Question Booklet No. 13 ((

(To be filled up by the candidate by blue/black ball-point pen)

(Use only blue/black ball-point pen in the space above and on both sides of the random office,

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question
 Question Booklet bring it to the notice of the Superintendent/Invigilators imm
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
 without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall
 not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidat

form of unfair means, he/she shall be liable to such punishment and impose on him/her.

| उपर्युक्त निर्देश हिन्दी में :

; ₹]

[No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्या : 150

Time/समय : 21/2 Hours/घण्टे

Full Marks/quits : 450

Note:

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. 5-bromouracil acts as a mutagen by pairing with
 - (1) adenine
- (2) guanine
- (3) cytosine
- (4) thymine
- 2. An organism capable of carrying out butanol fermentation is
 - (1) Zymomonas

- (2) Clostridium butyricum
- (3) Clostridium acetobutylicum
- (4) Enterobacter

(P.T.O.)

(332)

5	. Live vaccines are available agai	nat the followi
	(I) Influenza (2) Measles	
6.	Antigenic variation is most exte	naive in
	(1) Influenza virus	(2) Smallpox virus
	(3) Measies virus	(4) Herpes virus
7.	Which of the following is not a	DNA virus?
	(1) SV40 (2) T4 phage	
8.	During meiosis, crossing-over mo	stly occurs during
	(1) prophase I (2) prophase I	50 X X
9,	Human papilloma virus causes w	hich of the following?
	(1) Hepatitis	(2) Cervical cancer
	(3) AIDS	(4) Oral cancer
(332)		2

	(1) haptens	(2) carriers	(3)	antigens	(4)	antibodies	٠
12.	Which of the follo	wing has a ds D	NA go	enome?		₫.	
	(1) CaMV	(2) CMV	(3)	Viroid	(4)	TLCV	
13.	Ergot disease is	aused by					
71.	(1) Claviceps	(2) Rhizopus	(3)	Puccinia	(4)	Mucor	
14.	The PMF drives pr synthesize ATP in	rotons across micr a process known	robial n as	membranes,	and th	e energy is	used to
	(1) chemiosmosis	i.	(2)	photosynth	esis .		
	(3) respiration		(4	chemolitho	trophy		
15.	All of the following	ng apply to bacter	rial p	lasmids, exc	ept	80	
	(1) they are self-	replicating loops	of Di	łA.		<i>Y</i> :	
	(2) they have 10	-50 genes					
	* 35 S	rired in bacterial	conju	gation			
	- 112 to 122 to	ential for survival					
							@TO.

(332)

- (4) the virus fails to replicate in the bacterial cell
- 17. UV light causes mutation in bacteria by
 - (1) causing frame-shift
 - (2) causing inversion
 - (3) causing dimerization of adjacent thymine residues
 - (4) causing transition
- 18. All except the following is true for Agrobacterium tumefaciens
 - (1) it carries the Ti plasmid
 - (2) it carries oncogenes on its plasmid
 - (3) it causes crown gall disease
 - (4) it is a Gram-positive bacterium
- 19. The capsular material produced by bacteria generally consists of
 - (1) lipids

(2) polysaccharides

(3) fatty acids

(4) nucleic acids

(332)

collegedunia

٠	(1) bacteria	(2) fungi	(3) algae	(4) viruses	all all
22.	The enzyme that replication is a	relaxes supercoilin	g ahead of the	replication for	
	(1) methylase	(2) DNA gyrasc	(3) primase	(4) transpor	sasc
23.	The metal used t	o recover copper i	from a solution	of copper sulpha	te is
	(1) Fe	(2) Hg	(3) Ag	(4) Mn	
24.	Hap70 is a				
21	27 - 10 To 1	rotein heat stressed E. o denatured protein			
	(4) All of the ab		trippered by		
25.	(1) starvation (2) desiccation	tion in <i>Bacillus</i> is			
	(3) growth inhib (4) All of the ab	itory temperatures			
(332)			5	*	(P.T.O.)

177 it mas an Mr approximately 109 kDa

			ביי אונה	
27	. A compound	light microscope c	annot resolve struct	Utca amouer tage
	(1) 10 μm	(2) 5 μm	(3) 2 μm	(4) 0·2 μm
28.	An envelope is	acquired by certa	ain viruses when th	AND CONTROL OF THE PROPERTY OF
		host cell nucleus		•
		the Golgi body	*	
	(3) assemble i	1000000		
		th the host cell me	embrane	
29.	HIV forms DN	A from its RNA ter	nplate using the fol	lowing enzyme
	(1) RNA polym	erase	(2) Primase	only inc
	(3) Reverse tra	nscriptase	(4) Helicase	
30.	Which of the fo	ollowing are incape	ble of producing to	Xins in the body?
	(1) Clostridium	tetani	•	and the body
	(2) Human imn	nunodeficiency viru	J ė	
	(3) Escherichia			
	(4) Clostridium	botulinum		* 2
(332)			•	

2.	Wil of the following represent more abo	,	
	(1) IgG production		
	(2) production of mucus by the line	ing of the respiratory tract	
	(3) production of acid in the stoms	nch .	
	(4) phagocytosis by macrophages		
33.	A visible clumping of particles occu	ars to the observer in	
	(1) ELISA	(2) Agglutination test	٠
	(3) Precipitation test	(4) Radioimmunoassay	
34.	Complex I of the electron transpor	t chain is called	
	(1) succinate/coq oxidoreductase	(2) cytochrome c oxidase	
	(3) ubiquinone	(4) NADH/co oxidoreductase	
35.	Antibiotics are largely produced by	bacteria during	
	(1) lag phase	(2) log phase	
	(3) stationary phase	(4) decline phase	

(332)

(P.T.O.)

32)	8	
	(1) 10 ⁻¹¹ M (2) 10 ⁻¹² M	(3) 10^{-13} M (4) 10^{-14} M
41 .		solution of 0-1 M NaOH ($Kw = 1 \times 10^{14} \text{ M}^2$)?
		(3) 4000 ORFs (4) 8000 ORFs
40.	E. coli chromosome contains appro	ximately
	(3) Western blotting	(4) South-Western blotting
	(I) Southern blotting	(2) Northern blotting
39.	The transfer of RNA onto a nitrocellu	lose membrane and its detection is part of
	(3) molarity	(4) None of the above
	(1) normality	(2) molality
38.	The number of moles of solute pro	esent in one Kg of a solvent is called
	(4) transmission of sleeping sickn	ess to tectse flies
	(3) production of toxins to disease	
	(2) spontaneous generation of mic	cro-organism to organic matter
	(1) a specific micro-organism to a	specific dis

	(4) rod shaped encapsulated cells	2		
43.	Phylogenetic tree of bacteria is cons	struct	ted based on the sequencing	OI
	(1) 18S rRNA	(2)	16S rRNA	100
,	(3) DNA	(4)	All of the above	
44.	Pasteurization involves treatment w	ith		
	(1) low temperature	(2)	steaming	
1	(3) high temperature	(4)	low and high temperatures	
45.	Common food poisoning microbes a			,
	(1) Clostridium and Salmonella		Clostridium and E. coli	
	(3) E. coli and Salmonella	(4)	Clostridium and Rhizobium	
46.	The Pine seedlings grow best in so	ils wi	ith	
	(1) VAM	(2)	Ectotrophic mycorrhiza	
	(3) Arbutoid mycorrhiza	(4)	Ericoid mycorrhiza	
332)		9		(P.T.O.)

	a sapropriyte out can also live as a parasite
	(2) always lives as a parasite
	(3) never causes disease in a host
	(4) can only live as a saprophyte
49.	A clear area in the lawn of growing bacterial cells initiated upon bacteriophage infection is called
	(1) inhibition zone (2) plaque
	(3) halo (4) colony forming unit
50.	Water
	(1) can give up an H ⁺ , becoming OH ⁻
	(2) can accept an H ⁺ , becoming H ₃ O ⁺
	(3) can form hydrogen bonds
	(4) All of the above
51.	SARS involves infection of the
	(1) gastrointestinal tract (2) urinary tract
	(3) respiratory tract (4) genitourinary tract
32)	10

	(4) at a site other than the active si	te in a noncompetitive manner
53.	When four different groups are atta structure formed is a	ched to a tetrahedral carpon atom, unc
	(1) isomer	(2) stereoisomer
	(3) simple hydrocarbon	(4) amphipathic molecule
54 .	Tubulin in Cilia and Flagella are ex	amples of
	(1) hormonal proteins	(2) storage proteins
	(3) motility proteins	(4) defence proteins
55.	Hydrogen bonds cannot form between	en
	(1) water and glucose	(2) water and water
	(3) water and phosphate	(4) phosphate and octane
56.	If a length of DNA has 45000 base B-DNA take?	pairs, how many complete turns will a
	(1) 45 (2) 450	(3) 4500 (4) 45000
12		
332)	1	(P.T.O.)

58.	Gram staining is a techniq	ue used for differentiating bacterial cells on the	haeic
	of their		Dasia

(1) reproduction

(2) inclusions

(3) cell wall composition

(4) flagellation

59. The lac operon is

- (1) under the control of catabolite repression
- (2) under the control of its own specific negative regulatory system
- (3) Both positively and negatively controlled
- (4) All are correct

60. Which of the following is normally associated with the production of hybridomas secreting a desired monoclonal antibody?

- (1) Blockage of the nucleotide salvage pathway by aminopterin
- (2) Mitogen-induced antibody diversity
- (3) Myeloma cells producing antibodies
- (4) None of the above

(332)

	(1) 62-9 °C for 30 minutes (2	THO C IDE TO SECONDS
	(3) 71.6 °C for 30 minutes (4	82 °C for :
63.	Strictly anaerobic, anoxygenic phototro	phs that use the Calvin cycle for CO2
	(1) nitrifying bacteria (2	green sulphur bacteria
	(3) purple sulphur bacteria (4) sulfur oxidizing bacteria
64.	The toxin produced by Bacillus thuring	iensis is
	(1) a lipid with insecticidal properties	
	(2) a protein with insecticidal properties	es ·
	(3) a lipid with antiviral properties	
	(4) a sugar with insecticidal properties	
65.	One of the major reasons for apoptosis	i is
	(1) lack of polymerase (2) activity of endonucleases
54	(3) activity of mitochondria (4	reduced food intake
66.	Phytoplanktons are dominant in which	of the following zones?
	(1) Limnetic (2) Profundal (3) Littoral (4) Benthic
332)	13	(P.T.O.)

	(4) safe antibiotics					
68.	Which of the following	compounds v	voul	d have the hi	ghest	boiling point?
	(1) CH ₃ CH ₂ CH ₂ CH ₃		(2)	CH3NH2		
	(3) CH ₃ OH		(4)	CH ₂ F ₂		
69.	Number of protofilamen	nts in a micro	tub	ule is		
	(1) 5 (2) 1	10	(3)	12	(4)	13
70.	P ₈₇₀ reaction centre is	associated wit	th ti	ne photosynth	etic r	nachinery in
	(1) cyanobacteria		(2)	purple bacter	ia	
	(3) green bacteria		(4)	algae		
				*		
71.	Enzymes that catalyze acceptor are called	the transfer	of a	phosphoryl	group	from ATP to an
	(1) kinases		(2)	hydrolases	*	
	(3) mutases		(4)	oxido-reducta	ses	
(332)	*	14				

73.	Direct microscopic counts can be used to determine the of all of the following, except					
	(1) virus (2) bacteria	(3) protozoa (4) fungi				
74.	The polysaccharide used to solidify	bacterial growth media is				
	(1) Gelatin	(2) Agar				
	(3) Starch	(4) All of the above				
75.	Micro-organisms that survive in the	e absence of moisture do so because				
*	(1) they produce flagella	(2) metabolize glucose				
	(3) have no cell membranes	(4) produce spores				
76.	Two components of the cell membra	ane in prokaryotes are				
	(1) DNA and RNA	(2) ATP and lipids				
	(3) lipids and DNA	(4) lipids and proteins				
77.	Organic molecules functioning as co	oenzymes/cofactors of enzymes are				
	(1) ubiquinone and cytochromes	(2) NAD and FAD				
	(3) ATP and ADP	(4) glucose and pyruvate				
(332)	15	5 (P.T.O.	J			

=

(332)

					ž.
	(3) polysaccharide	(4)	lipid		
			121	85	
80.	Central dogma of genetic infor	mation ha	s been modified	l by the dis	covery of
	(1) reverse transcriptase	(2)	DNA polymerae	BC .	
	(3) restriction endonuclease	(4)	RNA polymeras	sc	
	er e			*	
81.	Electron from Cyt C are carrie	d to mole	cular O ₂ in		
	(1) fermentation	(2)	aerobic respira	tion	
7	(3) anaerobic respiration	(4)	denitrification		ii ii
82.	A sexually transmitted disease genitals is caused by	e showing	development o	of a chance	e on the
	(1) Neisseria gonorrhoeae			*	
	(2) Treponema pallidium	12			
	(3) Hepatitis B virus		•		
	(4) human immunodeficiency v	rirus	191		

	(1) Xanthomonas campestris	(2)	Bacillus thuring	3
	(3) Trichoderma harzianum	(4)	Nuclear polyhedrosis varus	
85.	When the F-factor is transferred to receiving bacterium	o a	bacterium during conjugation, the	•
	(1) becomes resistant	(2)	acquires a capsule	
	(3) converts to donor bacterium	(4)	dies	
8 6.	Most cases of tetanus are due			
	(1) deep wounds	(2)	respiratory droplets	
	(3) bites of arthropods	(4)	consuming unpasteurized milk	
87.	Immunization with Sabin vaccine is	to p	protect against	
	(1) HIV (2) Tuberculosis	(3)	Polio (4) Hepatitis	
88.	The noncoding RNA include			
	(1) rRNA	(2)	tRNA	100
	(3) mRNA	(4)	Both rRNA and tRNA	
132)	17		(P.T.O.)

	(1) antibiotic production	(2) Sauer modulation
	(3) alcohol production	(4) citric acid production
91.	Tetracyclines are antibiotics that p	revent the synthesis of
	(1) cell wall	(2) nucleic acid
	(3) protein	(4) cytoplasmic membrane
92.	Nitrogenase is an enzyme that regu	ulates
	(1) nitrogen fixation	(2) nitrification
	(3) nitrate dissimilation	(4) denitrification
93.	A mutation in which one amino ac	id is substituted for another is called
	(1) deletion	
	(1) detection	(2) frame-shift mutation
	(3) nonsense mutation	(4) missense mutation
94.	Both DNA and RNA absorb maxima	albr ot
		any at
	(1) 210 nm (2) 280 nm	(3) 300 nm (4) 260 nm
		•
(332)	14	3

(3) competition	(4) predation
Zoogloeas are	
(1) viruses (2) bacteria	(3) nematode (4) algae
Prochloron is an oxygenic phototrop	h which contains
(1) Chlorophyll a	(2) Chlorophyll b
(3) Both Chlorophyll a and b	(4) Phycobilins
In the ocean, spiralling surface current	nts that concentrate nutrients, wastes and
(1) geothermal vents	(2) gyres
(3) red tides	(4) photic zone
What is the mean number of bases	per twist in Z-DNA?
(1) 10 (2) 9	(3) 11 (4) 12
Hartig net is associated with, select	the most appropriate one
(1) Ectotrophic mycorrhiza	(2) Endotrophic mycorrhiza
(3) Ectoendotrophic mycorrhiza	(4) Basidiomycetes
19	(P.T.O.)
	Zoogloeas are (1) viruses (2) bacteria Prochloron is an oxygenic phototrop (1) Chlorophyll a (3) Both Chlorophyll a and b In the ocean, spiralling surface currenticro-organisms are called (1) geothermal vents (3) red tides What is the mean number of bases (1) 10 (2) 9 Hartig net is associated with, select (1) Ectotrophic mycorrhiza

	· · · · · · · · · · · · · · · · · · ·	(3) 3 (4) 4						
104.	. Which among these is not a myc	otoxin?						
	(1) Aflatoxin	(2) Patulin						
	(3) Ochratoxin	(4) 8-toxin						
105.	Acetic acid, lactic acid, succinic a significant amounts during	Acetic acid, lactic acid, succinic acid, ethanol, CO2 and H2 are produced in significant amounts during						
	(1) mixed-acid fermentation	(2) butanediol fermentation						
,	(3) alcoholic fermentation	(4) lactic-acid fermentation						
106,								
	(1) ID ₅₀	(2) D value						
	(3) LD	(4) None of the above						
107.	Which of the following statements	is untrue for the endotoxino?						
	(1) They are secreted by the bacte	rial cells						
	(2) They are generally produced by							
	(3) They are heat stable	Bratto Dactella						
	(4) They are weakly immunogenic							
332)	2	0						

	(1) conjugation	(2) transformation	
	(3) transduction	(4) All of the above	¥
110.	The drug AZT, effective again	at HIV, is	**
	(1) DNA polymerase		
	(2) reverse transcriptase inhi	bitor	
	(3) RNA polymerase		
	(4) protease inhibitor		
111.	Mctal that is used as a catal	yst in hydrogenation of oils is	<i>t</i> :
ě	(1) Ni (2) Pb	(3) Zn (4) C	Cd ,
112.	Nod factors		
	(1) help in the formation of	nodule	4
	(2) induce root hair curling		
	(3) trigger plant cell division		
	(4) do all of the above		
(332)		21	(P.T.O.)
•			

(332)

	specimens	e with a protein sequence present in test
	(4) capacity of ds DNA to hybridiz specimens	e with a protein sequence present in test
114.	Coliform bacteria are	
	(1) Gram negative	(2) non-spore forming
	(3) rod shaped	(4) All of the above
115.	In the lac operon, the enzyme perm	case is coded by
	(1) lac Z (2) lac Y	(3) lac A (4) lac i
116.	Regulation of gene expression by at	tenuation is a feature seen in
	(1) trp operon (2) his operon	(3) ara operon (4) lac operon
l 17.	Class II MHC are expressed on	•
	(1) β-cells	(2) macrophages
	(3) dendritic cells	(4) All of the above

	the other is		-	*
	(1) Arginine	51	(2) Aspartic acid	
	(3) Threonine		(4) Tryptophan	
1 20 .	During DNA repli	cation in bacteria,	Single Stranded B	Binding (SSB) proteins
	(1) monomers	(2) dimers	(3) trimers	(4) tetramers
121.	The first algal vir	us among the gene	era cyanobacteria w	as named
•	(1) LPP-4	(2) LPP-8	(3) LPP-6	(4) LPP-1
122.	RecA, an enzyme as a	required during rec	combination in bact	eria, can also function
	(1) integrase	(2) protease	(3) galactosidase	(4) exonuclease
123.	Tumour formation	n in cancer is an o	outcome of	
	(1) transformation	n of a cell		
*	(2) immortalization	on of a cell		
	(3) transformation	n and immortalizat	tion of a cell	
	(4) None of the s	bove	•	
(332)		23	3	(P.T.O.)

	99 ml of water to	give a dilution	ou, i mi is trans	sterred to a flask containing					
	(1) 10-2	(2) 10 ⁻³	(3) 10→	(4) 10					
126.	Pyruvate dehydro	genase in the m	itochondrial mat	rix converts					
	(1) glucose into glucose-6-phosphate								
	(2) glyceraldehydes-3-phosphate to pyruvate								
	(3) reduction of FAD to FADH ₂								
	(4) pyruvate into	acetyl CoA and	CO ₂						
127.	CO ₂ is assimilate forming oxaloacet	d by phosphoer ate in	olpyruvate carb	oxylase in mesophyll cells					
	(1) C ₃ pathway		(2) photores	piration					
	(3) fermentation	£1	(4) C ₄ pathw	/ay					
128.	PS I and PS II ab	sorb light of diff	erent wavelength	due to					
	(1) the presence of	of different solub	le electron carri	ers					
	(2) different locati								
	(3) the proteins a	ssociated with ea	ch reaction cen	ter chlorophyll					
				n each photosystem					
(332)		2							
			120						

	cutting. The theore bases?	etical possibility of	this	site repeatin	g itself is after h	ow many
	(1) 64	(2) 256	(3)	1064	(4) 32	
131.	Siderophores are amounts	produced by bac	eteria	only when	the following i	s in low
•	(1) Cu	(2) Fe	(3)	Zn	(4) Mn	
132.	A series of operon	s controll ed as a	unit	constitute a	•	
	(1) Regulon	(2) Cistron	(3)	Codon	(4) Riboswit	ch
133,	An basic icosahed	ron is a symmetri	ic str	ucture conta	uining	
	(1) 18 faces and 8	8 vertices	(2)	20 faces and	d 12 vertices	
	(3) 28 faces and	16 vertices	(4)	32 faces and	d 20 vertices	
134.	A common isotope	of iodine used in	ı rad	ioimmunoass	say is	
	(1) 100 I	(2) ¹²⁵ I	(3)	150 I	(4) 175 I	
332)		25	5		•	(P.T.O.)
		,				

(332)

replication is a (1) methylase (2) DNA gyrase (3) primase 137. Characteristic feature(s) of adaptive immunity is (1) antigen specificity (2) self-nonself recognition (3) immunologic memory (4) All of the above The most abundant rare gas in the atmosphere is 138. (1) Xe (2) Ar (3) He (4) Ne 139. Lipoproteins, glycoproteins, flavoproteins are all examples of (1) peptides (2) prosthetic groups (3) conjugated proteins (4) metalloproteins Fungi differ from algae in being 140. (1) achierophyllous and autotrophic (2) chlorophyllous and autotrophic (3) chlorophyllous and saprophytic (4) achlorophyllous and heterotrophic

	(4) multiplicity of the ge	netic code			
142.	The bacteria causing ant	hrax was disco	vered by		2
	(1) Koch (2) Pa	steur (3)	Fleming	(4) Jenner	
143.	Immunologically active remembrane receptors on			nd to antigen sp	ecific
	(1) epitopes (2) ps	ratopes (3)	CDRs	(4) TLRs	ä
144.	Reactions involving trans	sier of electrons	are catalyzed !	ру	
	(1) hydrolases	(2)	lyases	• .	*
	(3) transferases	(4)	oxido-reductas	ies	
145.	The group firmicutes inc	dudes bacterial	species which	arc	¥
	(1) Gram +ve	(2)	Gram -ve	200	
	(3) acid fast	(4)	None of the a	bove	
(332)		27	2	a	P.T.O.)

	(4) None of the above
147.	Cyanophages were discovered by
	(1) F. W. Twort and F. d'Herelle (2) Safferman and Morris
	(3) Robert Koch (4) Benda
148.	Number of moles of CO ₂ in 16 g of O ₂ is
	(1) 0·1 mole (2) 0·2 mole (3) 0·4 mole (4) 0·5 mole
149,	Two enzymes which are unique to the glyoxalate cycle are
	(1) isocitrate lyase and malate synthase
	(2) malate dehydrogenase and isocitrate lyase
	(3) malate synthase and malate dehydrogenase
	(4) malate synthase and citrate synthase
L 50 .	CAP, the Catabolic Activator Protein, has a role in the expression of the
	(1) lac operon (2) trp operon (3) ara operon (4) his operon

28

D/5(332)-2300

अभ्यर्थियों के लिए निर्देश

- नराया नया न स्थायाम राहा। अवसायत क जातारक, स्वाखा या सादा काइ मा खुला कागण साथ म न लाय।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूस पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दे। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिक। का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-यत्र की सम्बन्धित पंक्ति के सामने दिये गये वृक्त को उत्तर-यत्र के प्रथम पृष्ट पर दिये गये निर्देशों के अनुसार ऐन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्वाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. एफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ॰एम॰आर॰ उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि को त साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होग

