GGSIPU mathmatics 2009

1. If $A z{ }_{1}, B z{ }_{2}, C z \quad$ and $P z$ represents complex numbers such that

$$
\left|z_{1}-z\right|=\left|z_{2}-z\right|=\left|z_{3}-z\right| \text {, then A,B,C lies on }
$$

a A straight line
b A circle
c A parabola
d An ellipse
2. if the complex numbers z_{1}, z_{2} and origin form vertices of an equilateral triangle, then the value of $\mathbf{z}_{1}{ }^{\mathbf{2}}$ $+\mathrm{z}^{2}{ }_{2}$
a $z_{1} \mathbf{z}_{2}$
b $Z_{1}+Z_{2}$

C $\quad \mathbf{2} \mathbf{z}_{1} \mathbf{z}_{2}$
d Z_{1-2}
3. Three numbers form an increasing GP.If the middle term is doubled, then the new numbers are in AP.The common ratio of the GP will be
a $2-\sqrt{3}$
b $2 \pm \sqrt{3}$
c $3 \sqrt{2}$
d $3+\sqrt{2}$
4. If the equations $a x^{2}+2 c x+b=0$ and $a x^{2}+2 b x+c=0, b \neq c$ have a common root, then the value of $a+4 b+4 c$ will be
a -2
b 1

C -1
d None of these
5. If one root of $a x^{2}+b x+c=0$ as twice the other root, then
$a b^{2}=9 a c$
b $2 b^{2}=9 a c$
c $\quad \mathbf{2 b}^{2}=a c \quad d \quad b^{2}=a c$
6. The number of ways of distributing 8 distinct toys among 5 children will be
a 55^{8}
b 8^{5}
c $\quad 8_{p_{5}}$
d 40
7. The value of $C_{1}-2 . C_{2}+3 . C_{3}-4 . C_{4}+\ldots$. Where $C_{r}=n_{C_{r}}$ will be
a $\quad-1$
b 1
c 0
d None of these
8. If the equations

$$
\begin{aligned}
& 2 x-y+2 z=2 \\
& x-2 y+z=-4 \\
& x+y+\lambda z=4
\end{aligned}
$$

have no solution, then the value of λ will be
a 1
b 2
c) 3
(d) -4
9. If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, then the value of α, if $A^{2}=B$ will be
a $4 \quad$ b 3
c 5 d None of these
10. The probability that at least one of the events A and B occurs is 0.6 . If A and B occur simultaneously with probability 0.2 , then $P \bar{A})+P(\bar{B})$ willse
a 1.1
b 1.3
c 1.2
d 0.8
11. If $\operatorname{sinsin}{ }^{-1} \frac{1}{5}+\cos ^{-1} x==1$, then x is
a $\frac{1}{5}$
b $\frac{2}{5}$
C $\frac{3}{5}$
(d) $\frac{\pi}{2}$
12. The value of $\tan \left[\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right]$ will be
a $\frac{6}{11}$
b $\frac{6}{17}$
C $\frac{11}{6}$
d) $\frac{17}{6}$
13. In a $\triangle A B C$, if $\tan \frac{A}{2}=\frac{5}{6}$ and $\tan \frac{C}{2}=\frac{2}{5}$, then the sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
a AP
b GP
c HP
d None of these
14. The value of
$\cos \left(\frac{\pi}{5}\right) \cos \left(\frac{2 \pi}{5}\right) \cos \left(\frac{4 \pi}{5}\right) \cos \left(\frac{8 \pi}{5}\right)$ will be
a $\frac{1}{16}$
b $-\frac{1}{16}$
c 0
d $\frac{1}{2}$
15. The distance between the lines $3 x+8 y=15$ will be
a $\frac{3}{2}$
b $\frac{3}{8}$
C $\quad \frac{3}{10}$
d 6
16. If the algebraic sum of the perpendicular distances from the points $\mathbf{2 , 0 , 0 , 2}$ and $1,1 \quad$ on a variable line is zero ,then the line will pass through the fixed point
a 1,2
b a straight line
c 0,0
d 2,1
17. The locus of the point of intersection of the lines $x \cos \alpha+y \sin \alpha=p$ and $x \sin \alpha-y \cos \alpha=q \alpha$ is a variable will be
a a circle
b a straight line
c a parabola
d an ellipse
18. The locus of the mid points of the chords of a circle which subtend a right angle at its centre equation of the circle is $x^{2}+y^{2}=a^{2} w \mid l l$ be
a $x^{2}+y^{2}=3 a^{2} \quad$ b $x^{2}+y^{2}=\frac{a^{2}}{3}$
C $2 x^{2}+y^{2}=a^{2}$ C $4 x^{2}+y^{2}=a^{2}$
19. If the line $3 x-2 y+p=0$ is normal to the circle $x^{2}+y^{2}=2 x-4 y-1$, then p will be
a $\quad-5$
b 7
b $\quad-7$
d 5
20. If the two circles $x^{2}+y^{2}-10 x+16=0$ intersect at two ral points, then
a $1<r<7$
b $3<r<10$
c $2<r<9$
d $2<r<8$
21. The equation of the tangent to the parabolas $y^{2}=2 x$ and $x^{2}=16 y$ will be
a $x+y+2=0$
b $x \quad-3 y+1=0$
c $x+2 y-2=0 \quad d x+2 y+2=0$
22. The equation of the tangent to the parabola $y^{2}=8 x$, which is parallel to the line $2 x-y+7=0$, will be
a $y=x+1$
b $y=2 x+1$
b $y=3 x+1$
d $y=4 x+1$
23. The distance of a point on ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ from its centre is 2 . The eccentric is $\sqrt{2}$ angle of the point will be
a $\frac{\pi}{4}$ or $\frac{\pi}{3}$
b $\frac{\pi}{3}$ or $\frac{3 \pi}{5}$
C $\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
d None of these
24. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$. Its equation will be
a $x^{2}-y^{2}=1$
b $x^{2}-y^{2}=20$
c $x^{2}-y^{2}=4$
d $x^{2}-y^{2}=32$
25. The vector of magnitude 9 unit perpencular to the vectors $4 \hat{\imath}-\hat{\boldsymbol{j}}+3 \widehat{k}$ and $-\mathbf{2} \hat{\boldsymbol{\imath}}+\hat{\boldsymbol{j}}-\mathbf{2} \widehat{\boldsymbol{k}}$ will be
a $3 \hat{\imath}+6 \hat{\jmath}-6 \hat{k}$
b $-3 \hat{i}+6 \hat{j}+6 \hat{k}$
(i): 3 Bi $-15 \hat{j}+6 \hat{k}$ d $\hat{i}+6 \hat{j}+6 \widehat{k}$

a k \vec{b}
b \mathbf{k} iit
ck
d $k(\sqrt{2}+\boldsymbol{i}$
27. The value of of ' λ ' so that the vectors $\hat{\boldsymbol{i}}-3 \hat{j}+\widehat{k}, 2 \hat{\imath}+\lambda \hat{j}+\widehat{k}$ and $3 \hat{i}+\hat{j}-2 \widehat{k}$ are coplanar, will be
a 0
c 2
C $-\frac{1}{2}$
d -4
28. The line passing through the point $-1,2,3$ and perpendicular to the plane $x-2 y+3 z+5=0$ will be
a $\frac{x+1}{1}=\frac{y-2}{3}=\frac{x-3}{5}$
b $\quad \frac{x+1}{1}=\frac{y-2}{3}=\frac{z+3}{3}$
C $\frac{x+1}{1}=\frac{y-2}{3}=\frac{z-3}{2}$
d $\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z-3}{3}$
29. The value of k, if the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{1}$ lies on the plane $2 x-4 y+z=7$, will be
a 5
b 7
c 9 d 11
30. If the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$ makes angle α with positive direction of x-axis, then $\cos \alpha$ will be equal to
a $-\frac{1}{-\sqrt{2}}$
b $-\frac{1}{-\sqrt{5}}$
C $\frac{1}{\sqrt{7}}$
(d) $\frac{1}{\sqrt{3}}$
31. If $y=\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, then $\frac{d y}{d x}$ will be
a $\operatorname{sis} x \cos x$
b $\quad \frac{\pi}{2}$
C $\frac{1}{2}$
(d) $\frac{1}{1+\cos ^{2} x}$
32. The value of $\lim _{x \rightarrow 1}\left(1-x . \tan \left(\frac{\pi x}{2}\right)\right.$ will be
a $\frac{\pi}{2}$
b $\frac{2}{\pi}$
c 2π
(c) π
33. Let $\mathrm{f}\left(\mathrm{x}=\left\{\begin{array}{ll}\frac{x^{2}-4 x+3}{x^{2}+2 x-3}, & x \neq 1 \\ k & x=1\end{array} \quad\right.\right.$ If $\mathrm{f}(\mathrm{x})$ is ontinuous at $\mathrm{x}=1$, then the value of k will be
a 1
b $\frac{1}{2}$
$\begin{array}{llll}\text { C } & -1 & \mathrm{~d} & -\frac{1}{2}\end{array}$
34. The point on the curve $y=2 x^{2}-4 x+5$, at which the tengent is parallel to x-axis, will be
a 1,3
b
$-1,3$
c $1,-3 \mathrm{~d} \quad-1,-3$
35. The point on $x^{2}=2 y$, which is closest to the point 0,5 will be
a $2 \sqrt{ } \overline{2}, 0$
b 0,0
c 2,2 d None of these
36. The interval, in which the function $f\left(x=x^{2} e^{-x}\right.$ is an increasing function, will be
a $-\infty, \infty$
b $-\mathbf{2 , 0}$
c $2, \infty$)
(d) $(0,2$
37. Let $\mathrm{f}\left(\mathrm{x}=\left\{\begin{array}{cl}x^{n} \cdot \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.\right.$ Then, $\mathrm{f}(\mathrm{x} ' \mathrm{~s}$ differentiable at $\mathrm{x}=0$, if
a $\mathbf{n} \in \mathbf{0 , 1}$
b $\mathbf{n} \in \mathbf{1 , 2}$
c $\mathrm{n} \in \mathbf{1}, \infty$
d $\mathbf{n} \in-\infty, \infty$
38. In which interval the function $\mathrm{f}\left(\mathrm{x}=\sqrt{\log _{10}\left(\frac{5 x-x^{2}}{4}\right)}\right.$ is defined ?
a $[1,4]$
b $[0,5$
c 0,1
d $-1, \infty$
39. The functioin $f(x=\sin x+\cos x$ will be
a an even function
b an odd function
c a constarant function (None of these
40. The value of $\frac{\cos \sqrt{x}}{\sqrt{x}} \mathrm{dx}$ will be
a $2 \sin \sqrt{ } \bar{x}+c$
b 2cica $\sqrt{\bar{x}}+\mathrm{c}$
c $2 \sin x+c \quad d(1 \quad \sqrt{2} \sin x+c$
41. The valueb of $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x$ will be
a $\frac{\sqrt{3}}{2}$
b $\frac{1}{\sqrt{2}}$
C $\frac{1}{2}$
d $\frac{1}{\sqrt{3}}$
42. The area common to the curves $y^{2}=x$ and $x^{2}=y$ will be
a $11 q$ unit
b $\quad \frac{2}{3}$ sq unit
c $\frac{1}{4}$ sq unit
d $\frac{1}{3}$ sq unit
43. If $x+y \leq 2 ; x \geq 0 ; y \geq 0$, then the point, at which the maximum value of $3 x+2 y$ is attained, will be
a 0,0
b $\left(\frac{1}{2}, \frac{1}{2}\right)$
c 2,0
d 0,2
44. The maximum value of $p=6 x+8 y$, if $2 x+y \leq 30 ; x+2 y \leq 24, x \geq 0, y \geq 0$, will be
a 90
b 120
c 96
d 240
45. regression of saving s of a family on income y may be expressed as $s=a+\frac{y}{m}$, where a and m are constants. In a random sample of $\mathbf{1 0 0}$ families the variance of saving is one quarter of the variance of incomes and the correlation coefficient is found to be 0.8 , the value of m is
a 0.8
b 1.25
c $0.25 \mathrm{~d}(\mathrm{~d})$ he of these
46. The integral $\int_{1}^{10} x^{3} \mathrm{dx}$ is approximately evaluated by Trapezoidal rule $\int_{1}^{10} x^{3}=3\left[\frac{1+10^{3}}{2}+\alpha+\right.$ 7^{3}] for $n=3$, then the value of α is
a 4^{3}
b 4^{2}
c 5^{3}
d None of these
47. The solution of the equation $\log _{7} \log _{5} \sqrt{x^{2}+5+x}=0$ is
a $x=-2$
b $x=2$
c $x=4$
d $x=5$
48. A balloon is coming down at the arate of $4 \mathrm{~m} / \mathrm{min}$ and its angle of elevation is 45° from a point on the ground which has been reduced to 30°, after 10 min . Balloon will be on the ground at a distance of how many meters from the observer?
a $20 \sqrt{3} \mathrm{~m}$
b $203+\sqrt{3} \mathrm{~m}$
c 103+ $\sqrt{3} m \quad d$ None of these
49. A fair coin is tossed n times. If the probability of getting 7 heads is equal to the probability of getting 9 heads, then the value of n will be
a 8
c 13
c 15
d None of these
50. The probabilities of solving a equation by three students are $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$ respectively. What is the probability. What is the probability that the equation is solved ?
a $\frac{35}{48}$
b $\frac{1}{48}$
C $\frac{11}{16}$
d $\frac{2}{11}$

