and (iii) are true [Option ID = 38041] - 2. only (i) and (ii) are true [Option ID = 38038] - 3. only (i) and (iii) are true [Option ID = 38040] - 4. only (ii) and (iii) are true [Option ID = 38039] ## Correct Answer :- - all of (i), (ii) and (iii) are true [Option ID = 38041] - 7) The differential equation of a family of parabolas with foci at origin and axis along x-axis is #### [Question ID = 24506] $$y\Big(\frac{dy}{dx}\Big)^2 + 2x^2\frac{dy}{dx} + y = 0$$ [Option ID = 38023] $$y\left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y = 0$$ [Option ID = 38024] $$y\Big(\frac{dy}{dx}\Big)^2 + 2x\frac{dy}{dx} + y = 0$$ $$\frac{dx}{dx} \qquad \qquad [Option ID = 38025]$$ $$y^2 \left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y^2 = 0$$ [Option ID = 38022] ## Correct Answer :- $$y \left(\frac{dy}{dx} \right)^2 + 2x \frac{dy}{dx} - y = 0$$ [Option ID = 38024] Number of iterations required to solve $x^3 + 4x^2 - 10 = 0$ using bisection method with accuracy 10^{-3} (with initial bracket [1, 2]) are #### [Question ID = 24495] - 1. 7 [Option ID = 37978] - 2. 12 [Option ID = 37981] - 3. 10 [Option ID = 37980] - 4. 8 [Option ID = 37979] ## Correct Answer :- - 10 [Option ID = 37980] - 9) Let $P_2(t)$ denote the set of all polynomials over \mathbb{R} of degree at most 2. With respect to the inner product $$\langle p,q \rangle = \int_{-1}^{1} p(t)q(t)dt,$$ the set of vectors $\{1, t, t^2 - \frac{1}{3}\}$ is # [Question ID = 24513] - not a linearly independent set [Option ID = 38053] - orthogonal basis of $P_2(t)$ [Option ID = 38050] - 3. basis of $P_2(t)$ but not orthogonal [Option ID = 38052] orthogonal but not a basis of $P_2(t)$ [Option ID = 38051] #### Correct Answer :- - orthogonal basis of $P_2(t)$ [Option ID = 38050] - **10)** A function $f: \mathbb{R} \to \mathbb{R}$ is said to be periodic if there exists p > 0 such that f(x+p) = f(x), for all $x \in \mathbb{R}$. If f is a continuous periodic function on \mathbb{R} , then #### [Question ID = 24543] - 1. f^2 is unbounded [Option ID = 38173] - 2. |f| is unbounded [Option ID = 38170] - 3. |f| is not uniformly continuous [Option ID = 38172] - 4. f^2 is uniformly continuous and bounded on \mathbb{R} [Option ID = 38171] #### Correct Answer :- - f^2 is uniformly continuous and bounded on \mathbb{R} [Option ID = 38171] - 11) Consider the following statements: - (i) Every separable metric space is compact. - (ii) Every compact metric space is separable. Then ## [Question ID = 24534] - 1. only (i) is true [Option ID = 38134] - 2. only (ii) is true [Option ID = 38135] - 3. both (i) and (ii) are true [Option ID = 38136] - 4. neither (i) nor (ii) is true [Option ID = 38137] #### Correct Answer :- - only (ii) is true [Option ID = 38135] - 12) The partial differential equation $x^3u_{xx} (y^2 1)u_{yy} = u_x$ is ## [Question ID = 24502] - 1. parabolic in $\{(x,y) \mid y < 0\}$ [Option ID = 38006] - 2. elliptic in \mathbb{R}^2 [Option ID = 38008] - 3. hyperbolic in $\{(x,y) \mid x>0\}$ [Option ID = 38007] - 4. parabolic in $\{(x,y)\mid y>0\}$ [Option ID = 38009] ## Correct Answer :- - 13) Consider the following statements - (i) Z[x] is a principal ideal domain. - (ii) If R is a principal ideal domain, then every subring of R containing 1 is also a principal ideal domain. Then ## [Question ID = 24522] 1. only (i) is true [Option ID = 38086] ``` 2. both (i) and (ii) are true [Option ID = 38088] ``` - 3. only (ii) is true [Option ID = 38087] - 4. neither (i) nor (ii) is true [Option ID = 38089] #### Correct Answer :- - neither (i) nor (ii) is true [Option ID = 38089] - 14) Let $N \neq \{e\}$ be a normal subgroup of a non-abelian group G such that $N \cap G' = \{e\}$, where G' is the commutator subgroup of G. Then #### [Question ID = 24517] - None of these [Option ID = 38069] - N is not abelian [Option ID = 38067] - 3. $N \subseteq Z(G)$, the centre of G [Option ID = 38068] - 4. G/N is abelian [Option ID = 38066] #### Correct Answer :- - . $N\subseteq Z(G),$ the centre of G [Option ID = 38068] - Let $f(t) = t^2 e^t \log t$; $1 \le t \le 3$. Then there exists some $c \in (1,3)$ such that $\int_1^3 f(t)dt$ is equal to #### [Question ID = 24525] $$\frac{1}{2}e^{c}\log c^{26}$$ $$\frac{1}{3}e^{c}\log c^{26}$$ 1. Option ID = 38098] 2. $$c^2 e^c \log 3$$ [Option ID = 38101] 3. $$2^2c^2\log c$$ [Option ID = 38099] 4. $$26e^c \log c$$ [Option ID = 38100] #### Correct Answer :- $$\frac{1}{3}e^c\log c^{26}$$ - [Option ID = 38098] - **16)** For two ideals I and J of a commutative ring R define $(I:J)=\{r\in R\mid rI\subseteq J\}$. Then for the ring \mathbb{Z} of integers what is $(8\mathbb{Z}:12\mathbb{Z})$ ## [Question ID = 24523] 1. $$4\mathbb{Z}$$ [Option ID = 38093] 3. $$^{2\mathbb{Z}}$$ [Option ID = 38091] 4. $$^{3\mathbb{Z}}$$ [Option ID = 38092] ## Correct Answer :- - $3\mathbb{Z}$ [Option ID = 38092] - 17) Consider the set \mathbb{R}^2 with metric defined by $$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}; \quad x = (x_1, x_2), \ y = (y_1, y_2).$$ Then which of the following set is not connected ## [Question ID = 24535] $$_{1.}\left\{ \left(x,y\right) \in\mathbb{R}^{2}\mid y^{2}=x\right\} \text{ [Option ID = 38138]}$$ $$\{(x,y) \in \mathbb{R}^2 \mid x^2 - y^2 = 1\}$$ [Option ID = 38141] 1. $$\{(x,y) \in \mathbb{R}^2 \mid x^2 - y^2 = 1\}$$ [Option ID = 38141] $$\{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{4} + \frac{y^2}{9} = 1\}$$ [Option ID = 38140] 4. $$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$ [Option ID = 38139] ## Correct Answer :- $$\{(x,y)\in\mathbb{R}^2\mid x^2-y^2=1\}$$ [Option ID = 38141] Let $$f(x) = \lim_{n \to \infty} \frac{n^x - n^{-x}}{n^x + n^{-x}}, x \in \mathbb{R}$$. Then #### [Question ID = 24542] - $_{1.}$ f is continuous at $(1,\infty)$ [Option ID = 38169] - 2. f is not differentiable at x = 1 [Option ID = 38168] - $_3$. f is not continuous at x=-1 [Option ID = 38167] - $_{4.}\,f$ is continuous at x=0 [Option ID = 38166] #### Correct Answer :- • $$f$$ is continuous at $(1, \infty)$ [Option ID = 38169] **19)** For $$x \in [-1, 1]$$, let $$f(x) = \begin{cases} x \operatorname{sgn}(\sin \frac{1}{x}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0, \end{cases}$$ where sgn denotes the signum function. Then #### [Question ID = 24526] - f is continuous on [-1,1] [Option ID = 38104] - f is not differentiable at any point of [-1,1] [Option ID = 38103] - 3. f is Riemann integrable on [-1,1] [Option ID = 38102] - the set of points of discontinuity of f in [-1,1] is finite [Option ID = 38105] ## Correct Answer :- - f is Riemann integrable on [-1,1] [Option ID = 38102] - **20)** The integral surface of the partial differential equation $p^2 + q^2 = 2$ which passess through x=0, z=y is #### [Question ID = 24503] $$x^2 + y^2 + z^2 = 1 \\ \text{[Option ID = 38013]}$$ z = $$y \pm x$$ [Option ID = 38010] 3. $$z^2=x\pm y^2$$ [Option ID = 38011] 4. $$z^3 = x \pm y$$ [Option ID = 38012] ## Correct Answer :- $z=y\pm x$ [Option ID = 38010] Does the sequence $a_n = n^2 \cos\left(\frac{2}{n^2} + \frac{\pi}{2}\right)$ has a limit? ## [Question ID = 24529] 1. No, it oscillates [Option ID = 38115] 2. No, it diverges [Option ID = 38114] 3. Yes, -2 is the limit [Option ID = 38117] 4. Yes, -1 is the limit [Option ID = 38116] #### Correct Answer :- • Yes, -2 is the limit [Option ID = 38117] #### 22) The orthogonal trajectory of the family of curves $ay^2 = x^3$, where a is an arbitrary constant, is #### [Question ID = 26021] $3y^2 + 2x^2 = \text{constant}$ [Option ID = 44082] $2y^2 - 3x^2 = \text{constant}$ [Option ID = 44080] $3y^2 - 2x^2 = \text{constant}$ [Option ID = 44079] 4. $2y^2 + 3x^2 = \text{constant}$ [Option ID = 44081] #### Correct Answer :- $3y^2 + 2x^2 = \text{constant}$ [Option ID = 44082] 23) The integral surface of the linear partial differential equation $$xp + yq = z$$ which contains the circle defined by $x^2 + y^2 + z^2 = 4$, x + y + z = 2, is ## [Question ID = 24504] $\frac{x}{y}+\frac{z}{x}+\frac{y}{z}+1=0$ $y \quad x \quad z$ [Option ID = 38015] 2. xy + xz + yz = 0 [Option ID = 38016] $_{\rm 3.} \; xy^2 + xz^2 = 0 \; _{\rm [Option \; ID \; = \; 38014]}$ 4. xyz = 1 [Option ID = 38017] #### Correct Answer :- • xy + xz + yz = 0 [Option ID = 38016] 24) Initial estimate for the root of the equation f(x) = 0 is $x_0 = 2$ and f(2) = 4. The tangent line to f(x) at $x_0 = 2$ makes an angle of 42^0 with the x axis. The next estimate of the root by Newton-Raphson method is approximately # [Question ID = 24499] 1. 2.0102 [Option ID = 37995] 2. 4.4424 [Option ID = 37997] 3. 0.2412 [Option ID = 37994] 4. -2.4424 [Option ID = 37996] ## Correct Answer :- - -2.4424 [Option ID = 37996] - 25) The numerical scheme using the first three terms of the Taylor series for solving the differential equation $$\frac{dy}{dx} + y = e^{-3x}, \quad y(0) = 5,$$ with $h = x_{i+1} - x_i$, is given by ## [Question ID = 24497] $$y_{i+1} = y_i + h(e^{-3x_i} - y_i) + \frac{h^2}{2}(-3e^{-3x_i} - y_i)$$ 1. [Option ID = 37988] $$y_{i+1} = y_i + h(e^{-3x_i} - y_i) + \frac{h^2}{2}(-4e^{-3x_i} + y_i)$$ 2. [Option ID = 37987] $$y_{i+1} = y_i - h(e^{-3x_i} - y_i) + \frac{h^2}{2}(y_i - e^{-3x_i})$$ $$y_{i+1}=y_i-h(e^{-3x_i}-y_i)+\frac{h^2}{2}(y_i-e^{-3x_i})$$ [Option ID = 37989] $$y_{i+1}=y_i+h(e^{-3x_i}-y_i)+\frac{h^2}{2}y_i$$ [Option ID = 37986] $$y_{i+1} = y_i + h(e^{-3-i} - y_i) + \frac{1}{2}y_i$$ 4. [Option ID = 37986] ## Correct Answer :- $$y_{i+1} = y_i + h(e^{-3x_i} - y_i) + \frac{h^2}{2}(-4e^{-3x_i} + y_i)$$ [Option ID = 37987] **26)** Let $X = \mathbb{C}^n$, 0 and <math>q = 1/p. For $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in X define $$d_p(x,y) = \Big(\sum_{i=1}^n |x_i - y_i|^p\Big)^{1/p}$$ and $$d_q(x,y) = \Big(\sum_{i=1}^n |x_i - y_i|^q\Big)^{1/q}.$$ Then #### [Question ID = 24533] - neither $d_p(x,y)$ nor $d_q(x,y)$ is a metric on X [Option ID = 38133] - both $d_p(x, y)$ and $d_q(x, y)$ are metrics on X[Option ID = 38130] - 3. only $d_q(x,y)$ is a metric on X[Option ID = 38132] - only $d_p(x, y)$ is a metric on X [Option ID = 38131] ## Correct Answer :- - only $d_q(x,y)$ is a metric on X [Option ID = 38132] - Let $f(x) = x \sin x, x \in \mathbb{R}$. Then |f| is #### [Question ID = 26030] - differentiable at $x = \pi$ [Option ID = 44117] - differentiable at x = 0 [Option ID = 44115] - 3. uniformly continuous on \mathbb{R} [Option ID = 44118] - differentiable at $x=-\pi$ [Option ID = 44116] #### Correct Answer :- differentiable at x = 0 [Option ID = 44115] **28)** Which of the following function f is not uniformly continuous on $\mathbb R$ #### [Question ID = 24541] - 1. $f(x) = x + \sin x$ [Option ID = 38163] 2. $f(x) = x + \sin^3 x$ [Option ID = 38165] - [Option ID = 38164] [Option ID = 38162] # Correct Answer :- • [Option ID = 38164] # 29) [Question ID = 24512] - 1. X and Z [Option ID = 38047] - 2. Y and Z [Option ID = 38049] - 3. W and Y [Option ID = 38046] - 4. W and X [Option ID = 38048] #### Correct Answer :- X and Z [Option ID = 38047] #### 30) [Question ID = 24509] - 1. [Option ID = 38034] - 2. [Option ID = 38037] - 3. [Option ID = 38036] - 4. [Option ID = 38035] ## Correct Answer :- • [Option ID = 38035] # 31) [Question ID = 24539] - 1. [Option ID = 38156] - 2. [Option ID = 38155] - 3. [Option ID = 38157] - 4. [Option ID = 38154] #### **Correct Answer:-** • [Option ID = 38155] # 32) [Question ID = 24507] - 1. [Option ID = 38027] - 2. [Option ID = 38026] - 3. [Option ID = 38028] - 4. [Option ID = 38029] #### Correct Answer :- • [Option ID = 38029] #### 33) [Question ID = 24511] - 1. only (ii) and (iii) are true [Option ID = 38044] - 2. only (ii), (iii) and (iv) are true [Option ID = 38043] - 3. only (i) and (ii) are true [Option ID = 38045] - 4. only (i), (ii) and (iii) are true [Option ID = 38042] # Correct Answer :- only (i), (ii) and (iii) are true [Option ID = 38042] [Question ID = 24500] 1. [Option ID = 38000] 2. [Option ID = 37998] 3. [Option ID = 38001] 4. [Option ID = 37999] Correct Answer :- [Option ID = 37998] [Question ID = 24496] 1. [Option ID = 37983] 2. [Option ID = 37982] 3. [Option ID = 37985] 4. [Option ID = 37984] Correct Answer :- [Option ID = 37982] [Question ID = 24514] 1. S is one-one but T is not [Option ID = 38055] 2. T is one-one but S is not [Option ID = 38054] 3. Both S and T are one-one [Option ID = 38056] 4. Neither S nor T is one-one [Option ID = 38057] Correct Answer :- Both S and T are one-one [Option ID = 38056] [Question ID = 24501] 1. [Option ID = 38002] 2. [Option ID = 38004] 3. [Option ID = 38005] 4. [Option ID = 38003] Correct Answer :- [Option ID = 38005] 38) [Question ID = 24518] 1. both c and d are even [Option ID = 38072] 2. both c and d are odd [Option ID = 38073] 3. c is even and d is odd [Option ID = 38071] 4. c is odd and d is even [Option ID = 38070] Correct Answer :- c is odd and d is even [Option ID = 38070] [Question ID = 24524] 1. only (ii) and (iii) are true [Option ID = 38095] 2. only (i) and (iii) are true [Option ID = 38096] 3. only (i) and (ii) are true [Option ID = 38094] 4. all of (i), (ii) and (iii) are true [Option ID = 38097] Correct Answer :- only (i) and (ii) are true [Option ID = 38094] ``` [Question ID = 24537] 1. [Option ID = 38146] 2. [Option ID = 38147] 3. [Option ID = 38148] 4. [Option ID = 38149] Correct Answer :- • [Option ID = 38147] 41) [Question ID = 24527] 1. [Option ID = 38109] 2. [Option ID = 38108] 3. [Option ID = 38106] 4. [Option ID = 38107] Correct Answer :- [Option ID = 38108] [Question ID = 24528] 1. [Option ID = 38111] 2. [Option ID = 38113] 3. [Option ID = 38112] 4. [Option ID = 38110] Correct Answer :- • [Option ID = 38112] [Question ID = 24530] 1. all of (i), (ii) and (iii) are true [Option ID = 38121] 2. only (ii) is true [Option ID = 38119] 3. only (i) and (ii) are true [Option ID = 38118] 4. only (ii) and (iii) are ture [Option ID = 38120] Correct Answer :- all of (i), (ii) and (iii) are true [Option ID = 38121] [Question ID = 24498] 1. 0.0996 [Option ID = 37991] 2. 0.0876 [Option ID = 37990] 3. 0.0745 [Option ID = 37992] 4. 0.0912 [Option ID = 37993] Correct Answer :- 0.0996 [Option ID = 37991] [Question ID = 24531] 1. converges for all values of p [Option ID = 38124] 2. converges for p > 0, diverges for p \le 0 [Option ID = 38122] 3. does not converges for any value of p [Option ID = 38125] 4. converges for p > 1, diverges for p \le 1 [Option ID = 38123] Correct Answer :- converges for p > 0, diverges for p ≤ 0 [Option ID = 38122] [Question ID = 26022] ``` 1. [Option ID = 44086] 2. [Option ID = 44083] 3. [Option ID = 44084] 4. [Option ID = 44085] Correct Answer :- [Option ID = 44083] [Question ID = 24538] 1. None of these [Option ID = 38153] 2. [Option ID = 38152] 3. [Option ID = 38151] 4. [Option ID = 38150] Correct Answer :-• [Option ID = 38150] [Question ID = 24532] All of X, Y and Z [Option ID = 38126] 2. Only Y and Z [Option ID = 38127] 3. Only X and Z [Option ID = 38128] 4. Only Z [Option ID = 38129] Correct Answer :- Only Z [Option ID = 38129] [Question ID = 24540] 1. [Option ID = 38161] 2. [Option ID = 38159] 3. [Option ID = 38160] 4. [Option ID = 38158] Correct Answer :-50) Let K be any subgroup of a group G and H be the only subgroup of order m in G. Which of the following is not true? [Question ID = 24516] 1. H is a normal subgroup of G [Option ID = 38062] 2. G = N(H), where N(H) is the normalizer of H in G. [Option ID = 38065] 3. ab ∈ H implies that ba ∈ H [Option ID = 38064] 4. HK is not a subgroup of G [Option ID = 38063] HK is not a subgroup of G [Option ID = 38063] Correct Answer :- collegedunia