M.Sc in Applied Microbiology code No(488) 16P/292/9

				Ques	tion Booklet	No	•••••
	(To be	e filled up by	the candid	date by <i>blu</i>	e/black bal	l-point pen)	
Roll No.							
Roll No.							
(Write the di	gits in wor	ds)		240			
Serial No. of	OMR Ans	swer Sheet		247			
Day and Da	te				(5	Signature of I	nvigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 30

e e

No. of Questions: 150

Time .	$2\frac{1}{2}$ Hours]	[Full Marks : 450
Note:	(1) Attempt as many questions	s as you can. Each question carries 3 (Three)
	marks. One mark will be a	leducted for each incorrect answer. Zero mark
	will be awarded for each una	attempted question.
	(2) If more than one alternative	answers seem to be approximate to the correct
	answer, choose the closest or	
1.	The forced deposition of airborn called:	ne particles usually on a solid agar surface is
	(1) Deposition	(2) Impaction
	(3) Sedimentation	(4) Splitting
2.	Bacterial extracellular polymers p	present in biofilms are known as :
	(1) Glycocalyx	(2) Epicalyx
	(3) Calyptra	(4) Calyx
3.	Less than 1% sunlight is present i	n which of the following zones?
	(1) Littoral (2) Benthic	(3) Profundal (4) Limnetic
4.	Intracellular vesicles are found in	:
	(1) Endomycorrhiza	(2) Ectomycorrhiza
	(3) Ectendomycorrhiza	(4) None of the above
		(3) P.T.O.

5.	Methane is the central molecule of w	vhich cy	cle:
	(1) Nitrogen	(2)	Phosphorus
	(3) Carbon	(4)	Sulphur
i.	Purple and green phototrophic bacte	eria are	isolated by :
	(1) Winogradsky column		
	(2) Sepharose column		
	(3) Blue sepharose column		
	(4) Concanavalin A column		
,	A free living aerobic and non-photos	evntheti	c nitrogen fixing bacterium is :
•			
	(1) Anabaena		Clostridium
	(3) Azotobacter	(4)	Rhizobium
3.	Bacteria involved in two step conver	rsion of	ammonia into nitrate are :
	(1) Azotobacter and Nitrosomonas		
	(2) Pseudomonas and Nitrobacter		
	(3) Azotobacter and Achromobacter		
	(4) Nitrosomonas and Nitrobacter		
9.	This organism causes infection of th	ie urinai	y tract :
	(1) Giardia	(2)	Trypanosoma
	(3) Plasmodium	(4)	Trichomonas
		(4)	

10.	Opportunistic infections often are cause	sed:							
	(1) By commensals								
	(2) Due to hosts weakened immune system								
	(3) Due to reduction in indigenous m	(3) Due to reduction in indigenous microbiota							
	(4) All of the above	•							
11.	Hydrothermal vents are also known a	s:							
	(1) Black smokers	(2) White smokers							
	(3) Black vents	(4) None of the above							
12.	Water fit for human consumption is to	echnically called:							
	(1) Potable	(2) Portable							
	(3) Polluted	(4) Planktonic							
13.	Fossilized microbial mats are known a	as:							
	(1) Stromatolites	(2) Stalagtites							
	(3) Stalagmites	(4) Stromata							
14.	The CH4 released into the atmosphere	e is the highest from which source :							
	(1) Ruminants	(2) Termites							
	(3) Paddy fields	(4) Natural wetlands							
15.	Anaerobic sulphate reduction is carrie	d out by :							
	(1) Thiobacillus	(2) Desulfovibrio							
	(3) Desulfuromonas	(4) Beggiatoa							
	(5)								

16.	 Micro-organisms that can multiply at 100-10 	08 C would mostly be :
	(1) Hyperthermophilic archaea (2)	Thermophilic subaerial fungi
	(3) Thermophilic bacteria (4)	Marine protozoa
17.	. Transformation experiments were first perfo	ormed in:
	(1) Escherichia coli (2)	Salmonella typhi
	(3) Diplococcus pneumoniae (4)	Pasteurella pestis
18.	. The fibrillar nature of the bacterial genomic	DNA is due to the presence of :
	(1) Proteins HU and H-NS (2)	Proteins A and D
	(3) Proteins H3A and H3B (4)	Protein RecA
19.	The is where organisms that are plants are growing.	found on and in the aerial surface
	(1) Rhizosphere (2)	Phyllosphere
	(3) Rhizoplane (4)	Desert crust
20.	. Which of the following functions is attribute	ed to growth promoting bacteria?
	(1) Inhibit competeting bacteria by produci	ng antibiotics
	(2) Promote plant growth by producing che	
	(3) Decompose the organic materials se elements available to the plant again	ecreted by the plant making the
	(4) All of the above.	
	(6)	

21.	The function of the enzyme primase during DNA replication is to:							
	(1) Synthesize DNA primer							
	(2) Synthesize RNA primer							
	(3) Induce DNA	supercoiling						
	(4) Induce DNA	relaxation						
22.	When it introduces a tumour in plants, Agrobacterium introduces into the DNA of the plant cell.							
	(1) m-RNA	**	(2) Ti plasmid					
	(3) c DNA		(4) T DNA					
23.	Methanotrophic bacteria :							
	(1) Oxidize methane gas							
	(2) Are responsible for green house effect							
	(3) Produce methane gas							
	(4) Utilise methan	ne gas as electron so	urce for reduction p	rocess				
24.		uence of the Pribno						
	(1) TTGACA	(2) CGGCCG	(3) TGGGCC	(4) TATAAT				
25.	One of the proteins	s required for the ter	rmination of transcr	iption is:				
	(1) Rho	(2) Sigma	(3) CAP	(4) p102				
		(7)						
		, ,		P.T.O.				

26.	The function of recognizing both the ar amino acid rests with:	mino acid and the specific tRNA for that
	(1) Aminoacyl t-RNA synthetase	(2) Chaperonin
	(3) Peptidyl transferase	(4) Selenocysteine
27.	Foods packaged in plastic for microway	ring are :
	(1) Dehydrated	(2) Autoclaved
	(3) Freeze dried	(4) Packaged aseptically
28.	Which type of radiation is used to prese	erve foods?
	(1) Ionising	(2) Non-ionising
	(3) Radiowaves	(4) Microwaves
29.	The approximate number of proteins ribosomes is:	s in the small subunit of prokaryotic
	(1) 10 (2) 21	(3) 32 (4) 39
30.	Halophiles grow in concentrated salt so	olution due to:
	(1) Bacteriorhodopsin	
	(2) Branched hydrocarbon chain in pho-	ospholipids
	(3) Active absorption	
	(4) Accumulation of KCI	
	(8	`

31.	Which of the following reaction is an oxidation carried out by Thiobacillus					
	ferroxidans :					
	(1) Fe^{2+}	Fe^{3+}	(2)	Fe ³⁺	Fe ²⁺	
	(3) Cu ²⁺	Cu ³⁺	(4)	Fe ⁰	Cu ⁰	
32.	What type of ferme	entation is used to pr	odu	ce yoghurt?		
	(1) Lactic acid fern	nentation	(2)	Propionic acid		
	(3) Butane diol fer	mentation	(4)	Mixed acid ferr	mentation	
33.	UGA is a stop cod UGA codes for :	lon in the universal	gen	etic code. Howe	ever, in Mycoplasma,	
	(1) Glycine	(2) Arginine	(3)	Leucine	(4) Tryptophan	
34.	Specialized transd genes?	uction was first di	scov	ered with whic	ch of the following	Mariana Marian
	(1) gal	(2) pro	(3)	lac	(4) his	
35.	The approximate u	pper limit of DNA t	hat c	an be cloned in a	a cosmid vector is :	
	(1) 15 kbp	(2) 20 kbp	(3)	35 kbp	(4) 45 kbp	
36.	The first primer to	primer product in a	PCR	appears in which	ch cycle :	
	(1) First	(2) Second	(3)	Third	(4) Fourth	
37.	Which of the follow	ring is the correct co	mbir	nation ?		
	(1) Low BOD, low	DO	(2)	High BOD, high	h DO	
	(3) Low BOD, high	DO	(4)	None of the abo	ove	
		(9)			~ -	
		ř			P.T.O.	

38.	2, 4, 5- T is a herbicide, the persistence of which in soil is approximately:						
	(1) 20 days	(2)	20 weeks	(3)	20 months	(4)	20 years
39.	The plasmid found	in A	grobacterium rhiz	zoger	nes is :		
	(1) Ti	(2)	Ri	(3)	pUC	(4)	YAC
40.	A nutritional mutar	nt wi	ith the requirem	ent (of a specific grov	vth	factor is known
	(1) Auxotroph			(2)	Necrotroph		
	(3) Prototroph			(4)	Autotroph		
41.	Which of the follow	ing 1	mutagens is a ba	ise a	nalogue ?		
	(1) Nitrous acid			(2)	Ethidium bromi	ide	
	(3) 5-Bromouracil			(4)	Nitrosoguanidii	ne	
42.	DNA damage indu	ces tl	ne protease func	tion	of which protein	:	
	(1) Lex A			(2)	Rec A		
	(3) Topoisomerase			(4)	Replicase		
43.	Knallgas bacteria ca	an ox	idize :		1963		
	(1) Sulphur	(2)	Methane	(3)	Hydrogen	(4)	Ammonia
44.	Selman Waksman is	s cre	dited with the d	iscov	very of:		
	(1) Penicillin			(2)	Streptomycin		**
	(3) Chloramphenio	col		(4)	Cycloheximide		
			(10)				

45.	Three distinct phylogenetic lineages of Woese have been identified through:							
	(1) mRNA sequences (2) rRNA sequences							
	(3) Protein sequences (4) tRNA sequences							
46.	Koch's Postulates was an outcome of work with:							
	(1) Polio (2) Tuberculosis							
	(3) Anthrax (4) Small pox							
47.	The first microbiologists to study the role of non-pathogenic microbes in environment were:							
	(1) Ivanowsky and Beijerinck (2) Pasteur and Koch							
	(3) Winogradsky and Beijerinck (4) Metchnikoff and Kitasato							
48.	Porin proteins are found in :							
*	(1) Cell wall of Gram positive bacteria							
	(2) Cell wall of Gram negative bacteria							
	(3) Outer membrane of Gram negative bacteria							
	(4) Periplasmic space of Gram negative bacteria							
49.	A capsule is similar to pili because both:							
	(1) Are made of protein							
	(2) Can represent virulence factors							
	(3) Are endotoxins							
	(4) Are made of polysaccharides							
	(11)							

P.T.O.

50.	The group firmicutes does not include:
	(1) Streptococcus (2) Lactobacillus (3) Clostridium (4) Pseudomonas
51.	Prokaryotes differ from mitochondria and chloroplasts in :
	(1) Having circular DNA
	(2) Reproduction by binary fission
	(3) Making all of their proteins
	(4) Making some proteins
52.	The counterstain used in Gram stain procedure is :
	(1) Safranin (2) Iodine (3) Crystal violet (4) Carbol fuchsin
53.	Strain O157: H7 of E. coli has been identified on the basis of :
	(1) Lipid A (2) O-polysaccharide
	(3) Peptidoglycan (4) Flagellar antigen
54.	In Pseudopeptidoglcan, N-acetyl muramic acid is replaced by :
	(1) N-acetyl glucosamine
	(2) D-glutamic acid
	(3) L-lysine
	(4) N-acetyl talosamine uronic acid
55.	When comparing bacterial and archael cell membranes only bacterial
	membranes:
	(1) have ether linkages (2) have membrane proteins
	(3) have phospholipids (4) are fluid (12)

56.	Crescentin is a homolog of:		
	(1) ribosomal protein	(2) flagellar protein	
	(3) cytoskeletal protein	(4) None of these	
57.	Which of the following bacteria does no	ot undergo transformation in nat	ure?
	(1) Escherichia Coli	(2) Azotobacter	
	(3) Bacillus	(4) Streptococcus	ř.
58.	Plasmid carrying genes for degradation	n of octane is found in :	
	(1) Rhizobium	(2) Pseudomonas	
	(3) Agrobacterium	(4) Staphylococcus	
59.	Which is true of an Hfr cell?		
	(1) Has a chromosomally integrated F	factor	
	(2) Lacks pili		
	(3) Does not have genes for conjugative	ve transfer of plasmid	
	(4) Cannot conjugate with F-		
60.	Grinding and mixing of food such as ha	ambuger and sausages:	
	(1) Increases food surface area		
	(2) Alter cellular structure		
	(3) Distribute contaminating microorga	anisms throughout the food	
	(4) All of the above		
	(13)		0 = -
	Sang .		P.T.O.

61.	Which of the following is not an intrinsic factor in food spoilage?					
	(1) pH	(2) Moisture content				
	(3) Available nutrients	(4) Temperature				
62.	The sequence most likely to be recognize	ed by Eco RI is:				
	(1) AATTCG (2) AACCGG	(3) GAATTC (4) GCTTCG				
63.	Competence is a term associated with:					
	(1) Conjugation					
	(2) Specialized transduction					
	(3) Generalized transduction					
	(4) Transformation					
64.	Specialized transduction does not invol	ve:				
	(1) Prophage	(2) Virulent phase				
	(3) Recepient cell	(4) Lysed host cell				
65.	Individual protein subunit of a virus is called:					
	(1) Capsid (2) Capsomer	(3) Peplomer (4) Nucleocapsid				
66.	A clear zone within a cloudy lawn of bacterial cells due to bacteriophage					
	infection is commonly called:					
	(1) Negri body	(2) Syncytia				
	(3) Inhibition zone	(4) Plaque				
	(14)				

67.	Neurological deger	nerative dise	ase with	spor	nge like holes	in	the brain have
	been associated with:						
	(1) Prions	(2) Viroids	(3	3) V	iruses	(4)	Bacteria
68.	Protein only hypotl	nesis propose	ed by Prusi	iner	was for :		
	(1) Virusoids	(2) Viroids	(3	3) Pi	rions	(4)	Enzymes
69.	HIV normally infec	ts:					
	(1) T-helper cells		(2	2) C	D4 + cells		
	(3) Macrophages		(4) A	ll of the above		
70.	A blister-like lesion on the scalp is commonly associated with the following fungal infection :						the following
	(1) Candidiasis		(2) C	rptococcosis		
	(3) Dermatophytos	sis	(4) H	istoplasmosis		
71.	An intermediate ho	st is:					
	(1) where parasite	asexual cycle	occurs		2		•
	(2) always a nonhu	man host					
	(3) always some for	rm of insect v	ector				
	(4) where parasite s	sexual cycle o	occurs				
72.	AZT interferes with	:			•		
	(1) Virus entry		(2)) Re	everse transcrip	ptio	n
	(3) Virus uncoating		(4)	Pr	oteolysis		
			(15)				P.T.O.

1

73.	To synthesize one hexose molecule from 6 CO_2 by Calvin cycle, there is a requirement of :	
	(1) 10 NADPH + 16 ATP	
	(2) 18 NADPH + 12 ATP	
	(3) 16 NADPH + 10 ATP	

74. Green sulphur bacteria fix CO₂ by:

(4) 12 NADPH + 18 ATP

- (1) Reverse citric acid cycle
 - (2) Hydroxy propionate pathway
 - (3) Calvin cycle
 - (4) Entner-Doudoroff pathway
- 75. The electron flow in biological nitrogen fixation follows this sequence:
 - (1) Pyruvate Dinitrogenase reductase N2 Dinitrogenase
 - (2) Pyruvate Dinitrogenase reductase Dinitrogenase N2
 - (3) Dinitrogenase Dinitrogenase reductase Pyruvate N2
 - (4) N2 Pyruvate Dinitrogenase Dinitrogenase reductase
- 76. The nif regulon in Klebsiella pneumoniae is concerned with:
 - (1) Nitrate reduction

(2) Nitrite reduction

(3) Nitrogen fixation

(4) Denitrification

(16)

77.	Nodulation and the development of a microaerophilic environment to facilitate nitrogen fixation are characteristics of which genus:				
	(1) Agrobacterium	(2) Pseudomonas			
	(3) Escherichia	(4) Rhizobium			
78.	Common microorganisms which the includes:	mselves constitute an industrial produ	ct		
	(1) Baker's yeast (Saccharomyces cerevi	siae)			
	(2) Rhizobium				
	(3) Bacillus thuringiensis				
	(4) All of the above				
79.	Fts Z ring has a role in:				
	(1) Cell division	(2) DNA replication			
	(3) Translation	(4) Protein folding			
80.	α , β , γ , δ , ϵ , are subdivisions within :				
	(1) Archaea	(2) Proteobacteria			
	(3) Firmicutes	(4) Mollicutes			
81.	Rabies, Polio, West Nile fever are most	recognized diseases of:			
	(1) Lymphatic system	(2) Respiratory system			
	(3) Nervous system	(4) Skeletal system			

82.	An enzyme that adds a phosphoryl group to a compound is:			
	(1) Kinase	(2) Phosphatase		
	(3) Peptidase	(4) Oxido-reductase		
83.	Inducers and repressors of enzyme indu	uction are collectively referred to as :		
	(1) Moderators (2) Modifiers	(3) Effectors (4) Reducers		
84.	Hepatitis B virus belongs to :			
	(1) Hepadnaviridae	(2) Flaviviridae		
	(3) Herpesviridae	(4) Retroviridae		
85.	Heme group in Haemoglobin is an exan	mple of :		
	(1) Coenzyme	(2) Prosthetic group		
	(3) Cofactor	(4) Holoenzyme		
86.	Enzyme activity can be regulated by :			
	(1) Control of enzyme availability			
	(2) Control of enzyme activity			
	(3) Both (1) and (2)			
	(4) Only (2)			
87.	Energy contained in a photon is given b	by:		
	(1) $E = h\lambda$ (2) $E = hc/\lambda$	(3) $E = hc$ (4) $E = h/\lambda$		
88.	In aerobic photosynthesis the molecule	which is protolyzed is:		
00.	(1) CO_2 (2) $C_6H_{12}O_6$	(3) Chlorophyll (4) H ₂ O		
	(18))		

89.	The number of Manganese ions forming the Oxygen evolving complex are :						
	(1) 2	(2) 4	(3) 8	(4) 16			
90.	Transport of electro	ons from Cytochrom	e b ₆ f to PSI is via :				
	(1) Quinone		(2) NADP				
	(3) Phaeophytin		(4) Plastocyanin				
91.	Cellulose differs fro	om glycogen and sta	rch in having glycos	sidic linkage :			
	(1) α-1, 3	(2) β-1, 3	(3) α-1, 4	(4) β-1, 4			
92.	RNA differs from D	NA in having:					
	(1) OH group on th	ne 2' carbon of pento	se sugar				
	(2) Nitrogen base on the 1' carbon						
	(3) Uracil instead of	of Thymine	型 图				
	(4) Both (1) and (3)	· ·					
93.	Which of the follow	ing statements are t	rue of Enantiomers ?				
	(1) They are optical	lisomers					
	(2) They have the s	ame molecular and s	structural formulas				
		images of one anoth	ner				
	(4) All of the above						

94.	. During protein denaturation the following do	oes not occur :
	(1) Polypeptide chains unfold	
	(2) Primary structure is not retained	
	(3) Higher order structure of proteins is dest	royed
	(4) Hydrophobic regions become expose	ed and stick together to form
	aggregates	
95.	. Which statement is <i>not</i> true of a bacterial end	lospore?
	(1) Endospores contain dipicolinic acid	
	(2) The endospore core is dehydrated	
	(3) Endospore core contains high level of SA	SPs
	(4) SASPs bind to ribosomes present in	the endospore core and prevent
	translation	
96.	. Taq and Pfu are examples of :	
8	(1) Protease (2)	RNA polymerase
	(3) DNA polymerase (4)	Lipase
§7.	. Isoniazid interferes with the synthesis of :	
	(1) Mycolic acid (2) Folic acid (3)	Protein (4) Nucleic acid
98.	Bacterial resistance to Penicillin is due to :	
	(1) Efflux	
	(2) Alteration of target	
	(3) Development of resistant biochemical pa	ithway
	(4) Inactivation of antibiotic	

(20)

99.	An example of cytolytic toxin is:		
	(1) Diphtheria toxin	(2)	Botulinum toxin
	(3) Staphylococcal α toxin	(4)	Tetanus toxin
100.	Gellan, pullulan, alginate and curdlan are	e :	
	(1) Polysaccharides	(2)	Antibiotics
	(3) Polyesters	(4)	Lipids
101.	Continuous feed during fermentation is a	use	d to maintain :
	(1) Temperature	(2)	Water level
	(3) Product concentration	(4)	Substrate concentration
102.	To be suitable for industrial use a microo	rga	nism should:
2	(1) Be generally stable		
	(2) Be capable of growth and product fer	me	entation in large scale culture
	(3) Grow rapidly and produce product in	n a	relatively short period of time
	(4) All of these		
103.	The term primary metabolite refers to:		
	 A product that is produced during that or near stationary phase. 	ne e	end of the growth phase, frequently
	(2) A product that is produced during the	e p	rimary stage of growth.
	(3) The major waste product produced di	uri	ng the growth of a culture.
	(4) All of the above		
	(21)		P.T.O.

104.	Breakbone feve	r is associated with:					
	(1) AIDS	(2) Dengue	(3) Hepatitis	(4) Yellow fever			
105.	Hepatitis A and	E are transmitted by	:				
	(1) Urogenital	tract					
	(2) Contact wit	h body fluids					
	(3) Gastrointes	tinal tract					
	(4) Respiratory	tract					
106.	Which of the fo	llowing is an example	of a primary metab	olite?			
	(1) Ethanol	(2) Penicillin	(3) Erythromyc	in (4) Tetracycline			
107.	In a typical ferr	nenter the function of	sparger is :				
	(1) Provide steam in the fermenter during sterilization						
	(2) Provide additional nutrients so that growth may ensure						
	(3) Provide for proper cooling of the fermenter						
	(4) Provide a source of small air bubbles to help oxygenate the medium						
108.				tured by fermentation			
	in the greatest	quantity. Its major use	e is:				
	(1) As flavour	enhancer					
	(2) As nutritio	onal supplement					
	(3) As raw ma	aterial for animal feed					
	(4) As starter	material for aspartam	ie				
		(22)				

109.	The major use of microbial derived proteases is:				
	(1) Chemical modification of food additives				
	(2) An animal feed				
	(3) As an isomerase during production of high fructose corn syrup				
	(4) As an additive of laundry deterge	ents			
110.	Nitrogenous fertilizers disrupt ecosystem structure and function by :				
	(1) Causing formation of nitrosamine carcinogens				
	(2) Promoting heterotrophic growth levels	causing imbalance in carbon dioxide			
	(3) Causing more antibiotic production which stunt growth of plants	cing to grow and produce antibiotics			
	(4) Reducing the number of Nitrogen	fixing bacteria in soil			
111.	The manner in which the hydrophobic cytoplasmic membrane is different in :	c lipid tails are attached to glycerol in the			
	(1) Bacteria and Archaea (2) Bacteria and Eukarya				
	(3) Bacteria and Cyanobacteria	(4) Archaea and Methanogens			
112.	Which among these is a method of vine	egar production ?			
	(1) Orelans method	(2) Bubble method			
	(3) Trickle method	(4) All of the above			
113.	Production of which of the following is anaerobic process:				
	(1) Ethanol (2) Glutamic acid	(3) Citric acid (4) Acetic acid			
	(23)				
		P.T.O.			

114.	Which of the following gives the correct zonal sequence in seas?		
	(1) Bathyal, abyssal, intertidal, neritic		
	(2) Neritic, intertidal, bathyal, abyssal		
	(3) Abyssal, neritic, intertidal, bathyal		
	(4) Intertidal, neritic, bathyal, abyssal		
115.	Which of the following provides an assessment of the numbers of aerobic and facultatively anaerobic bacteria in water?		
	(1) Anaerobic plate count		
	(2) Heterotrophic plate count		
	(3) Colony forming units		
	(4) BOD		
116.	The biochemistry of production is most closely related to that of bread leavening :		
	(1) Ethanol (2) Glutamic acid		
	(3) Citric acid (4) Ascorbic acid		
117.	Viral genome with negative strand RNA has:		
	(1) RNA in the form of messenger RNA		
	(2) RNA complementary to messenger RNA		
	(3) Single stranded RNA		
	(4) Segmented RNA		
	(24)		

	118.	Viroids can be des	stroyed by :		
		(1) DNAase		(2) Protease	
		(3) RNAse		(4) Both (1) and	(3)
	119.	Wort is a precurso	or of :		
		(1) Beer	(2) White wine	(3) Brandy	(4) Red wine
	120.		o eliminate spoilage spoiled. This may be		ng canning, sometime
		(1) Spoilage before	re canning		
		(2) Underprocess	ing during canning		
		(3) Leakage of co	ntaminated water th	rough can seams di	uring cooling
		(4) All of the above			. 0
	121.	The effectiveness food:	of many chemical	preservative depe	ends primarily on the
		(1) Temperature		(2) pH	
		(3) Water content		(4) Acidity	
	122.	Which of the follo	wing refers to the a	ddition of microor	ganisms to the diet in
(4)		(1) Adjuvants	(2) Prebiotics	(3) Probiotics	(4) Symbionts
.4	123.	Which of the follow	ving is <i>not</i> an examp	le of non-perishable	e foods ?
		(1) Cereals	(2) Rice	(3) Pulses	(4) Milk
			(25)		
					P.T.O.

124.	Which of the following is not a negatively controlled operon?			
	(1) lac operon	(2) trp operon	(3) mal operon	(4) arg operon
125.	a _w , which is also a food by micro-orga			overns the spoilage of
	(1) Water content of the food			
	(2) Sugar content of the food			
	(3) pH of the food			
	(4) Nitrogen conte	ent of the food		
126.	Which of the following test is done for testing the quality of milk?			
	(1) Phosphatase te	est		
	(2) Methylene Blu	e Reduction Test (N	MBRT)	
	(3) Multiple Tube Fermentation Test			
	(4) All of the abov	e		
127.	The common bacteria responsible for Botulism is:			
	(1) Leuconostoc spe	ecies		
	(2) Salmonella spec	cies		
	(3) Clostridium spe	ecies		
	(4) Staphylococcus	species		
128.	28. Sauerkraut is a fermented product of :			
	(1) Soyabeans		(2) Coconut	
	(3) Cassava		(4) Cabbage	
	\-/	(2	26)	

129.	Which among these is not an example of Single Cell Protein (SCP)?		
	(1) Chlorella	(2) Spirulina	
	(3) Cellulomonas	(4) Pseudomonas	
130.	Arrange the following groups of micro- occurrence in soil :	organisms in descending order	of their
	(1) Bacteria, Fungi, Protists, Nematodes, Viruses		
	(2) Bacteria, Protists, Viruses, Nematodes, Fungi		
	(3) Bacteria, Fungi, Viruses, Nematodes, Protists		
	(4) Bacteria, Fungi, Viruses, Nematodes	, Protists	
131.	Because the soil primarily is an environment, the elements such as Carbon, Nitrogen, Sulphur and Iron will tend to be in the state in the soil.		
	(1) Aerobic, oxidized	(2) Aerobic, reduced	
	(3) Anaerobic, oxidized	(4) Anaerobic, reduced	
132.	For Lambda phage to maintain lysogen except:	y, the following events should	happen
	(1) Integration of lambda genome into h	ost chromosome	
	(2) Expression of C II and C III proteins		
	(3) Prevention of late protein production		
	(4) Synthesis of cro protein in high amou		
	and the second s	The store	
	(27)		P.T.O.

133.	The terms rooted, unrooted and nodes are commonly associated with:			
	(1) Phylogenetic tree	(2) Cladistics		
	(3) Cladogram	(4) All of the above		
134.	is the process in which micro-organisms are used as a food source esulting in nitrogen and phosphorus mineralization.			
	(1) Eutrophication	(2) Homeostasis		
	(3) Nitrogen fixation	(4) Microbivory		
135.	A microbial community that develops surface is called :	in low areas and retained on the soil		
	(1) Zooglea (2) Mycorrhizae	(3) Microfilm (4) Desert crust		
136.	Which of the following genera synthesizes Nod factors in order to activate a plant to allow development of infection thread?			
	(1) Agrobacterium	(2) Pseudomonas		
	(3) Frankia	(4) Rhizobium		
137.	The nitrogen-fixing form of the Rhizobium is called:			
	(1) Bacteroid	(2) Symbiosome		
	(3) Mycorrhiza	(4) Infection thread		
138.	Which of the following genera possess a tumour inducing plasmid?			
	(1) Agrobacterium	(2) Rhizobium		
	(3) Pseudomonas	(4) Frankia		
	(28)			

139.	Addition of nitrogen containing fertilizers affects gas exchange process in the soil:			
	(1) Resulting in release of NO and N2O which are green house gases			
	(2) Causing methane gas to be produced			
	(3) Assimilation of NO ₃ by the plants			
	(4) Causing antibiotic production i resistance	n bacteria which leads to antibiotic		
140.	The symbiotic association of plants and fungus called mycorrhiza was first described by:			
	(1) De Bary	(2) Sergei Winogradsky		
	(3) A. B. Frank	(4) A. M. Ross		
141.	DDT is an example of Persistent Organic Pollutants (POPs) but is known to be degraded by certain bacteria, select the appropriate one:			
	(1) Phanerochaete chrysoporium	(2) Trichoderma viride		
	(3) Aspergillus flavus	(4) All of the above		
142.	The spoilage of wine is due to acidificat	ion, which is caused due to presence or .		
	(1) Gluconobacter	(2) Acetobacter		
	(3) Lactobacillus	(4) All of the above		
143.	Who is referred to as the father of antibiotics?			
	(1) Sewall Wright	(2) Robert Koch		
	(3) Alexander Fleming	(4) Weismann		
144.	Paguafort Chadda B			
	Roquefort, Cheddar, Emmentaler (Swiss	s), Camembert are types of :		
	(1) Cheese (2) Butter	(3) Milk (4) Proteins		
	(29)	P.T.O.		

145.	Kefir is commonly known as:		
	(1) Fermented milk	(2) Fermented cereals	
	(3) Fermented whisky	(4) Fermented beer	
146.	Mycotoxins are example of :		
	(1) Primary metabolite		
	(2) Secondary metabolite		
	(3) Tertiary metabolite		
	(4) Both an example of secondary and t	tertiary metabolite	
	, , , , , , , , , , , , , , , , , , , ,		
147.	Aflatoxin, Ochratoxin, Sterigmatocystin		
	(1) Aspergillus toxins	(2) Fusarium toxins	
	(3) Penicillium toxins	(4) Ergot alkaloids	
148.	. Which of the following is found in milk?		
	(1) Vibrio (2) Lactobacillus	(3) Pseudomonas (4) Amoeba	
149.	Wood smoke is sometimes used in flav	ouring and preservation of foods due to	
	the presence of:		
	(1) Pyragallol	(2) Catechol	
	(3) Phenols and cresols	(4) All of the above	
150.	12D treatment is commonly referred to	as:	
863	(1) Botulinal cook	(2) Fulva cook	
	(3) Coagulans cook	(4) Stearothermophilus cook	

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ठ पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल *नीली।काली बाल-पाइंट पेन* से ही लिखें)

- 1. प्रश्न पुरितका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिकां प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित रथान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तीं को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुरितका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुरितका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुरितका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुरितका के मुखपृष्ट के अंदर वाला पृष्ट तथा अंतिम खाली पृष्ट का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।

