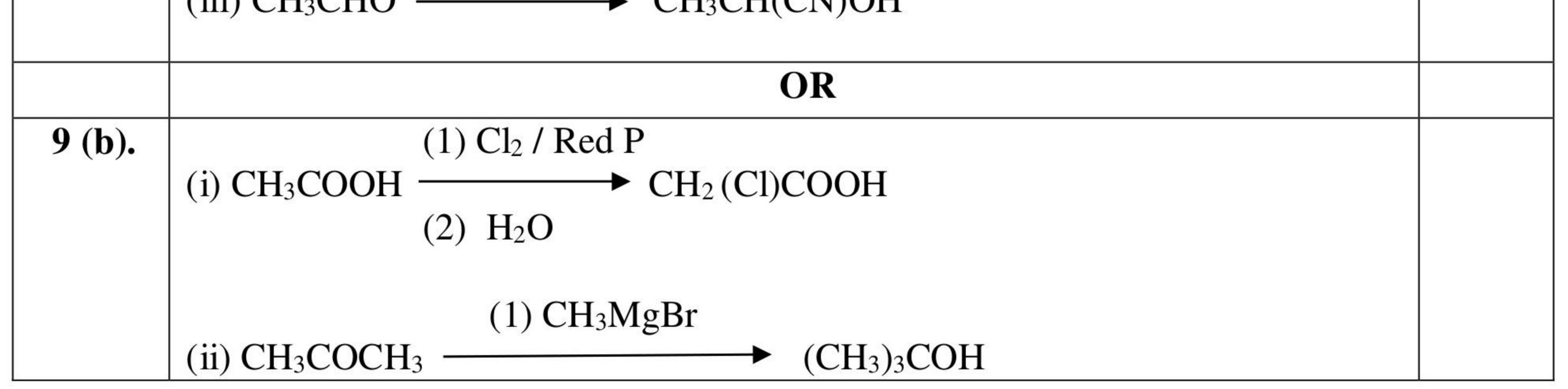
CBSE Class 12 Chemistry (For Visually Impaired) Compartment Answer Key 2022 (August 23, Set 4 - 56/B/6)

MARKING SCHEME

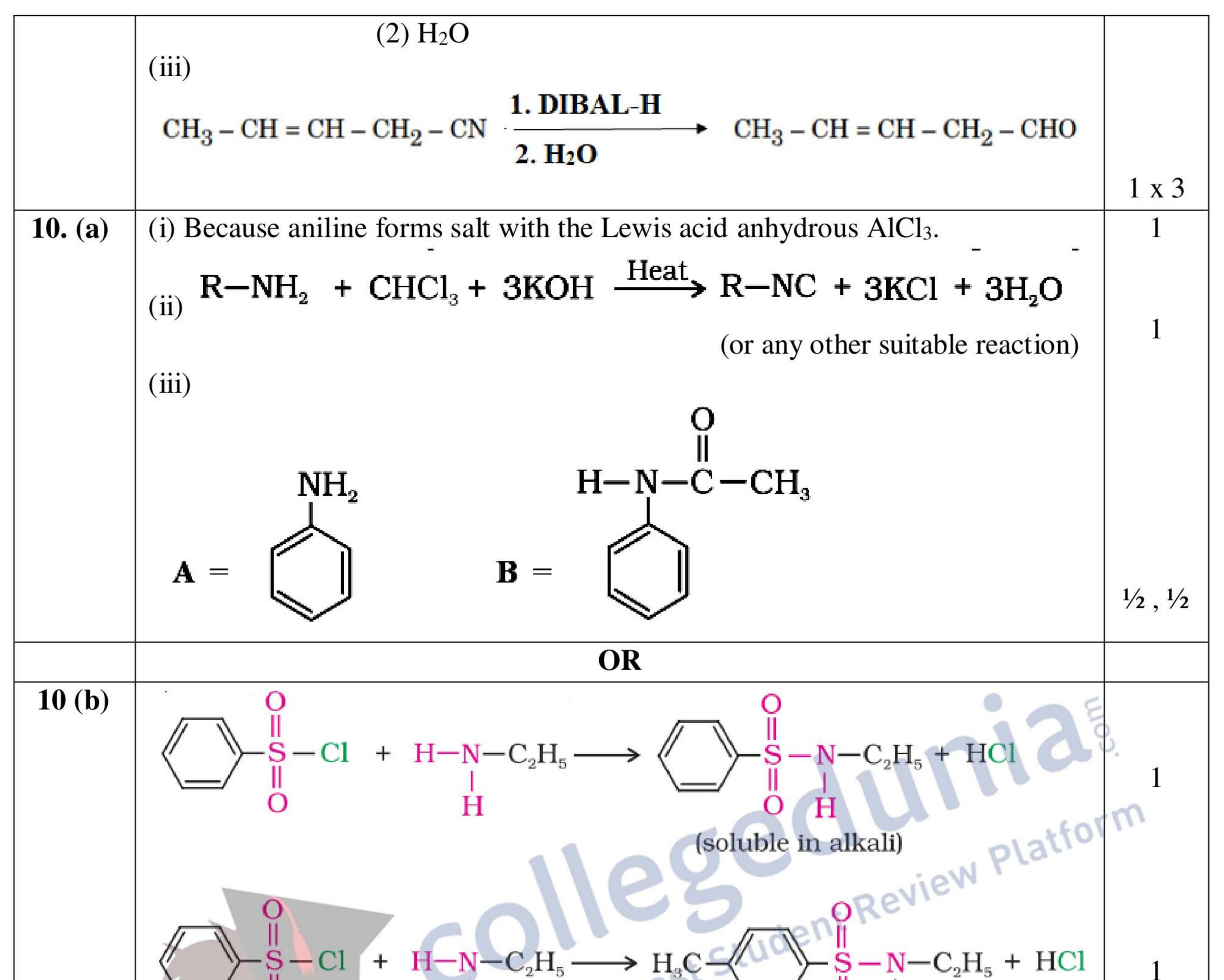
Senior Secondary School Examination TERM-II, 2022

CHEMISTRY (Subject Code-043)


[Paper Code: 56/B/6]

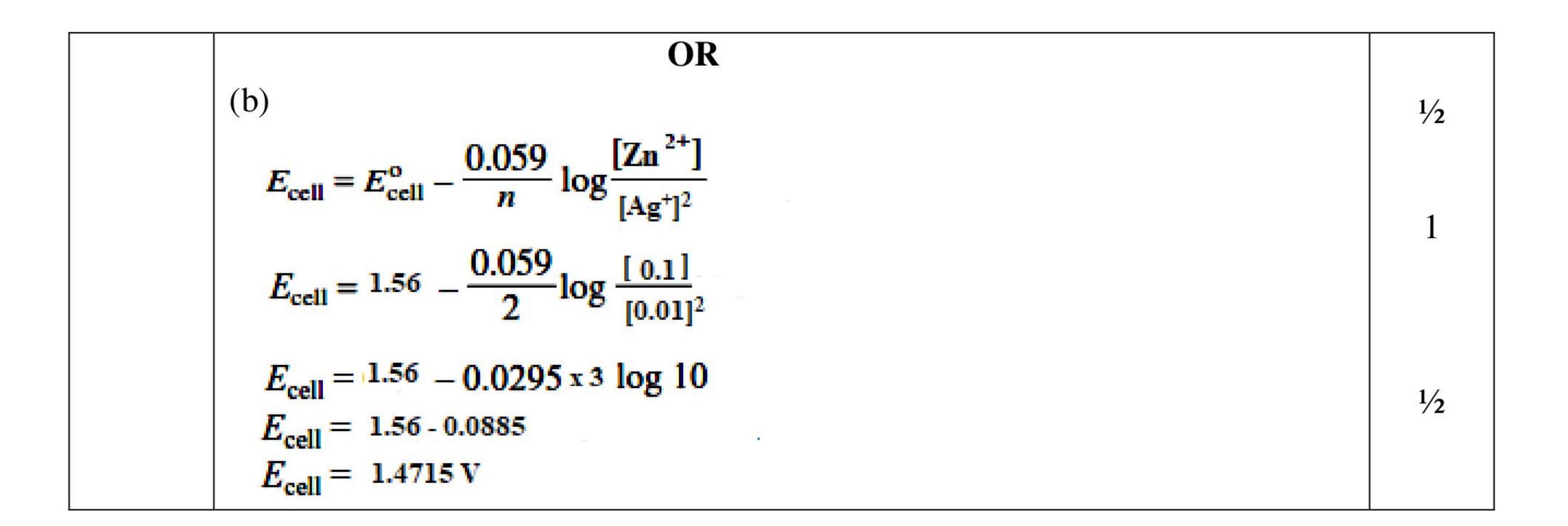
Q. No.	EXPECTED ANSWER / VALUE POINTS			
	SECTION—A			
1.	(i) p-Nitroaniline < Aniline < CH_3 - NH_2 (ii) $C_6H_5NH_2$ < $C_6H_5NHCH_3$ < $C_6H_5CH_2NH_2$ (iii) $C_6H_5NH_2$ < $(C_2H_5)_2NH$ < $C_2H_5NH_2$ (Any two)			
2	Order	Molecularity		
	The sum of powers of the	The number of reacting species		
	concentration of the reactants	(atoms, ions or molecules) taking part		
	in the rate law expression is called	in an elementary chemical reaction.		
	the order of a reaction.			
	Order of a reaction can be zero or	The Molecularity of a reaction cannot		
	fraction or negative.	be zero or fraction or negative.	1×2	
		(or any other correct difference)		
3.	5. (i) $C = O \xrightarrow{Zn-Hg}{HCl} CH_2 + H_2O$ Platf			
	(ii) India's India's I	(or any other suitable reaction)	1	
	$\frac{H_2}{Pd - Bas}$	$\overrightarrow{SO_4}$ (or any other suitable reaction)	1	
4.	(i) Variable or multiple oxidation stat		1	
	 (i) Variable of mattifie oxidation state / ability to form complexes / they provide large surface area for adsorption / utilise (n-1)d and ns electrons for bonding (ii) Cu²⁺ has unpaired electron while Cu⁺ has no unpaired electron / Cu²⁺ shows 			
	d-d transition whereas Cu ⁺ does not.			
	(iii) Because Mn is more stable in +2	due to stable $3d^5$ configuration.	1	
5. (a)	$k = \frac{2.303}{t} \log \frac{[Ro]}{[R]}$		1	
	$k = \frac{2.303}{40} \log \frac{1}{1/10}$		1	
	$k = \frac{2.303}{40} \log 10$ $k = 0.057 \mathrm{e}^{-1}$			
	$k = 0.057 \mathrm{s}^{-1}$	(Deduct ¹ / ₂ marks if no or incorrect unit)	1	
		(Deduce /2 marks if no of meoneet unit)		

XII_39_043_56/6/3_Chemistry # Page-**3**



5 (b)	Rate = $k [A]^1 [B]^0 \Rightarrow$ Rate = $k [A]$ From experiment I,	
	we obtain, $2.0 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1} = \text{k} (0.1 \text{ mol } \text{L}^{-1}) \Rightarrow k = 0.2 \text{ min}^{-1}.$	
	From experiment II, we obtain $4.0 \times 10^{-2} \text{ mol } \text{L}^{-1} \text{ min}^{-1} = 0.2 \text{ min}^{-1} \text{ [A]} \Rightarrow \text{[A]} = 0.2$	
	From experiment III,	
	we obtain Rate = $0.2 \text{ min}^{-1} \times 0.4 \text{ mol } L^{-1} = 0.08 \text{ or } 8 \times 10^{-2}$ From experiment IV,	
	we obtain 2.0×10^{-2} mol L ⁻¹ min ⁻¹ = 0.2 min ⁻¹ [A] \Rightarrow [A] = 0.1	
	[Award full credit for the correct answers]	1 x 3
6 (a).	(i) On dissolution, a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range.	1
	(ii) A colloid in which solid particles act as a dispersed phase and liquid acts as a dispersion medium.	1
	(iii) The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid.	1
	OR	3
6 (b)	(i) I: Low pressure: $\overline{\mathbf{m}} = k p$ II: High pressure: $\overline{\mathbf{m}} = k$ (ii)	1/2 ,1/2
	• Due to decrease in residual forces of the surface / Decrease in the surface energy / Due to bond formation between adsorbate and adsorbent.	1
	• Adsorption decreases with increase in temperature.	1
7.	• The elements with partially filled or incompletely filled d-subshell either in the ground state or in the oxidation state.	1
	• Due to large number of unpaired electrons, there is strong interatomic interaction.	1
	• Zn, due to absence of unpaired electrons.	1/2,1/
8.	 (a) (i) sp³d², paramagnetic (ii) d²sp³, diamagnetic (b) [Co(NIL)]C1 	$ \frac{1}{2}, \frac{1}{2}$ $ \frac{1}{2}, \frac{1}{2}$ 1
9. (a)	(b) $[Co(NH_3)_6]Cl_3$	
	(i) CH ₃ CHO \longrightarrow CH ₃ CH ₂ OH Dil. NaOH	
	DII. NAUT	1
	(ii) CH ₃ CHO \longrightarrow CH ₃ -CH(OH)CH ₂ CHO HCN (iii) CH ₃ CHO \longrightarrow CH ₃ CH(CN)OH	1 x 3

XII_39_043_56/6/3_Chemistry # Page-**4**



	$\begin{bmatrix} 1 & 1 & 1 \\ C_2H_5 & S \\ C_2H_5 & S \\ C_2H_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ C_2H_5 \end{bmatrix}$		
	(Insoluble in alkali) Tertiary amines do not show any reaction with Hinsberg's reagent.	1	
	Or		
	On adding Hinsberg's reagent (Benzene sulphonyl chloride)		
	• Primary amines give product that is soluble in alkali.		
	• Secondary amines give product that is insoluble in alkali.		
	• Tertiary amines do not react.		
11.	(a) Butanone < Propanone < Propanal < Ethanal	1	
	(b) Due to the absence of α -H atom.	1	
	(c) Add iodine (I ₂), and NaOH in both the compounds and heat. Pentan-2-one		
	gives yellow ppt.(CHI ₃) and Pentan-3-one will not.	1	
12.	(i) Zn (s) Zn ²⁺ (aq.) Cu ²⁺ (aq.) Cu (s)	1	
	(ii) Electrochemical cell starts working as electrolytic cell.	1	

(iii) Conductivity increases with increase in concentration whereas molar conductivity decreases with increase in concentration. (iv) (a) $\Delta_{\rm r} G^{\circ} = -nFE^{\circ}_{\rm cell}$ $= -2 \times 1.56 \times 96500$ $\Delta_{\rm r} G^{\circ} = -301,080 \text{ J}$ 1/2

XII_39_043_56/6/3_Chemistry # Page-**5**

XII_39_043_56/6/3_Chemistry # Page-**6**

