# DU MPhil Phd in Operational Research

#### Topic:- OR MPHIL

#### 1) A constraint in a linear programming problem restricts: [Question ID = 8382]

- 1. value of the objective function [Option ID = 33525]
- 2. value of the decision variable [Option ID = 33526]
- 3. use of the available resources [Option ID = 33527]
- 4. all of these [Option ID = 33528]

#### 2) Which of the following statement is not correct in linear programming?[Question ID = 8383]

- 1. Degeneracy in linear programming may arise at the initial stage [Option ID = 33529]
- 2. A degenerate solution can never be optimum [Option ID = 33530]
- 3. Degeneracy may be of temporary nature [Option ID = 33531]
- 4. The Big-M method and Two-phase method do not necessarily carry out same number of iterations to find an optimal solution [Option ID = 33532]

#### 3) If the i-th slack variable of the primal linear programming problem is not zero, then: [Question ID = 8384]

- 1. the j-th dual variable is zero [Option ID = 33533]
- 2. the j-th dual variable may be zero [Option ID = 33534]
- 3. the j-th dual constraint is satisfied as an equality [Option ID = 33535]
- 4. none of these [Option ID = 33536]

# 4) In transportation problem, one of the dual variables is assigned an arbitrary value, because: [Question ID = 8385]

- 1. a solution can be obtained immediately [Option ID = 33537]
- 2. two of the constraints is redundant in the transportation problem [Option ID = 33538]
- 3. it facilitates construction of the loop [Option ID = 33539]
- 4. none of these [Option ID = 33540]

# 5) The feasible region formed by the following system of linear equations and inequalities is

$$2x_1 + 4x_2 + x_3 = 4$$
,  $4x_1 + 8x_2 - x_4 = 16$ ,  $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ 

#### [Question ID = 8386]

1. closed and bounded

[Option ID = 33541]

closed but not bounded

[Option ID = 33542]
3. not closed but bounded

[Option ID = 33543]

4. an empty set

[Option ID = 33544]

## 6) In an assignment problem, if there are n workers and n jobs, then there can be:

## [Question ID = 8387]

1. 
$$n imes (n-1) imes \ldots imes 1$$
 assignments

[Option ID = 33545]

2. (n-1)! assignments

[Option ID = 33546]

3.  $(n!)^n$  assignments

[Option ID = 33547]

4. n assignments

[Option ID = 33548]

#### 7) The objective function in a differentiable nonlinear programming problem is convex if:[Question ID = 8388]

- 1. the Hessian matrix is positive definite [Option ID = 33549]
- 2. the Hessian matrix is positive semi definite [Option ID = 33550]
- 3. the Hessian matrix is negative definite [Option ID = 33551]
- 4. the Hessian matrix is negative semi definite [Option ID = 33552]

## 8)

The linear programming problem  $maxz=30x_1-15x_2$  subject to  $2x_1-2x_2\leq 4, -2x_1+2x_2\leq 4, x_1\geq 0, x_2\geq 0$  has:

# [Question ID = 8389]

1. an unbounded solution

[Option ID = 33553]



| 2. an optimal objective value $z=4$                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Option ID = 33554]                                                                                                                                                                                      |
| 3. an optimal objective value $z=6$                                                                                                                                                                      |
| [Option ID = 33555] 4. no feasible solution                                                                                                                                                              |
| [Option ID = 33556]                                                                                                                                                                                      |
| 9) In a transportation cost matrix, if a row has four cost entries given as a, b, c and d $(a \le b \le c \le d)$ , then the penalty for                                                                 |
| such a row is:                                                                                                                                                                                           |
| [Question ID = 8390]                                                                                                                                                                                     |
| 1. 0, if $a = b$                                                                                                                                                                                         |
| [Option ID = 33557]                                                                                                                                                                                      |
| 2. $c-b$ if $a=b$                                                                                                                                                                                        |
| [Option ID = 33558]                                                                                                                                                                                      |
| 3. $d - a$ [Option ID = 33559]                                                                                                                                                                           |
| 4. $d-c$                                                                                                                                                                                                 |
| [Option ID = 33560]                                                                                                                                                                                      |
|                                                                                                                                                                                                          |
| <ul><li>10) Which of the following is not correct about the classical assignment problem? [Question ID = 8391]</li><li>1. A job cannot be assigned to more than one worker [Option ID = 33561]</li></ul> |
| <ol> <li>Only one worker can be assigned to each job [Option ID = 33562]</li> <li>A worker cannot be assigned to more than one job [Option ID = 33563]</li> </ol>                                        |
| 4. None of these [Option ID = 33564]                                                                                                                                                                     |
| 11) Which of the following is correct about the Karush-Kuhn-Tucker (KKT) optimality conditions?[Question ID = 8392]                                                                                      |
| 1. The conditions are not sufficient when the functions involved are convex [Option ID = 33565]                                                                                                          |
| <ol> <li>The conditions are sufficient when the constraint set is convex [Option ID = 33566]</li> <li>The KKT point is an optimal solution of the problem [Option ID = 33567]</li> </ol>                 |
| 4. None of these [Option ID = 33568]                                                                                                                                                                     |
| 12) In ABC inventory classification system, the class A items may:[Question ID = 8393]                                                                                                                   |
| 1. require higher safety stock [Option ID = 33569]                                                                                                                                                       |
| <ol> <li>require frequent deliveries [Option ID = 33570]</li> <li>require a periodic inventory system [Option ID = 33571]</li> </ol>                                                                     |
| 4. require batch updating of inventory records [Option ID = 33572]                                                                                                                                       |
| 13) Let the total usage of the given item be 9,000 units per year, the cost per order be Rs. 15, and the unit cost is Rs. 30.                                                                            |
| If the carrying charges are 10% of the average inventory per year, then the optimal economic order quantity is:[Question ID = 8394]                                                                      |
| 1. 300 units [Option ID = 33573]                                                                                                                                                                         |
| <ol> <li>443 units [Option ID = 33574]</li> <li>536 units [Option ID = 33575]</li> </ol>                                                                                                                 |
| 4. 315 units [Option ID = 33576]                                                                                                                                                                         |
| 14) The annual inventory costs are of the lot size in each production run with aslope.[Question                                                                                                          |
| <pre>ID = 8395] 1. linear functions, negative [Option ID = 33577]</pre>                                                                                                                                  |
| <ol><li>linear functions, positive [Option ID = 33578]</li></ol>                                                                                                                                         |
| <ol> <li>nonlinear functions, negative [Option ID = 33579]</li> <li>nonlinear functions, positive [Option ID = 33580]</li> </ol>                                                                         |
|                                                                                                                                                                                                          |
| 15) Let λ be the arrival rate of customers in a system, µ be the service rate of the system. The expected number of busy servers is:                                                                     |
| [Question ID = 8396]                                                                                                                                                                                     |
| 1. $\frac{\lambda}{\mu}$                                                                                                                                                                                 |
| [Option ID = 33581]                                                                                                                                                                                      |
| 2. $\lambda + \mu$                                                                                                                                                                                       |
| [Option ID = 33582]                                                                                                                                                                                      |
| $^{3}$ . $\lambda\mu$                                                                                                                                                                                    |
| [Option ID = 33583] 4. none of these                                                                                                                                                                     |
| [Option ID = 33584]                                                                                                                                                                                      |
|                                                                                                                                                                                                          |



16) Customers enter the waiting line to pay for food as they leave a cafeteria on a first-come, first serve basis. The arrival rate follows a Poisson distribution, while service times follow an exponential distribution. If the average number of arrivals is 4 per minute and the average service rate of a single server is 7 per minute, then the proportion of the time the server is busy:

# [Question ID = 8397]

1. 0.43

[Option ID = 33585]

2. 0.67

[Option ID = 33586]

3. 0.10

[Option ID = 33587]

4. none of these

[Option ID = 33588]

#### 17)

Assuming that reliability of a mechanical device is defined by  $R(t) = e^{-\lambda t}$ , where  $\lambda = 0.0004$  failures per hour, the Mean Time to Failure is:

#### [Question ID = 8398]

1. 2500 hours

[Option ID = 33589]

2. 2100 hours

[Option ID = 33590]

3. 1100 hours

[Option ID = 33591]

4. none of these

[Option ID = 33592]

18) Given that the failure time probability density function is  $f(t) = \lambda e^{-\lambda t}$ , the reliability is obtained as:

#### [Question ID = 8399]

1. 
$$R(t) = e^{-\lambda t}$$

[Option ID = 33593]

<sup>2</sup>.  $R(t) = 1 - e^{-\lambda t}$ 

[Option ID = 33594]

3.  $R(t) = e^{(1-\lambda)t}$ 

[Option ID = 33595]

4.  $R(t) = 1 + e^{-\lambda t}$ 

[Option ID = 33596]

19) Given that  $\lambda_1$  is the unit 1 failure rate and  $\lambda_2$  is the unit 2 failure rate, the Mean Time to Failure of a parallel system is:

# [Question ID = 8400]

$$1. \ \frac{1}{\lambda_1} + \frac{1}{\lambda_2} - \frac{1}{\lambda_1 + \lambda_2}$$

$$2. \ \frac{1}{\lambda_1 \lambda_2} - \frac{1}{\lambda_1 + \lambda_2}$$

$$3. \ \frac{1}{\lambda_1} - \frac{1}{\lambda_2} + \frac{1}{\lambda_1 + \lambda_2}$$

$$4. \ \frac{1}{\lambda_1} + \frac{1}{\lambda_2(\lambda_1 + \lambda_2)}$$

[Option ID = 33600]

# 20) The accessibility which is an important attribute of maintainability can be affected by: [Question ID = 8401]

- 1. location of item and its associated environment [Option ID = 33601]
- 2. type of maintenance tasks to be performed through the access opening [Option ID = 33602]
- 3. degree of danger involved in using access opening [Option ID = 33603]
- 4. all of these [Option ID = 33604]

# 21) In a transportation problem, while improving an existing solution a loop may be defined as an ordered set of at least: [Question ID = 8402]

- 1. 3 cells [Option ID = 33605]
- 2. 4 cells [Option ID = 33606]
- 3. 5 cells [Option ID = 33607]
- 4. none of these [Option ID = 33608]



| <ul> <li>22) If total usage of the given item is 36000 units per year, the cost per order is Rs. 36, the costs of carrying inventory is 25% of the investment in the inventories, and the unit cost is Rs. 10, then the optimal order cycle time is:[Question ID = 8403]</li> <li>1. 0.894 year [Option ID = 33609]</li> <li>2. 1 year [Option ID = 33610]</li> <li>3. 0.978 year [Option ID = 33611]</li> <li>4. 2 years [Option ID = 33612]</li> </ul>                                                                                                                               |                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| <ul> <li>23) A suburban specialty restaurant has developed a single drive-thru window. Customers order, pay, and pick up their food at the same window. Arrivals follow a Poisson distribution, while service times follow an exponential distribution. If the average number of arrivals is 8 per hour and the service rate is 2 every 12 minutes, then the average number of customers in the system is:[Question ID = 8404]</li> <li>1. 4 [Option ID = 33613]</li> <li>2. 3 [Option ID = 33614]</li> <li>3. 0.5 [Option ID = 33615]</li> <li>4. 2.25 [Option ID = 33616]</li> </ul> |                       |  |
| 24) The reliability of an item can be obtained using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |  |
| [Question ID = 8405]<br>1. $R(t) = 1 - \int_0^t f(t)dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |
| [Option ID = 33617]<br>2. $R(t) = \int_{t}^{\infty} f(t)dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |
| [Option ID = 33618]<br>3. $R(t) = e^{-\int_0^t \lambda(t)dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |
| [Option ID = 33619] 4. all of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |
| [Option ID = 33620]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |
| 25) As per queue discipline, which of the following is not considered as a negative behavior of the customer?                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |
| [Question ID = 8406] 1. Balking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |
| [Option ID = 33621] 2. Reneging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |
| [Option ID = 33622] 3. Boarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |
| [Option ID = 33623] 4. Jockeying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |  |
| [Option ID = 33624]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |
| <ul> <li>26) Failing to reject the null hypothesis, when it is false is:[Question ID = 8407]</li> <li>1. alpha [Option ID = 33625]</li> <li>2. Type I error [Option ID = 33626]</li> <li>3. beta [Option ID = 33627]</li> <li>4. Type II error [Option ID = 33628]</li> </ul>                                                                                                                                                                                                                                                                                                          |                       |  |
| <ol> <li>Observational studies allow: [Question ID = 8408]</li> <li>population inference [Option ID = 33629]</li> <li>casual inference [Option ID = 33630]</li> <li>both population and casual inferences [Option ID = 33631]</li> <li>neither population nor casual inferences [Option ID = 33632]</li> </ol>                                                                                                                                                                                                                                                                         |                       |  |
| <ul> <li>28) When asked questions regarding personal hygiene, people commonly lie. This is an example of:[Question ID = 8409]</li> <li>1. sampling bias [Option ID = 33633]</li> <li>2. confounding [Option ID = 33634]</li> <li>3. non-response bias [Option ID = 33635]</li> <li>4. response bias [Option ID = 33636]</li> </ul>                                                                                                                                                                                                                                                     |                       |  |
| <ul> <li>29) The need for inferential statistical methods derives from the need for:[Question ID = 8410]</li> <li>1. Population [Option ID = 33637]</li> <li>2. Association [Option ID = 33638]</li> <li>3. Sampling [Option ID = 33640]</li> <li>4. Probability [Option ID = 33640]</li> </ul>                                                                                                                                                                                                                                                                                        |                       |  |
| 30) classification includes data according to the time period in which the items under consideration occured.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |
| [Question ID = 8411]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |  |
| 1. Chronological colleged India's largest Student R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lunia Review Platform |  |

```
[Option ID = 33641]
2. Alphabetical
  [Option ID = 33642]
3. Geographical
  [Option ID = 33643]
4. Tropological
  [Option ID = 33644]
31) The ______ random variables yield categorical responses so that the responses fit into one category or another.
[Question ID = 8412]
1. Quantitative [Option ID = 33645]
2. Discrete [Option ID = 33646]
3. Continuous [Option ID = 33647]
4. Qualitative [Option ID = 33648]
32) When a researcher uses a data which has already been collected by others, such data is called:
[Question ID = 8413]
1. Primary data
  [Option ID = 33649]
Collected data
   [Option ID = 33650]
3. Processed data
   [Option ID = 33651]
4. Secondary data
  [Option ID = 33652]
33) For any discrete distribution, standard deviation is not less than:
[Question ID = 8414]
1. Mean deviation from mean
  [Option ID = 33653]
2. Mean deviation from median
   [Option ID = 33654]
Mode
  [Option ID = 33655]
4. None of these
  [Option ID = 33656]
34) A dice is tossed twice and 'getting a number less than three' is termed as success. The mean of number of successes is:
[Question ID = 8415]
1. 1 [Option ID = 33657]
2. 3/2 [Option ID = 33658]
1/4 [Option ID = 33659]
4. 2/3 [Option ID = 33660]
35) If the standard error of the population is reduced by 50%, the sample size becomes: [Question ID = 8416]
1. Double [Option ID = 33661]
2. Increase six times [Option ID = 33662]
3. Increase four times [Option ID = 33663]
4. None of these [Option ID = 33664]
36) How many different sample of size four can be taken from the population comprising seven elements?[Question ID =
8417]
1. 35 [Option ID = 33665]
2. 10 [Option ID = 33666]
3. 28 [Option ID = 33667]
4. 14 [Option ID = 33668]
37) The scale in which a respondent directly compares two or more objects and makes choices among them is: [Question ID =
8418]
1. Ranking Scale [Option ID = 33669]
2. Rating Scale [Option ID = 33670]
3. Graphic Scale [Option ID = 33671]
4. None of these [Option ID = 33672]
38) The whole process of scaling is based on the following bases: [Question ID = 8419]
1. Degree of subjectivity [Option ID = 33673]
2. Dimensionality [Option ID = 33674]
```

collegedunia

3. Response form [Option ID = 33675]

```
4. All of these [Option ID = 33676]
39) The sample size of a sample is determined by the following factors: [Question ID = 8420]
1. Size of the population [Option ID = 33677]
2. Nature of the population [Option ID = 33678]
3. Objective and scope of the study [Option ID = 33679]
4. All of these [Option ID = 33680]
40) Which of the following is a non-probability sampling: [Question ID = 8421]
1. Accidental sampling [Option ID = 33681]
Purposive sampling [Option ID = 33682]
Snowball sampling [Option ID = 33683]
All of these [Option ID = 33684]
41) Which of the following cannot be measured as such in any numeric scale: [Question ID = 8422]
1. Aroma [Option ID = 33685]
Gender [Option ID = 33686]
3. Education standard [Option ID = 33687]
4. All of these [Option ID = 33688]
42) Among the many estimators based on sample observations, a good estimator is one which is:
[Question ID = 8423]
1. Unbiased
   [Option ID = 33689]
2. Consistent
   [Option ID = 33690]
3. Efficient and sufficient
   [Option ID = 33691]
4. All of these
   [Option ID = 33692]
43) The name for a variable which is measured using two different values is: [Question ID = 8424]
1. Bionomial [Option ID = 33693]
2. Binary [Option ID = 33694]
3. Dichotomous [Option ID = 33695]
4. All of these [Option ID = 33696]
44) Reliability of a measurement is ______ of its validity.[Question ID = 8425]
1. Necessary and Sufficient condition [Option ID = 33697]
2. Neither Necessary nor Sufficient condition [Option ID = 33698]
3. Necessary but not Sufficient condition [Option ID = 33699]
4. Sufficient but not Necessary condition [Option ID = 33700]
45) Which of the following are the most similar? [Question ID = 8426]

    Nominal and Interval data [Option ID = 33701]

2. Nominal and Ordinal data [Option ID = 33702]
3. Ordinal and Interval data [Option ID = 33703]
Nominal and Ratio data [Option ID = 33704]
46) The height of a human being is: [Question ID = 8427]
1. Ordinal variable [Option ID = 33705]
2. Nominal variable [Option ID = 33706]
3. Ratio variable [Option ID = 33707]
4. None of these [Option ID = 33708]
47) Let A, B and C be independent event with probabilities 0.3, 0.2 and 0.1, respectively. The probability of occurance of
atleast one of the three events A, B, C is:
[Question ID = 8428]
1. 0.41
   [Option ID = 33709]
2. 0.37
   [Option ID = 33710]
3. 0.496
   [Option ID = 33711]
4. 0.387
   [Option ID = 33712]
48) A student appears in an exam that has four subjects. The chance he passes an individual subject's test is 0.8. the
```

collegedunia

probability that he will pass in atleast one of the subject is: [Question ID = 8429]

- 1. 0.99984 [Option ID = 33713]
- 2. 0.9984 [Option ID = 33714]
- 3. 0.0004 [Option ID = 33715]
- 4. None of these [Option ID = 33716]

# 49) A die is thrown. The expectation of the number on it is:[Question ID = 8430]

- 1. 3.1 [Option ID = 33717]
- 2. 3.5 [Option ID = 33718]
- 3. 3.6 [Option ID = 33719]
- 4. 3 [Option ID = 33720]
- 50) A researcher is studying students of a city college she takes a sample of 400 students from ten colleges. The average age of all college students is: [Question ID = 8431]
- 1. a statistic [Option ID = 33721]
- 2. a parameter [Option ID = 33722]
- 3. a population [Option ID = 33723]
- 4. none of these [Option ID = 33724]



