SUBJECT	TIME
PHYSICS	10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

QUESTION BOOKLET DETAILS		
VERSION CODE	SERIAL NUMBER	
A - 1	009281	

- Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- THE TIMING MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / Until the 3rd Bell is rung at 10.40 a.m.: MUTILATED/SPOILED.
- - Do not remove the seal / staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have four different options / choices.
- After the 3rd Bell is rung at 10.40 a.m., remove the seal / staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available options / choices given under each question.
 - Completely darken/shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE OMR SHEET IS SHOWN BELOW:

- Please note that even a minute unintended ink dot on the OMR sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough work AND do not use the OMR answer sheet for the same.
- After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating and retaining the top sheet (KEA Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- Preserve the replica of the OMR answer sheet for a minimum period of One year.

	The numb	ci oi significant figures in the	numbers 4.	8000×10^4 and 48000.50 are respectivel
	(1)	5 and 7	(2)	2 and 7
		2 and 6	(4)	5 and 6
2.		eans emission of electron from	m	
				outermost electron orbit
	(3)	radioactive nucleus		innermost electron orbit
2				
3.	it is	neater rated 220 V and 550	W is connec	cted to A.C. mains. The current drawn b
		2.5 A	(2)	0.4 A
		1.25 A	(-)	0.4 A 0.8 A
4.	A body of	mass 'm' moving along a st	raight line	covers half the distance with a speed of
	2 ms ⁻¹ . Th	ne remaining half of the dist	ance is cov	ered in two equal time intervals with
	journey is	ms ⁻¹ and 5 ms ⁻¹ respective	ly. The ave	rage speed of the particle for the entir
	Journey 18			telatored moissessay and to refresh the service of
	(1)	$\frac{6}{3}$ ms ⁻¹	(2)	$\frac{4}{3}$ ms ⁻¹
		10		The little of the mood will be report to the first light and the
	(3)	3 ms ⁻¹	(4)	$\frac{3}{8}$ ms ⁻¹
				NAME OF STREET OF STREET
5.	The momen	nt of inertia of a circular ring	of radius 'r'	and mass 'M' about diameter is
	(1)	Mr ²	(2)	Mr ² 2
				2
		4	(2)	tati Zamin resignating etimen abada samatik ta sa
	(3)	Mr ²	(4)	2 — Mr ²
	(3)	Mr ² 12	(4)	$\frac{2}{5}$ Mr ²
5.	(3)	Mr ² 12	(4)	$\frac{2}{5}$ Mr ²
5.	(3) A body of	Mr ² 12 mass 0.05 kg is observed to f	(4) all with an	2/5 Mr ² acceleration of 9.5 ms ⁻² . The opposing
j.	(3) A body of	Mr ² 12	(4) all with an 8 ms ⁻²).	$\frac{2}{5}$ Mr ² acceleration of 9.5 ms ⁻² . The opposing
	(3) A body of a force of air (1) (3)	$\frac{Mr^2}{12}$ mass 0.05 kg is observed to for on the body is (g = 9.0.15 N Zero	(4) fall with an 8 ms ⁻²). (2)	2/5 Mr ² acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of a force of air (1) (3)	Mr ² 12 mass 0.05 kg is observed to f on the body is (g = 9. 0.15 N Zero	(4) all with an 8 ms ⁻²). (2) (4)	2/5 Mr ² acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	Mr ² 12 mass 0.05 kg is observed to for on the body is (g = 9.0.15 N Zero Space For	(4) all with an 8 ms ⁻²). (2) (4) Rough Wo	2 Mr ² acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	Mr ² 12 mass 0.05 kg is observed to for on the body is (g = 9.0.15 N Zero Space For	(4) all with an 8 ms ⁻²). (2) (4) Rough Wo	2/5 Mr ² acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	Mr ² 12 mass 0.05 kg is observed to for on the body is (g = 9.0.15 N Zero Space For	(4) all with an 8 ms ⁻²). (2) (4) Rough Wo	2/5 Mr ² acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	mass 0.05 kg is observed to fron the body is (g = 9.0.15 N Zero Space Form	all with an 8 ms ⁻²). (2) (4) Rough Wo	acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	mass 0.05 kg is observed to from the body is (g = 9.0.15 N Zero Space Form	all with an 8 ms ⁻²). (2) (4) Rough Wo	acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	mass 0.05 kg is observed to from the body is (g = 9.0.15 N Zero Space Form	all with an 8 ms ⁻²). (2) (4) Rough Wo	acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	mass 0.05 kg is observed to fron the body is (g = 9.0.15 N Zero Space Forthald Advantage of the second sec	(4) fall with an 8 ms ⁻²). (2) (4) r Rough Wo	acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of air (1) (3)	mass 0.05 kg is observed to fron the body is (g = 9.0.15 N Zero Space Fort	(4) fall with an 8 ms ⁻²). (2) (4)	acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N
	(3) A body of force of air (1) (3)	mass 0.05 kg is observed to fron the body is (g = 9.0.15 N Zero Space Form	(4) fall with an 8 ms ⁻²). (2) (4) FRough Wo	acceleration of 9.5 ms ⁻² . The opposing 0.030 N 0.015 N

	called (1)	gels	(2)	foams	
	(3)	liquid crystals	(4)	emulsions	
8.	In fog, pho	tographs of the objects taken warring visible light because			ns are more clear than thos
	(1)	scattering of I-R light is more t	han visil	ble light	
	(2)	the intensity of I-R light from t	he objec	t is less	
	(3)	scattering of I-R light is less th	an visibl	le light	
	(4)	I-R radiation has lesser wavele	ngth tha	n visible rad	liation
9.	body (1)	can keep the body in equilibrit	m if 1 N		
	(2) (3) (4)	cannot keep the body in equilibria can keep the body in equilibria can keep the body in equilibria	im if 1 N	and 3 N ac	t at an acute angle. t at right angles.
10	(3)	can keep the body in equilibrit	ım if 1 N	I and 3 N ac	t at right angles.
10.	(3)	can keep the body in equilibrit can keep the body in equilibrit	im if 1 N	and 3 N ac	t at right angles.
10.	(3) (4) Sound way (1)	can keep the body in equilibrit can keep the body in equilibrit wes transfer	m if 1 Nm if 2 N (2)	momentu	m gy not momentum
	(3) (4) Sound way (1) (3)	can keep the body in equilibria can keep the body in equilibria ves transfer energy both energy and momentum	m if 1 Nm if 2 N (2)	momentu	m gy not momentum
10.	(3) (4) Sound way (1) (3)	can keep the body in equilibrit can keep the body in equilibrit wes transfer	m if 1 Nm if 2 N (2)	momentu	m gy not momentum
	(3) (4) Sound way (1) (3)	can keep the body in equilibria can keep the body in equilibria ves transfer energy both energy and momentum	m if 1 Nm if 2 N (2)	momentu	m gy not momentum
	(3) (4) Sound way (1) (3)	can keep the body in equilibria can keep the body in equilibria ves transfer energy both energy and momentum	(2) (4)	momentu only ener	m gy not momentum

0.02 m

0.05 m

0.03 m (3)

0.01 m

- 12. G.P. Thomson experimentally confirmed the existence of matter waves by the phenomena
 - (1) refraction

(2) polarisation

(3) scattering

- (4) diffraction
- 13. The resistance of a wire at 300 K is found to be 0.3 Ω . If the temperature co-efficient of resistance of wire is 1.5×10^{-3} K⁻¹, the temperature at which the resistance becomes 0.6Ω is
 - (1) 345 K

(2) 993 K

- (3) 690 K
- (4) 720 K

14.

The work done by a force acting on a body is as shown in the graph. The total work done in covering an initial distance of 20 m is

(1) 200 J

(2) 400 J

(3) 175 J

- (4) 225 J
- 15. Two luminous point sources separated by a certain distance are at 10 km from an observer. If the aperture of his eye is 2.5×10^{-3} m and the wavelength of light used is 500 nm, the distance of separation between the point sources are just seen to be resolved is
 - (1) 24.4 m

(2) 2.44 m

(3) 1.22 m

(4) 12.2 m

- 16. A door of 1.6 m wide requires a force of 1 N to be applied at the free end to open or close it. The force that is required at a point 0.4 m distant from the hinges for opening or closing the door is
 - (1) 3.6 N

(2) 2.4 N

- (3) 4 N
- (4) 1.2 N
- 17. 0.1 m³ of water at 80 °C is mixed with 0.3 m³ of water at 60 °C. The final temperature of the mixture is
 - (1) 70°C

(2) 60 °C

(3) 75 °C

- (4) 65 °C
- 18. The spectral series of the hydrogen atom that lies in the visible region of the electromagnetic spectrum
 - (1) Balmer

(2) Lyman

- (3) Brackett
- (4) Paschen

19.

A graph of pressure versus volume for an ideal gas for different processes is as shown. In the graph curve OC represents

- (1) isothermal process
- (2) isobaric process
- (3) adiabatic process
- (4) isochoric process

- 20. Which of the following statement does not hold good for thermal radiation?
- (1) The frequency changes when it travels from one medium to another.
 - The speed changes when it travels from one medium to another.
 - They travel in straight line in a given medium.
 - The wavelength changes when it travels from one medium to another.

21.

A planet revolves round the Sun in an elliptical orbit. The linear speed of the planet will be maximum at

22.

Horizontal tube of non-uniform cross-section has radii of 0.1 m and 0.05 m respectively at M and N. For a streamline flow of liquid the rate of liquid flow is

- greater at M than at N
- greater at N than at M
- same at M and N
- continuously changes with time (4)

23. A resistor and a capacitor are connected in series with an a.c. source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V, the applied voltage is

(1) 17 V

24. The amount of heat energy radiated by a metal at temperature 'T' is 'E'. When the temperature is increased to 3T, energy radiated is

(3) 27 E (4) 81 E

25. The angle of minimum deviation for an incident light ray on an equilateral prism is equal to its refracting angle. The refractive index of its material is

(4) 15

26.

(A)

(B)

In the following combination of logic gates, the outputs of A, B and C are respectively

(1) 0, 1, 0

(3) 1, 0, 1 (4) 0, 1, 1

Space For Rough Work

A-1

- 27. A stationary point source of sound emits sound uniformly in all directions in a non-absorbing medium. Two points P and Q are at a distance of 4 m and 9 m respectively from the source. The ratio of amplitudes of the waves at P & Q is

 - (1) $\frac{4}{9}$ (2) $\frac{2}{3}$
- and would (3) $\frac{9}{4}$ remarkable to the state of $\frac{3}{2}$ at the side of the state of the st
- 28. A galvanometer of resistance 240 Ω allows only 4% of the main current after connecting a shunt resistance. The value of the shunt resistance is
- $(1) \quad 20 \,\Omega \tag{2}$

- 5Ω
- $(4) \quad 10 \Omega$
- 29. The phenomena in which proton flips is
 - lasers

radioactivity

nuclear fusion (3)

- nuclear magnetic resonance
- 30. $y = 3 \sin \pi \left(\frac{t}{2} \frac{x}{4}\right)$ represents an equation of a progressive wave, where 't' is in second and 'x' is in metre. The distance travelled by the wave in 5 seconds is
 - 10 m (1)

5 m

32 m (3)

- 31. According to the quark model, it is possible to build all the hadrons using
 - 3 quarks and 2 antiquarks
- 3 quarks and 3 antiquarks
- 2 quarks and 2 antiquarks
- 2 quarks and 3 antiquarks

- 32. An α -particle of mass 6.4×10^{-27} kg and charge 3.2×10^{-19} C is situated in a uniform electric field of 1.6×10^5 V m⁻¹. The velocity of the particle at the end of 2×10^{-2} m path when it starts from rest is
 - $8 \times 10^5 \text{ ms}^{-1}$

(2) $16 \times 10^5 \text{ ms}^{-1}$

- $4\sqrt{2} \times 10^5 \text{ ms}^{-1}$
- (4) $2\sqrt{3} \times 10^5 \text{ ms}^{-1}$
- 33. A cylindrical tube open at both the ends has a fundamental frequency of 390 Hz in air. If 1/4th of the tube is immersed vertically in water the fundamental frequency of air column is
 - 130 Hz

- 390 Hz
- 520 Hz
- 260 Hz
- 34. The surface temperature of the stars is determined using
 - (1) Wein's displacement law (2) Rayleigh-Jeans law
 - (3) Kirchoff's law (4) Planck's law

35.

The charge deposited on 4 µF capacitor in the circuit is

 $12 \times 10^{-6} \,\mathrm{C}$ (1)

24 × 10-6 C

 $36 \times 10^{-6} \, \text{C}$

6 × 10-6 C (4)

36. A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the lens on the other side of the principal axis, the intensity of light

- (1) continuously increases
- (2) continuously decreases
- (3) first increases and then decreases
- (4) first decreases and then increases

37. Continuous emission spectrum is produced by

- (1) Mercury vapour lamp
- (2) Sodium vapour lamp

(3) The Sun

(4) Incandescent electric lamp

The surface has britished at the grant is demonstrated union

38. A coil of 'n' number of turns is wound tightly in the form of a spiral with inner and outer radii 'a' and 'b' respectively. When a current of strength I is passed through the coil, the magnetic field at its centre is

 $(1) \quad \frac{\mu_0 nI}{2(b-a)}$

(2) $\frac{2\mu_0 nI}{b}$

(3) $\frac{\mu_0 nI}{2(b-a)} \log_e \frac{b}{a}$

 $(4) \frac{\mu_0 nI}{(b-a)} \log_e \frac{a}{b}$

39. A ray of light is incident on a plane mirror at an angle of 60°. The angle of deviation produced by the mirror is

(1) 30°

(2) 60°

(3) 90°

(4) 120°

- The electric potential at any point x, y, z in metres is given by $V = 3x^2$. The electric field at a point (2 m, 0, 1 m) is

- (1) -6 V m^{-1} (3) -12 V m^{-1}
- 41. Young's double slit experiment gives interference fringes of width 0.3 mm. A thin glass plate made of material of refractive index 1.5 is kept in the path of light from one of the slits, then the fringe width becomes
 - 0.3 mm

0.45 mm

0.15 mm

(4) zero

42.

Near a circular loop of conducting wire as shown in the figure an electron moves along a straight line. The direction of the induced current if any in the loop is

clockwise (1)

anticlockwise

(3)zero (4) variable

- 43. Hydrogen atom from excited state comes to the ground state by emitting a photon of wavelength λ. If R is the Rydberg constant, the principal quantum number 'n' of the excited state is
 - (1) $\sqrt{\frac{\lambda}{\lambda R 1}}$ (2) $\sqrt{\frac{\lambda R^2}{\lambda R 1}}$

- (3) $\sqrt{\frac{\lambda R}{\lambda 1}}$ (4) $\sqrt{\frac{\lambda R}{\lambda R 1}}$ Zinia mate a lang to deprive by against a superintent assess frametralization of a selection of the selectio
- the first to be stanced in the stance of 44. The magnetic dipole moment of a current loop is independent of
 - number of turns
 - area of the loop
 - current in the loop
 - magnetic field in which it is lying
- 45. In ruby laser, the stimulated emission is due to transition from
 - any higher state to lower state (1)
 - metastable state to ground state (2)
 - any higher state to ground state (3)
 - metastable state to any lower state (4)
- 46. A direct current I flows along the length of an infinitely long straight thin walled pipe, then the magnetic field smert mit mi damin zu estwating unitertiese le hoof neighber
 - is zero only along the axis of the pipe
 - is zero at any point inside the pipe (2)
 - is maximum at the centre and minimum at the edges (3)
 - is uniform throughout the pipe but not zero (4)

(1)	0.15 m	(2)	0.30 m	
(3)	0.6 m	(4)	0.45 m	
. Two source	es are said to be coherent if	they produce	waves	
	of equal wavelength			
(2)	of equal speed			
(3)	having same shape of way	e front		
(4)	having a constant phase d	ifference		
Thrae raci	stors 1 Ω , 2 Ω , and 3 Ω are	connected to f	orm a triangle Across	3 O resistor a 3
	connected. The current throu			
(1)	1 A	(2)	2 A	
(2)	1.5 A	(4)	0.75 A	
(3)				
(3)				
	on emitter amplifier the inp		plied across	
	on emitter amplifier the inpo emitter – collector	ut signal is ap (2)	plied across collector – base	
. In a comm	on emitter amplifier the inpo emitter – collector base – emitter	ut signal is ap (2) (4)	plied across	
In a comm	on emitter amplifier the inpo emitter – collector	ut signal is ap (2) (4)	plied across collector – base	
. In a comm (1) (3)	on emitter amplifier the inpo emitter – collector base – emitter	(2) (4) io of initial n	collector – base anywhere	
. In a comm (1) (3)	emitter – collector base – emitter active disintegration, the rat an instant of time equal to it	(2) (4) io of initial n s mean life is	collector – base anywhere umber of atoms to the	number of ato
. In a comm (1) (3)	emitter – collector base – emitter active disintegration, the rat an instant of time equal to it	(2) (4) io of initial n s mean life is	collector – base anywhere	number of ato

- 52. A ray of light is incident on a surface of glass slab at an angle 45°. If the lateral shift produced per unit thickness is $\frac{1}{\sqrt{3}}$ m, the angle of refraction produced is
 - (1) $\tan^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$ (2) $\sin^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$
- - (3) $\tan^{-1}\left(\sqrt{\frac{2}{\sqrt{3}-1}}\right)$ (4) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$
- 53. Ferromagnetic materials used in a transformer must have
 - high permeability and low hysterisis loss
 - high permeability and high hysterisis loss
 - low permeability and low hysterisis loss
 - low permeability and high hysterisis loss
- 54. According to Newton's Corpuscular Theory, the speed of light is
 - lesser in rarer medium
- lesser in denser medium
- independent of the medium
- same in all the media (4)
- 55. For the constructive interference the path difference between the two interfering waves must be equal to

(3)

56. The accurate measurement of emf can be obtained using

(1) Voltmeter

(2) Voltameter

(3) Potentiometer

(4) Multimeter

57. The kinetic energy of an electron gets tripled, then the de-Broglie wavelength associated with it changes by a factor

(1) $\sqrt{3}$

(2) $\frac{1}{\sqrt{3}}$

(3) 3

 $(4) \frac{1}{3}$

58. Which of the following is not a thermodynamic co-ordinate?

(1) Pressure (P)

- (2) Volume (V)
- (3) Temperature (T)
- (4) Gas constant (R)

59. Two solid pieces, one of steel and the other of aluminium when immersed completely in water have equal weights. When the solid pieces are weighed in air

- (1) steel piece will weigh more
- (2) they have the same weight
- (3) aluminium piece will weigh more
- (4) the weight of aluminium is half the weight of steel

60. The amount of energy released when one microgram of matter is annihilated is

(1) $9 \times 10^{10} \text{ kWh}$

(2) $3 \times 10^{10} \text{ kWh}$

(3) $0.5 \times 10^5 \text{ kWh}$

(4) $0.25 \times 10^5 \text{ kWh}$

Space For Rough Work

A-1