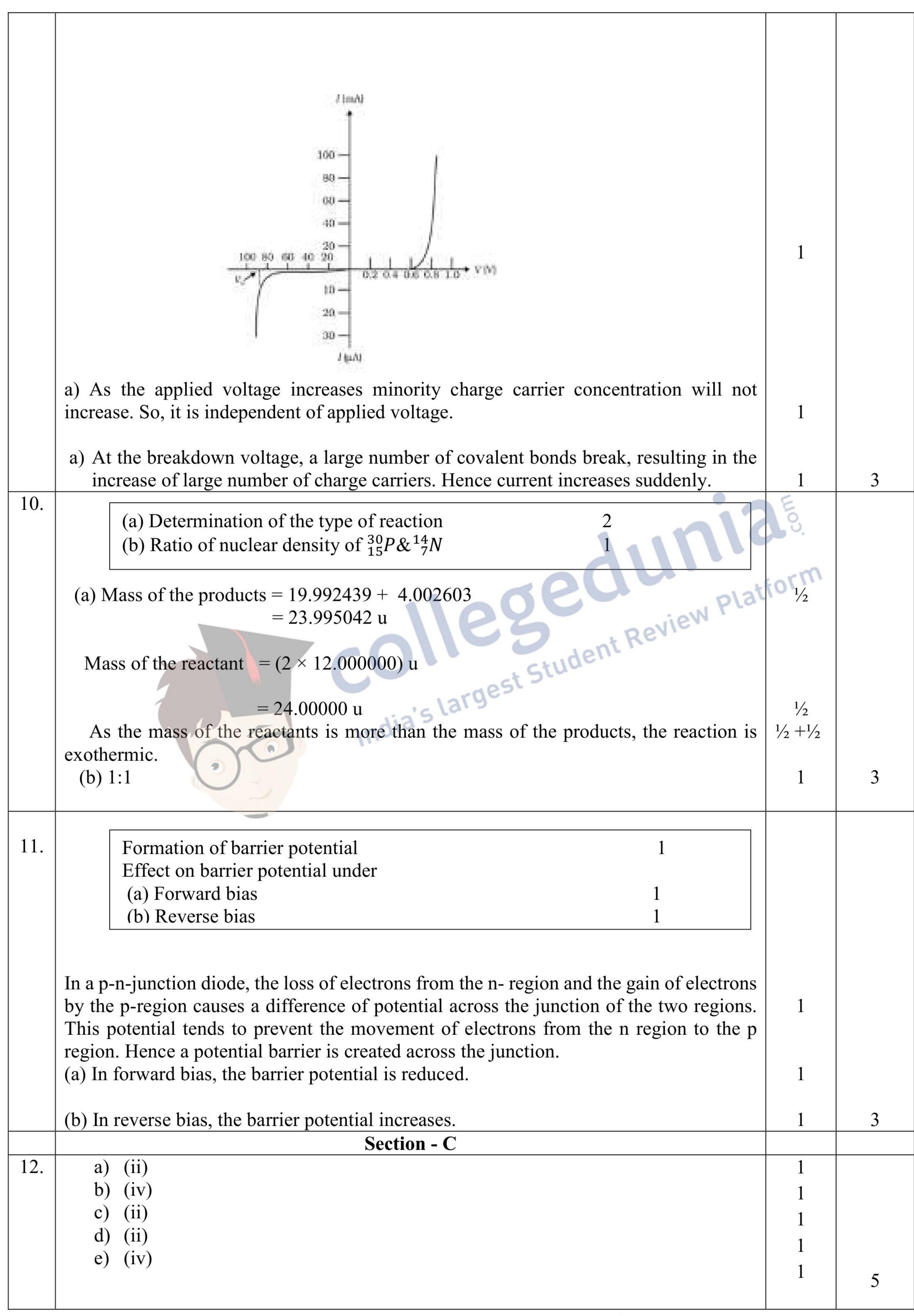
MARKING SCHEME

Senior Secondary School Term II Compartment Examination,2022 PHYSICS THEORY (042) [55/6/2]

Q. No.	EXPECTED ANSWERS / VALUE POINTS	Marks	Total Marks
	Section A		
1.	 a) Explanation b) Conditions for two light sources to be coherent 1/2 + 1/2 		
	a) Crystal is electrically neutral as the charge of additional electrons provided by donor impurity is just equal and opposite to that of the ionised cores in the lattice.b) (i) The waves from two light sources should have zero or constant phase difference.	1	
	(ii) The waves should be of same frequency/wavelength.	1/2	2
2	i) Reason of using shortwave band ii) Reason of experimental demonstration in low frequency region i) Ionosphere reflects waves in these bands.	Sorm form	
	ii) The frequency that we get even with modern electronic circuits is hardly about 10 ¹¹ Hz, this is why experimental demonstration of electromagnetic waves had to come in low frequency region. OR i) Diagram ii) Identification of wave ½ Use 1/2	1	
		1	
	 [Note: Award full marks even if a student takes E and B on Y and X axis.] ii) X rays Use: As a diagnostic tool in medicine / treatment of cancer / or any other. 	1/ ₂ 1/ ₂	2
3	a) Reason b) Finding value of Kinetic energy Finding value of potential energy ½ ½		


	a) Alpha particle reverses its direction of motion, due to strong repulsive force, exerted by positively charged nucleus without even actually touching the gold nucleus.	1	
	b) $E_n = -3.4 \text{eV (given)}$ $E_k = -E_n = 3.4 \text{eV}$ $U = 2E_n = -6.8 \text{ eV}$	1/2 1/2	2
	Section - B		
	a) a) Explanation 1		
4	Two differences 1+1		
	Maximum intensity is obtained at a point on the screen when the path difference is	1	
	$(2n+1)\frac{\lambda}{2}$. With increasing 'n' only one- third, one-fifth, one-seventh etc of the slit contribute, hence intensity of maxima decreases sharply.	1	
	Alternatively With the increase of order (n) the number of secondary wavelets responsible for the formation of secondary maxima decreases, resulting in sharp decrease of intensity.		
	 Differences (any two) Diffraction is a pattern formed as a result of superposition of waves from different portions of the same wave front. Interference is a pattern on a screen a result of superposition of single slit diffraction from two slits. In diffraction pattern width of central maximum is twice the width of secondary maxima. In interference pattern width of each maxima is same. In diffraction pattern intensity of maxima goes on decreasing as we move away from central maximum. In interference pattern intensity of all maxima is same. In diffraction pattern there is no absolute minima. In interference pattern absolute minima depends on amplitude of waves superposing. 	1+1	
	b) Diagram		
	Verification of Snell's law 2		
	Incident wavefront v_1 v_1 Medium 1 P Medium 2 Refracted wavefront Consider the triangles ABC and AEC, we readily obtain $v_2 < v_1$	1	
	$Sin i = \frac{BC}{AC} = \frac{v_1 \tau}{AC}$		
	And		

	$Sin \ r = \frac{AE}{AC} = \frac{v_2 \tau}{AC}$ where i and r are the angles of incidence and refraction, respectively.	1/2	
	Thus we obtain $\frac{Sin i}{Sin r} = \frac{v_1}{v_2}$ (1)	1/2	
	If c represents the speed of light in vacuum, then, $n_1 = \frac{c}{v_1}$		
	and $n_2 = \frac{c}{v_2}$	1/2	
	are known as the refractive indices of medium 1 and medium 2, respectively. In terms of the refractive indices, eq. (1) can be written as $n_1 \sin i = n_2 \sin r$ This is the Snell's law of refraction.	1/2	3
5.	Calculating a) Distance of third minima b) Distance of second maxima from the central maxima 1 ½ 1 ½	E	
	a) $x = (2n+1)\frac{\lambda D}{2d}$ $= \frac{(2\times2+1)\times500\times1\times10^{-9}}{2\times10^{-3}}$ $= \frac{5\times5\times10^{-4}}{2\times10^{-4}} = 12.5 \times 10^{-4} \text{m} = 1.25 \text{ mm}$	$\frac{1}{2}$ $\frac{1}{2}$	
	b) $x = \frac{n\lambda D}{d}$ $x = \frac{2\times 500 \times 1\times 10^{-9}}{10^{-3}}$ $x = 10^{-3} \text{ m} = 1 \text{mm}$	1/ ₂ 1/ ₂ 1/ ₂	3
6.	a) Ray diagram b) Derivation of angular magnification 1 2		
	Linear magnification due to objective (m_0)	1	
*Th	ese answers are meant to be used by evaluators India's largest services.		

$m = \frac{h'}{h} = \frac{L}{L}$	1/2	
Linear magnification due to eye piece (m _e) when final image is formed at near point	nt	
(D)		
$m_e = 1 + \frac{D}{f}$ (2)	1/2	
J e	1/2	
Total magnification $m = m_o \times m_e$	1/	
$\mathbf{m} = \frac{L}{L} (1 + \frac{D}{L})$	/2	
$m = \frac{L}{f_o} (1 + \frac{D}{f_e})$ OR		
b) a) Ray diagram b) Derivation		
n_1 (n_2		
for small angles, $\tan \angle NOM = \frac{MN}{OM}$	latio	
tan $\angle NCM = \frac{MN}{MC}$ tan $\angle NIM = \frac{MN}{MI}$ Now, for $\triangle NOC, \angle i$ is the exterior angle. Therefore, $\angle i = \angle NOM + \angle NCM$ $i = \frac{MN}{OM} + \frac{MN}{MC}$	1/2	
Similarly, $r = \angle NCM - \angle NIM$ i.e. $r = \frac{MN}{MC} - \frac{MN}{MI}$	1/2	
now, by Snell's law $n_1 \sin i = n_2 \sin r$ or for small angles, $\sin i \approx i$ and $\sin r \approx r$ $n_1 i = n_2 r$		
Substituting i and r, we get $\frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$	1/2	
Here , OM , MI and MC represent magnitude of distances. Applying the Cartesian signon convention $OM = -u , MI = +v \; , \; MC = +R$	gn	
Substituting these in equation , we get n_2 n_1 $n_2 - n_1$	1/2	2
$\frac{\overline{v}}{v} = \frac{\overline{u}}{R}$	/2	
 a) Obtaining Bohr's second postulate from de-Broglie hypothesis 2 b) Identification of transition of electron 		
Coll	egedi	ıni

		1	
	a) Numbers		
	For an electron moving in n^{th} circular orbit of radius r_n , the total distance is circumference of the orbit. Thus $2\pi r_n = n\lambda$ (1) where $n = 1, 2, 3$ λ is de-broglie wavelength associated with the electron in the n^{th} orbit.	1/2	
	Now $\lambda = \frac{h}{p} = \frac{h}{mv_n}$ (2) From equation (1) and (2) $2\pi r_n = \frac{nh}{mv_n}$	1/2	
	$mv_n ext{ } r_n = \frac{nh}{2\pi}$ Which is quantum condition proposed by Bohr for the angular momentum of the	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	electron. b) For Balmer series of hydrogen spectrum $ \frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right) $ (i) For maximum wavelength: transition of electron is from $n = 3$ to $n = 2$ (ii) For minimum wavelength: transition of electron is from $n = \infty$ to $n = 2$	1/ ₂ 1/ ₂	3
8.	a) Ratio of de-Broglie wavelengths and justification ½ +½ b) Identification of wavelengths and its justification ½ +½ Calculation of threshold frequency 1		
	a) de-Broglie wavelength , $\lambda = \frac{h}{mv}$ λ_{α} m_{p}	1/	
	$\overline{\lambda_p} = \overline{m_\alpha}$ As, $m_\alpha > m_p \Rightarrow \lambda_p > \lambda_\alpha$ b) For photoelectric emission wavelength of radiation must be lesser than the	1/ ₂ 1/ ₂	
	threshold wavelength. Thus lights of wavelength 430 nm and 450 nm can cause photoelectric emission	1/2	
	Threshold frequency (v_o) $v_o = \frac{c}{\lambda_o} = \frac{3 \times 10^8}{600 \times 10^{-9}} = 5 \times 10^{14} \text{ Hz}$	1/2 + 1/2	3
9.	V-I characteristics of p-n junction a) Explanation of independency of reverse bias current on breakdown voltage 1 b) Explanation of sudden increase in current at breakdown voltage 1		

