## Sample Paper

| ANSWERKEY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | (a) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (b) | 2 | (d) | 3 | (d) | 4 | (c) | 5 | (b) | 6 | (b) | 7 | (c) | 8 | (c) | 9 | (a) | 10 |  |
| 11 | (b) | 12 | (a) | 13 | (c) | 14 | (c) | 15 | (b) | 16 | (a) | 17 | (d) | 18 | (c) | 19 | (c) | 20 | (c) |
| 21 | (d) | 22 | (c) | 23 | (c) | 24 | (c) | 25 | (a) | 26 | (b) | 27 | (d) | 28 | (d) | 29 | (a) | 30 | (c) |
| 31 | (d) | 32 | (c) | 33 | (b) | 34 | (a) | 35 | (d) | 36 | (a) | 37 | (b) | 38 | (c) | 39 | (a) | 40 | (d) |
| 41 | (c) | 42 | (a) | 43 | (b) | 44 | (a) | 45 | (b) | 46 | (b) | 47 | (a) | 48 | (c) | 49 | (a) | 50 | (d) |

## Ósolutions

1. (b) $x=3+3^{2 / 3}+3^{1 / 3}$

$$
\begin{aligned}
& (x-3)^{3}=\left(3^{\frac{2}{3}}+3^{\frac{1}{3}}\right)^{3} \\
& x^{3}-27-9 x^{2}+27 x=3^{2}+3+3 \times 3^{2 / 3} \times 3^{1 / 3}\left(3^{2 / 3}+\right. \\
& \left.3^{1 / 3}\right) \\
& x^{3}-27-9 x^{2}+27 x-9-3=9(x-3) \\
& x^{3}-39-9 x^{2}+27 x-9 x+27=0 \\
& x^{3}-9 x^{2}+18 x-12=0
\end{aligned}
$$

2. (d)


In $\triangle \mathrm{ABC}$
$A B=A C$
$\Rightarrow \angle \mathrm{C}=\angle \mathrm{B} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C}=\mathrm{a}$
By angle sum properly in $\triangle \mathrm{ABC}$,

$$
\begin{align*}
& b+a+a=180 \\
& \Rightarrow b+2 a=180^{\circ} \tag{i}
\end{align*}
$$

In $\triangle \mathrm{QPB}$
$\Rightarrow \angle \mathrm{QPB}=180-4 \mathrm{~b}$
Since 'APC' is a straight line
$\Rightarrow 180-4 \mathrm{~b}+a+b=180$
$\Rightarrow a=3 b$
From equations (i) \& (ii)

$$
\begin{aligned}
& b+2(3 b)=180 \Rightarrow b=\frac{180}{7} \\
& \angle \mathrm{AQP}=180^{\circ}-2\left(\frac{180}{7}\right)=\frac{5}{7} \pi
\end{aligned}
$$

3. (d) $2 \pi r=4 \pi \Rightarrow r=2$

Area $=\pi(2)^{2}=4 \pi$
When, $2 \pi r=8 \pi$

$$
\Rightarrow r=4
$$

$$
\text { Area }=16 \pi
$$

4. (c) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$

$$
\begin{aligned}
& =\left\{1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right\} \times\left\{1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right\} \\
& =\frac{\{(\cos \theta+\sin \theta)+1\} \times\{(\cos \theta+\sin \theta)-1\}}{\cos \theta \times \sin \theta} \\
& =\frac{(\cos \theta+\sin \theta)^{2}-(1)^{2}}{\cos \theta \times \sin \theta}\left\{\because(a+b)(a-b)=a^{2}-b^{2}\right\} \\
& =\frac{1+2 \cos \theta \sin \theta-1}{\cos \theta \times \sin \theta}=2
\end{aligned}
$$

5. (b)
6. (b) Let the number of boys and girls in classroom is $x$ and $y$.
According to question
$\frac{x-x / 5}{y}=\frac{2}{3} \Rightarrow \frac{4 x}{5 y}=\frac{2}{3} \Rightarrow \frac{x}{y}=\frac{5}{6}$
Also, $\frac{x-x / 5}{y-44}=\frac{5}{2} \Rightarrow \frac{4 x}{5(y-44)}=\frac{5}{2}$
$\Rightarrow 8 x=25 y-1100$
From Eqs. (i) and (ii), we get, $x=50, y=60$
Let $n$ number of boy leaves the class so number of boys and number of girls become equal.
$\therefore 50-10-n=60-44$
$n=40-16=24$
7. (c) Let $\triangle P Q R$

Given, $Q R_{2}+P R_{2}=5 P Q_{2}$
Median $P M$ and $Q N$ intersect at $G$.

$Q G=\frac{2}{3} Q N, G M=\frac{1}{3} P M$
$\Rightarrow Q G^{2}+G M^{2}=\left(\frac{2}{3} Q N\right)^{2}+\left(\frac{1}{3} P M\right)^{2}$
$=\frac{4}{9} Q N^{2}+\frac{1}{9} P M^{2}$
$=\frac{4}{9}\left(\frac{2 P Q^{2}+2 Q R^{2}-P R^{2}}{4}\right)$
$+\frac{1}{9}\left(\frac{2 P Q^{2}+2 P R^{2}-Q R^{2}}{4}\right)$
$=\frac{1}{9}\left[\begin{array}{l}8 P Q^{2}+8 Q R^{2}-4 P R^{2} \\ +2 P Q^{2}+2 P R^{2}-Q R^{2} \\ 4\end{array}\right]$
$=\frac{1}{9}\left[\frac{10 P Q^{2}+7 Q R^{2}-2 P R^{2}}{4}\right]$
$=\frac{1}{9}\left[\frac{2 Q R^{2}+7 Q R^{2}}{4}\right]=\frac{1}{4} Q R^{2}=Q M^{2}$
$Q G^{2}+G M^{2}=Q M^{2}$
$\therefore \angle Q G M=90^{\circ}$
8. (c) Perimeter $=\frac{1}{4} \times 2 \pi r+2 r$

$$
=\left(\frac{1}{2} \times \frac{22}{7} \times 7+2 \times 7\right) \mathrm{cm}=25 \mathrm{~cm}
$$

9. (a) $\triangle A B C \sim \triangle A N M$

$$
\begin{equation*}
\therefore \quad \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle A N M}=\frac{A C^{2}}{A M^{2}} \tag{i}
\end{equation*}
$$

$\triangle A B C \sim \triangle M P C$
$\therefore \quad \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle M P C}=\frac{A C^{2}}{M C^{2}}$
From Eqs. (i) and (ii,) we get
$\frac{\text { Area of } \triangle A N M}{\text { Area of } \triangle M P C}=\frac{A M^{2}}{M C^{2}}$
$\frac{\text { Area of } \triangle A N M+\text { Area of } \triangle M P C}{\text { Area of } \triangle M P C}=\frac{A M^{2}+M C^{2}}{M C^{2}}$
Now, Area of $\triangle A N M+$ Area of $\triangle M P C$
$=$ Area of $\triangle A B C-$ Area of $B N M P$
Using Area of BNMP $=\frac{5}{18}$ of area of $\triangle \mathrm{ABC}$
$\therefore \frac{13}{18} \frac{(\text { Area of } \triangle A B C)}{(\text { Area of } \triangle M P C)}=\frac{A M^{2}+M C^{2}}{M C^{2}}$
From Eq. (iii), $\frac{13}{18}\left(\frac{A C^{2}}{M C^{2}}\right)=\frac{A M^{2}+M C^{2}}{M C^{2}}$
$\Rightarrow 13(A M+M C)_{2}=18(A M 2+M C 2)$
$\Rightarrow \frac{A M}{M C}=5, \frac{1}{5}$. Hence, option (a) is correct.
10. (a) Let $a_{1}, a_{2}, a_{3}, \ldots, a_{100}$ be non-zero real number and

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}+\ldots+a_{100}=0 \\
& a_{i} \cdot 2^{a_{i}}>a_{i} \text { and } a_{i} \cdot 2^{-a_{i}}<a_{i} \\
\therefore \quad & \sum_{i=1}^{100} a_{1} \cdot 2^{a_{i}}>\sum_{i=1}^{100} a_{i} \text { and } \sum_{i=1}^{100} a_{1} \cdot 2^{-a_{i}}<\sum_{i=1}^{100} a_{i} \\
\Rightarrow \quad & \sum_{i=1}^{100} a_{1} \cdot 2^{a_{i}}>0 \text { and } \sum_{i=1}^{100} a_{1} \cdot 2^{-a_{i}}<0
\end{aligned}
$$

Hence, option (a) is correct.
11. (b)
12. (a) Condition for infinite many solutions.
$\frac{p}{12}=\frac{3}{p}=\frac{p-3}{p}\left\{\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\right\}$
$p^{2}=36 ; p=$
\{From I and II\}
$p^{2}-3 p=3 p$ \{From II and III\}
$p=6$
$\therefore \quad p=6$
13. (c) $x^{2}-4=(x-2)(x+2)$ are the factors
$\therefore x=2,-2$ are roots of polynomial
$\therefore$ at $x=2 ; P(2)=2(2)^{3}+k_{1}(2)^{2}+k_{2}(2)+12=0$
$\Rightarrow 16+4 k_{1}+2 k_{2}+12=0 \Rightarrow 2 k_{1}+k^{2}=-14$
at $x=2 ; P(-2)=2(-2)^{3}+k_{1}(-2)^{2}+k_{2}(-2)+12=0$
$\Rightarrow-16+4 k_{1}-2 k_{2}+12=0$
$\Rightarrow 2 k_{1}-k_{2}=2$
From (i) \& (ii), $k_{1}=-3 \quad \therefore k_{1}+k_{2}=-11$
14. (c) Radius of outer concentric circle $=(35+7) \mathrm{m}=42 \mathrm{~m}$.

Area of path $=\pi\left(42^{2}-35^{2}\right) \mathrm{m}^{2}=\frac{22}{7}\left(42^{2}-35^{2}\right) \mathrm{m}^{2}$
15. (b) $9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}=9\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)$ $=9 \times 1=9$.
16. (a) Total three digit number are: $3 \times 3 \times 2=18$

Now, numbers divisible by 5 are :
$2 \times 3 \times 1+2 \times 2 \times 1=10$
So, probability that the slip bears a number divisible by $5=\frac{10}{18}=\frac{5}{9}$
17. (d) $x-y=2$
$k x+y=3$
Adding (i) and (ii), we have
$k x+x=5 \Rightarrow x(k+1)=5 \Rightarrow x=\frac{5}{k+1}$
Putting the value of $x$ in equation (i), we have
$\frac{5}{k+1}-y=2$
$\Rightarrow \frac{5}{k+1}-2=y \Rightarrow \frac{5-2 k-2}{k+1}=y \Rightarrow y=\frac{3-2 k}{k+1}$
$y$ should be positive as they intersect in 1st quadrant Therefore, $y>0$
$\frac{3-2 k}{k+1}>0 \Rightarrow \frac{2 k-3}{k+1}<0$

$\therefore \quad k$ should lie between -1 and $3 / 2$
18. (c) Let $x=0 . \overline{235}$
$1000 x=235 . \overline{235}$
Subtract (i) from (ii), $999 x=235 \Rightarrow x=\frac{235}{999}$
19. (c) Joining $B$ to O and C to $O$

Let the radius of the outer cirlce be $r$
$\therefore \quad$ perimeter $=2 \pi r$
But $O Q=B C=r \quad$ [diagonals of the square BQCO$]$
$\therefore \quad$ Perimeter of $A B C D=4 \mathrm{r}$.
Hence, ratio $=\frac{2 \pi r}{4 r}=\frac{\pi}{2}$
20. (c) Here, $A B C$ is a triangle $\& P$ be interior point of a $\triangle A B C, Q$ and $R$ be the reflections of $P$ in $A B$ and $A C$, respectively.


As $Q A R$ are collinear
$\therefore \angle Q A R=180^{\circ}$
$Q$ is reflection of $P$ on $A B$
$\therefore \angle Q A B=\angle B A P$
R is reflection of $P$ on $A C$
$\therefore \quad \angle R A C=\angle C A P$
$\angle Q A R=180^{\circ}$
$\therefore 2 \angle B A P+2 \angle C A P=180^{\circ}$
$\angle B A P+\angle C A P=90^{\circ} \Rightarrow \angle B A C=90^{\circ}$
21. (d) Let us consider that $n^{2}+3$ is divisible by 17
$\therefore n^{2}+3=17 K \quad[K \in N]$
$\Rightarrow n^{2}=17 K-3 \Rightarrow n^{2}=3(17 m-1) \quad[\because K=3 m]$
$3(17 m-1)$ is a perfect square, which is not possible.
$\therefore n^{2}+3$ is never divisible by 17 .

In, $n^{2}+4$, put $n=9$
So, $(9)^{2}+4=81+4=85$ which is divisible by 17 .
$\therefore \mathrm{I}$ is true and II is false.
22. (c)
23. (c) $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}$
$=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}=\frac{2}{\sqrt{3}} \times \frac{3}{2}=\sqrt{3}=\tan 60^{\circ}$.
24. (c) Let the number of people in first and second village be $x$ and $y$ respectively.

According to given condition,
average income of $x$ people $=P$ and
average income of $y$ people $=Q$, where $P \neq Q$
$\therefore \quad$ Total income of people in two villages are $P x$ and $Q y$ respectively.
When, one person moves from first village to second village.
Then, number of people in first village $=x-1$ and in second village $=y+1$.
New average income $=P^{\prime}$ and $Q^{\prime}$
$($ Total income $=$ no. of persons $\times$ average income)
$\therefore \quad$ Total income $=P^{\prime}(x-1)$ and $Q^{\prime}(y+1)$
Total income in both cases are same
$\therefore \quad P x+Q y=P^{\prime}(x-1)+Q^{\prime}(y+1)$
$\Rightarrow \quad P x-P^{\prime}(x-1)=Q^{\prime}(y+1)-Q y$
$\Rightarrow \quad x\left(P-P^{\prime}\right)+P^{\prime}=y\left(Q^{\prime}-Q\right)+Q^{\prime}$
$\therefore \quad P^{\prime} \neq P$ and $Q^{\prime} \neq Q$
Hence, option (c) is not possible.
25. (a) $x=-1$ is the root of the quadratic polynomial $p(x)$

So, quadratic polynomial $p(x)=k(x+1)^{2}$
$p(-2)=k(-2+1)^{2}=2 \Rightarrow k=2 \therefore p(x)=2(x+1)^{2}$
Also, $p(2)=2(2+1)^{2}=2 \times 3 \times 3=18$
26. (b)
27. (d) Given $2 x+y=10$
on adding $y$ both sides, we get, $2 x+y+y=10+y$
$\Rightarrow \quad 2(x+y)=10+y \Rightarrow x+y=5+\frac{\mathrm{y}}{2}$

Now, $(x+y)_{\max }$ when $y$ is maximum \& maximum value of y will be 10. $(\because \mathrm{y}=10-2 x)$
So $(x+y)_{\text {max }}=5+5=10 \&(x+y)_{\text {min }}$ when $\mathrm{y}=0$
$\therefore \quad$ minimum value of $x+y=5$
So, $\quad$ sum of $(x+y)_{\text {max }} \&(x+y) \min =15$
28. (d)
29. (a) Here, when $\mathrm{A}=0^{\circ}$

LHS $=\sin 2 \mathrm{~A}=\sin 0^{\circ}=0$
and $\mathrm{RHS}=2 \sin \mathrm{~A}=2 \sin 0^{\circ}=2 \times 0=0$
In the other options, we will find that
LHS $\neq$ RHS
30. (c) $\frac{1}{7}=0 . \overline{142857}$

The second positive integer whose reciprocal have six different repeating decimals is

$$
\frac{1}{13}=0 . \overline{076923}
$$

And the third positive integer whose reciprocal have six different repeating decimals is

$$
\frac{1}{21}=0 . \overline{047619}
$$

Therefore, the values of x are 7,13,21
Hence, the required sum is $=7+13+21=41$
31. (d)
32. (c) Let distance $=d$,

Time taken upstream $=\frac{d}{15-5}=\frac{d}{10}$
Time taken downstream $=\frac{d}{15+5}=\frac{d}{20}$
Hence, average speed
$=\frac{2 d}{\frac{d}{10}+\frac{d}{20}}=\frac{2 d \times 20}{3 d}=\frac{40}{3} \mathrm{~km} / \mathrm{hr}$
Ratio $=\frac{40}{3}: 15=40: 45=8: 9$
33. (b) $P(x)=a x^{3}+4 x^{2}+3 x-4$
$P(3)=27 a+36+9-4=27 a+41$
$P(x)=x^{3}-4 x+a ; P(3)=27-12+a=15+a$
$\therefore 27 a+41=15+a \Rightarrow a=-1$
34. (a) $P(E)+P(\bar{E})=1$
35. (d) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=\frac{1-(1)^{2}}{1+(1)^{2}}=0$.
36. (a) Let the required number be 33 a and 33 b .

Then $33 a+33 b=528 \Rightarrow a+b=16$.
Now, co-primes with sum 16 are $(1,15),(3,13),(5,11)$ and ( 7,9 ).
$\therefore$ Required numbers are $(33 \times 1,33 \times 15)$,
$(33 \times 3,33 \times 13),(33 \times 5,33 \times 11),(33 \times 7,33 \times 9)$.
The number of such pairs is 4 .
37. (b) Upstream speed $=4 \mathrm{~km} / \mathrm{hr}$ and time $=x$ hrs.

Downstream speed $=8 \mathrm{~km} / \mathrm{hr}$ and
time taken $=x / 2 \mathrm{hrs}$.
Hence average speed $=\frac{4 x+8 \times x / 2}{x+x / 2}=\frac{16}{3} \mathrm{~km} / \mathrm{hr}$.
38. (c)
39. (a) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}$

$$
=\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}=\frac{2}{\sqrt{3}} \times \frac{3}{4}=\frac{\sqrt{3}}{2}=\sin 60^{\circ}
$$

40. (d) For given numbers,
$(55)^{725}$, unit digit $=5 ;(73)^{5810}$, unit digit $=9$
$(22)^{853}$, unit digit $=2$
Unit digit in the expression $55^{725}+735^{810}+22^{853}$ is 6
41. (c) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{A C}{A^{\prime} C^{\prime}} \Rightarrow \frac{5}{15}=\frac{3}{A^{\prime} C^{\prime}}$
$\Rightarrow \quad \mathrm{A}^{\prime} \mathrm{C}^{\prime}=9 \mathrm{~cm}$
42. (a) $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}} \Rightarrow \frac{5}{15}=\frac{B C}{12}$
$\Rightarrow \quad \mathrm{BC}=4 \mathrm{~cm}$
43. (b) $\because \angle \mathrm{A}=\angle \mathrm{A}^{\prime}=80^{\circ}$
44. (a) $\because \angle \mathrm{B}=\angle \mathrm{B}^{\prime}=60^{\circ}$
45. (b) $\because \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$80^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=40^{\circ}$
46. (b)
47. (a)
48. (a)
49. (d)
50. (c)
