GGSIPU mathmatics 2009

1. If Az 1, Bz 2, Cz 3 and Pz represents complex numbers such that

 $|z_1 - z| = |z_2 - z| = |z_3 - z|$, then A,B,C lies on

- a A straight line
- b A circle
- c A parabola
- d An ellipse

2. if the complex numbers z_1, z_2 and origin form vertices of an equilateral triangle, then the value of $z_1^2 + z_2^2$

3. Three numbers form an increasing GP.If the middle term is doubled, then the new numbers are in AP.The common ratio of the GP will be

a 2 - $\sqrt{3}$ b 2 $\pm \sqrt{3}$ c 3 $\sqrt{2}$ d 3 + $\sqrt{2}$

4. If the equations $ax^2+2cx+b=0$ and $ax^2+2bx+c=0$, $b \neq c$ have a common root, then the value of a+4b+4c will be

- a -2 b 1 c -1 d None of these
- 5. If one root of $ax^2+bx+c = 0$ as twice the other root, then

```
a b ^{2} = 9ac b 2b ^{2} = 9ac
c 2b^{2} = ac d b ^{2} = ac
```

- 6. The number of ways of distributing 8 distinct toys among 5 children will be
 - a55⁸ b8⁵ c8_{p5} d40
- 7. The value of $C_1 2$. $C_2 + 3$. $C_3 4$. $C_4 + ...$ Where $C_r = n_{C_T}$ will be

a-1 b1

c 0 d None of these

8. If the equations

have no solution, then the value of λ will be

a 1 b 2 c:) 3 (d) -4 9. If A = $\begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$, B = $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then the value of α , if A²=B will be a 4 b 3 c 5 d None of these

10. The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then P \overline{A}) + P(\overline{B}) will be

a 1.1 b 1.3 c 1.2 d 0.8

11. If sinsin $\frac{1}{5} + \cos^{-1} x = 1$, then x is

a $\frac{1}{5}$ b $\frac{2}{5}$ c $\frac{3}{5}$ (d) $\frac{\pi}{2}$

12. The value of $tan\left[cos^{-1}\left(\frac{4}{5}\right) + tan^{-1}\left(\frac{2}{3}\right)\right]$ will be

a $\frac{6}{11}$ b $\frac{6}{17}$ c $\frac{11}{6}$ dl) $\frac{17}{6}$

13. In a $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$ and $\tan \frac{C}{2} = \frac{2}{5}$, then the sides a,b,c are in

a AP b GP

c HP d None of these

14. The value of

cos(*)cos($\left(\frac{2\pi}{5}\right)\cos(2\pi)$	$\left(\frac{4\pi}{5}\right)\cos\left(\frac{8\pi}{5}\right)$ will be
а	1 16	b	$-\frac{1}{16}$
с	0	d	$\frac{1}{2}$

15. The distance between the lines 3x+8y = 15 will be

а	3 2	b $\frac{3}{8}$
с	3 10	d 6

16. If the algebraic sum of the perpendicular distances from the points 2,0,0,2 and 1,1 on a variable line is zero ,then the line will pass through the fixed point

a 1,2 b a straight line c 0,0 d 2,1

17. The locus of the point of intersection of the lines $x \cos \alpha + y \sin \alpha = p$ and $x \sin \alpha - y \cos \alpha = q \alpha$ is a variable will be

a a circle b a straight line c a parabola d an ellipse

18. The locus of the mid points of the chords of a circle which subtend a right angle at its centre equation of the circle is $x^2+y^2 = a^2$ will be

a x
$${}^{2}+y^{2}=3a^{2}$$
 b x ${}^{2}+y^{2}=\frac{a^{2}}{3}$
c 2x ${}^{2}+y^{2}=a^{2}$ c 4x ${}^{2}+y^{2}=a^{2}$

19. If the line 3x-2y+p = 0 is normal to the circle $x^2+y^2 = 2x-4y-1$, then p will be

a -5 b7 b -7 d5

20. If the two circles $x^2+y^2-10x+16 = 0$ intersect at two ral points, then

a 1<r<7 b 3<r<10 c 2<r<9 d 2<r<8

21. The equation of the tangent to the parabolas $y^2 = 2x$ and $x^2 = 16y$ will be

```
a x+y+2=0 b x -3y+1=0
c x+2y -2 = 0 d x+2y+2 = 0
```

22. The equation of the tangent to the parabola $y^2 = 8x$, which is parallel to the line 2x-y+7=0, will be

a y=x+1 b y=2x+1 b y = 3x+1 d y = 4x+1

23. The distance of a point on ellipse $\frac{x^2}{6} + \frac{y^2}{2} = 1$ from its centre is 2. The eccentric is $\sqrt{2}$ angle of the point will be

a $\frac{\pi}{4}$ or $\frac{\pi}{3}$ b $\frac{\pi}{3}$ or $\frac{3x}{5}$ c $\frac{\pi}{4}$ or $\frac{3x}{4}$ d None of these

24. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. Its equation will be

a x
$$^{2}-y^{2}=1$$
 b x $^{2}-y^{2}=20$
c x $^{2}-y^{2}=4$ d x $^{2}-y^{2}=32$

25. The vector of magnitude 9 unit perpencular to the vectors $4\hat{i} - \hat{j} + 3\hat{k}$ and $-2\hat{i} + \hat{j} - 2\hat{k}$ will be

a 3
$$\hat{i} + 6\hat{j} - 6\hat{k}$$
 b $-3\hat{i} + 6\hat{j} + 6\hat{k}$
i $c\hat{k}$ 3 $\hat{k}\hat{i} - \hat{k}\hat{j} + \hat{k}\hat{k}$ d \hat{k} $\hat{i} + 6\hat{j} + 6\hat{k}$

26. If $\vec{x} \cdot \vec{y} = \vec{x} \cdot \vec{y} \neq \vec{y}$, then $\vec{x} \cdot \vec{x}$ will be equal to

akib bkii cki dk(n2+j

27. The value of of ' λ ' so that the vectors $\hat{\imath}-3\hat{\jmath}+\hat{k}$, $2\hat{\imath}+\lambda\hat{\jmath}+\hat{k}$ and $3\hat{\imath}+\hat{\jmath}-2\hat{k}$ are coplanar, will be

a 0 c 2 c $-\frac{1}{2}$ d -4

28. The line passing through the point -1, 2, 3 and perpendicular to the plane x -2y+3z+5 = 0 will be

a $\frac{x+1}{1} = \frac{y-2}{3} = \frac{z-3}{5}$ b $\frac{x+1}{1} = \frac{y-2}{3} = \frac{z+3}{3}$ c $\frac{x+1}{1} = \frac{y-2}{3} = \frac{z-3}{2}$ d $\frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-3}{3}$

29. The value of k, if the line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{1}$ lies on the plane 2x-4y+z = 7, will be

a 5 b 7

c 9 d 11

30. If the line of intersection of the planes 2x+3y+z=1 and x+3y+2z = 2 makes angle α with positive direction of x-axis , then $\cos \alpha$ will be equal to

a $\frac{1}{\sqrt{2}}$ b $\frac{1}{\sqrt{5}}$ c $\frac{1}{\sqrt{7}}$ (d) $\frac{1}{\sqrt{3}}$ 31. If $y = \tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, then $\frac{dy}{dx}$ will be a sisk x cos x b $\frac{\pi}{2}$ c $\frac{1}{2}$ (d) $\frac{1}{1+\cos^2 x}$ 32. The value of $\lim_{x \to 1} (1 - x \cdot \tan(\frac{\pi x}{2}))$ will be a $\frac{\pi}{2}$ b $\frac{2}{\pi}$ c 2π (c π 33. Let $f(x = \begin{cases} \frac{x^2-4x+3}{x^2+2x-3}, x \leq 1\\ k^2+2x-3, x \leq 1 \end{cases}$ If f(x) is intinuous at x=1, then the value of k will be a 1 b $\frac{1}{2}$ c -1 d $\frac{1}{2}$

34. The point on the curve $y = 2x^2 - 4x + 5$, at which the tengent is parallel to x-axis, will be

- a 1,3 b -1,3
- c 1, -3 d -1,-3

35. The point on $x^2 = 2y$, which is closest to the point 0,5 will be

- a 2 🔁,0 b 0,0
- c 2,2 d None of these

36. The interval, in which the function $f(x = x^2 e^{-x})$ is an increasing function, will be

a $-\infty,\infty$ b -2,0c 2, ∞) (d) (0,2 37. Let $f(x = \begin{cases} x^n.sin(\frac{1}{x}), x = 0\\ 0, x = 0 \end{cases}$ Then, f(x)'s differentiable at x = 0, if a $n \in 0,1$ b $n \in 1,2$

$$c n \in 1, \infty$$
 $d n \in -\infty, \infty$

38. In which interval the function $f(x = \sqrt{\log_{10} \left(\frac{5x-x^2}{4}\right)})$ is defined ?

- a [1,4] b [0,5
- c 0,1 d -1,∞

39. The function $f(x = \sin x + \cos x \text{ will be})$

- a an even function b an odd function
- c a constaant function (None of these
- 40. The value of $\frac{\cos \sqrt{x}}{\sqrt{x}}$ dx will be
 - a 2sin \overline{x} + c b 2cics \overline{x} + c
 - c $2\sin x + c$ $d(t 2\sin x + c)$
- 41. The valueb of $\frac{\sqrt{3}}{2} \frac{\sqrt{x}}{5-x+\sqrt{x}} dx$ will be
 - a $\frac{\sqrt{3}}{2}$ b $\frac{1}{\sqrt{2}}$

c $\frac{1}{2}$ d $\frac{1}{\sqrt{3}}$

42. The area common to the curves $y^2 = x$ and $x^2 = y$ will be

a **11**q unit b $\frac{2}{3}$ sq unit c $\frac{1}{4}$ sq unit d $\frac{1}{3}$ sq unit

43. If x+y 2; x 0; y 0, then the point, at which the maximum value of 3x+2y is attained, will be

- a 0,0 b $\left(\frac{1}{2},\frac{1}{2}\right)$
- c 2,0 d 0,2

44. The maximum value of p = 6x+8y, if 2x+y 30; x+2y 24, x 0,y 0,will be

- a 90 b 120
- c 96 d 240

45. regression of saving s of a family on income y may be expressed as $s = a + \frac{y}{r}$, where a and m are constants. In a random sample of 100 families the variance of saving is one quarter of the variance of incomes and the correlation coefficient is found to be 0.8, the value of m is

- a 0.8 b 1.25
- c 0.25 d(d) he of these

46. The integral $\frac{10}{1}x^3$ dx is approximately evaluated by Trapezoidal rule $\frac{10}{1}x^3 = 3\left[\frac{1+10^3}{2} + \alpha + 7^3\right]$ for n=3, then the value of α is

- a 4³ b 4²
- c 5 ³ d None of these

47. The solution of the equation $\log_7 \log_5 \sqrt{x^2 + 5 + x} = 0$ is

- a x = -2 b x = 2
- c x = 4 d x = 5

48. A balloon is coming down at the arate of 4m/min and its angle of elevation is 45[°] from a point on the ground which has been reduced to 30[°], after 10 min . Balloon will be on the ground at a distance of how many meters from the observer ?

a 20 3 m b 203+ 3 m

c 103+ $\overline{3}$ m d None of these

49. A fair coin is tossed n times. If the probability of getting 7 heads is equal to the probability of getting 9 heads, then the value of n will be

a 8 c 13

c 15 d None of these

50. The probabilities of solving a equation by three students are $\frac{1}{2'4'6}$ respectively. What is the probability that the equation is solved ?

a $\frac{35}{48}$ b $\frac{1}{48}$ c $\frac{11}{16}$ d $\frac{2}{11}$

