MARKING SCHEME (COMPARTMENT) 2019 SET: 55/1/1

Q. NO.	VALUE POINTS/ EXPECTED ANSWERS	MARKS	TOTAL MARKS
	SECTION - A		MANIS
1.	Definition of angle of inclination: The angle which earth's magnetic field at a given place makes with the horizontal.	1	1
	Alternatively		
	Angle between $\overrightarrow{B_E}$ and \overrightarrow{H}		
	Alternatively		
	Angle Θ, in the given figure represents the angle of inclination.		
	BE		
	$\frac{\sqrt{\theta}}{\vec{H}}$	as.	
2.	Most energetic radiation: Gamma rays Frequency range: 10^{18} to 10^{23} Hz	1/2 m	1
	OR (i) Ultra violet rays	1/2	1
	(i) Ultra violet rays (ii) Frequency range: 10^{15} to 10^{17} Hz	1/2	**
3.	Frequency of photon $v=E/h$ $= \frac{2eV}{6.63 \times 10^{-34} Js}$ $= \frac{2 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} Hz$	1/2	
		1/2	1
	= 4.8×10^{14} Hz [Award the last ½ mark even if the student just makes a correct substitution but does not calculate the value of v]		
	OR		
	(i) Yes	1/2	1
	(ii) The photo electric current is dependent on the intensity of incident radiation Because the change of intensity changes the number of photons incident per second on the photo sensitive surface.	1/2	
4.	Saturation property/ Short range nature of nuclear force	1	1
5.	Frequency range of the spectrum occupied by the signal.		
	Alternatively Difference between the maximum and minimum frequencies considered essential for a given message signal	1	1

55/1/1 Page **3** of **26**

	Alternatively		
	Band width= v_{max} - v_{min}		
6.	SECTION- B Expression for flux 1 Calculation of flux 1 Net outward flux through the cylinder $ \overrightarrow{E} \cdot \overrightarrow{\Delta S} = \overrightarrow{E} \cdot \overrightarrow{\Delta S_1} + \overrightarrow{E} \cdot \overrightarrow{\Delta S_2} + \overrightarrow{E} \cdot \overrightarrow{\Delta S_3} $	1/2	
	$= (100 + 100)\pi r^2 + 0 (Here \cos\theta = \cos 90^\circ = 0 \text{ for } \Delta S_3)$ $= [200 \times 3.14 \times (0.05)^2] Nm^2/C$ $= 1.57 Nm^2/C$	1/2	2
	Alternatively: John January 1997 As Ja	Latform	
	Flux through right circular surface $\phi_{1=\stackrel{\rightarrow}{E}}$. $\stackrel{\rightarrow}{\Delta S}$ $= 100\Delta S$ Elements a surface $\phi_{1=\stackrel{\rightarrow}{E}}$. $\stackrel{\rightarrow}{\Delta S}$	1/2	
	Flux through left circular surface $\phi_{2=\stackrel{\rightarrow}{E}\stackrel{\rightarrow}{\Delta S}}$ $= 100\Delta S$ Flux through the curved surface $\phi_{3=\stackrel{\rightarrow}{E}\stackrel{\rightarrow}{\Delta S}}$	1/2	
	That through the curved surface $\psi_{3=E}$. ΔS $= 0$ Net Flux $\phi = \phi_1 + \phi_2 + \phi_3$ $= 200\Delta S$ $= [200 \times 3.14 \times (0.05)^2] Nm^2 C^{-1}$ $= 1.57 Nm^2 C^{-1}$	1/2	
	$= 1.57 Nm^2 C^{-1}$	1/2	2
7.	Formula for Induced Emf 1 Calculation of Induced Emf 1		
	$E = \frac{1}{2}B\omega r^2$ $= \left[\frac{1}{2} \times 8 \times 10^{-5} \times 4\pi \times (0.5)^2\right] V$	1/2	
55/1/1	Page 4 of 26		

55/1/1 Page **4** of **26**

	$= 12.56 \times 10^{-5}V$	2000 - 100	2.
		1/2	
	OR		
	Formula for Induced Emf 1 Calculation of Induced Emf 1		
	$\varepsilon = \frac{-d\phi}{dt}$	1/2	
	$= -A \frac{dB}{dt}$	1/2	
	$= -A\frac{dB}{dx} \times \frac{dx}{dt} = -Av\frac{dB}{dx}$	1/2	
	$= -[(0.1)^2 \times (-8 \times 10^{-3})]V$	1/2	
Q	$= 8 \times 10^{-5} V$	25	
	(a) Graph of em wave (b) (i) Relation between c, E ₀ and B ₀ (ii) Expression for speed of em wave 1/2	Lation	
	(a) India's largest Stude to the large state of the	1	
	(b) $(i) c = \frac{E_0}{B_0}$ $(ii) c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$	1/2 1/2	2
9.	Examples for weareless the interest of the		
	Expression for wavelength in terms of the quantum number of the orbit Ratio of wavelengths in the two orbits 1		
	$2\pi r_n = n \lambda_n$	1/2	
	$r_n = a_0 n^2$		
	$\therefore \lambda_n = 2\pi a_0 n$	1/2	
		1	2

55/1/1 Page **5** of **26**

	$= \frac{\lambda_1}{\lambda_2} = \frac{1}{2}$			
Cause: absorp	Cause of attenuation Factors affecting the range tion of waves by earth	1	1	
Factors: (i) Tr	ansmitted Power equency		1/2	2
OR	Diagram Electric field due to point charge Net electric field $E_{+q} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + a^2)}$ $E_{-q} = \frac{1}{4\pi\epsilon_0} \frac{q}{(r^2 + a^2)}$ $E = E_{+q} cos\theta + E_{-q} cos\theta$ $= 2E_{+q} cos\theta$ $= \frac{2qa}{4\pi\epsilon_0 (r^2 + a^2)^{3/2}}$ Diagram Expression for torque Expression for P.E.	Student Review P	1/2 1/2 1/2	2
1/1	Page 6 of 26		1/2	

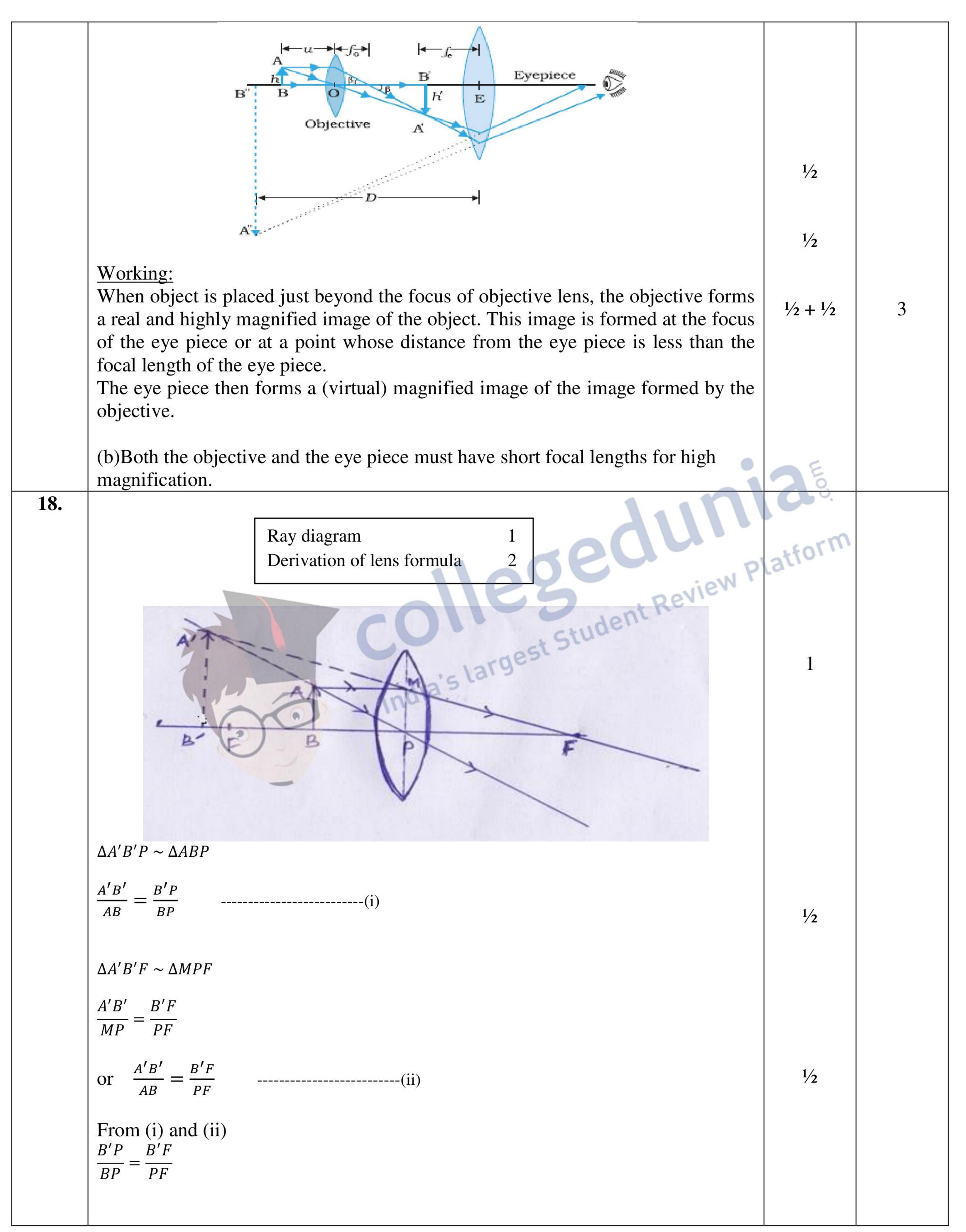
55/1/1 Page **6** of **26**

55/1/1 Page **7** of **26**

	<u>Drift Velocity:</u> It is the average velocity with which electrons move in a conductor when an external electric field (or potential difference) is applied across the conductor.	I I	
	Significance: The drift velocity controls the net current flowing across any cross section./ There is no net transport of charges across any area perpendicular to the applied field.	1/2	
	Relaxation time: It is the average time between successive collisions for the drifting electrons in the conductor.	1/2	
	<u>Significance:</u> It is a (very important) factor in determining the electrical conductivity of a conductor at different temperatures. (It is a factor which determines the drift velocity acquired by the electrons under a given applied external electric field)	I I	
	(b)		
	$ u_d = \frac{eV}{mL} \tau$	1/2	
	$\nu_{d'} = \frac{eV}{m \times 5L} \tau$	aso.	
	$= \frac{v_d}{5}$ OR $= \frac{v_d}{5}$		3
	Diagram Expression for equivalent emf and internal resistance 2½		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$\equiv A \stackrel{\mathcal{E}_{eq}}{ I } \stackrel{\mathcal{E}$	1/2	
	$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2$		
	$= \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$	1/2	
	$= \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$	1/2	
	Hence $V = \left[\frac{E_1 r_2 + E_2 r_1}{r_1 r_2}\right] - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$	1/2	
	$\therefore E_{eff} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$	1/2	
55/1/1	Page 8 of 26		

55/1/1 Page **8** of **26**

	and $r_{eff} = \frac{r_1 r_2}{r_1 + r_2}$	1/2	3
14.			
	(a) Correct sequence of bands (b) Two characteristic properties (c) Precautions (any two) 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(a) Green, blue, orange, silver [Award ½ mark if two colours are correct in the sequence] (b) (i) High resistivity (ii) Low temperature coefficient of resistivity (c) (i) Uniformity of wire (ii) Balance point near the mid point of the wire (Also accept any other relevant precaution)	1/2 1/2 1/2 1/2 1/2	3
15.	(a) Reason for using shunt for conversion to ammeter 1 (b) Formula for shunt resistance 1 (c) Calculation of shunt resistance 1 (a) The ammeter is connected in series, in the relevant circuit branch. Hence its resistance must be (very) low so that the circuit current is not affected. A (very) low shunt resistance makes the effective resistance of galvanometer (very) low. (as required).	atform	
	$= \frac{6 \times 10^{-3} \times 15}{[6 - (6 \times 10^{-3})]} \Omega$	1/2	3
16.	(a) Reason for circular motion Expression for radius (b) Path of the particle when $\Theta \neq 90^{\circ}$ 1 1 1 1 1 1 1 1 1 1 1 1 1		
	(a) $\vec{F} = q(\vec{v} \times \vec{B})$ Force \vec{F} on a moving charged particle in a magnetic field acts perpendicular to the velocity vector at all instants. It therefore, changes only the direction of velocity without changing its magnitude. This results in a circular motion of the particle for which the force \vec{F} provides the needed centripetal force $\left(=\frac{mv^2}{r}\right)$	1/2	
	Here F=qvB sin Θ = qvB (as $\Theta = \pi/2$)		


55/1/1 Page **9** of **26**

	mv^2		
	$\therefore \frac{mv^2}{r} = qvB$		
	$\therefore r = \frac{mv}{r}$	1/2	
	(b) If $\Theta \neq 90^{\circ}$, then velocity will have a component along \vec{B} also and the charged	1/2	
	particle will move along \vec{B} with this component of velocity while describing		
	circular motion in a plane perpendicular to \vec{B} . Its motion is, therefore, helical.	1	2
		1	3
	[Note: Award this 1 mark even if a student just writes that the charged particle will describe a helical path / motion.]		
	OR		
	Diagram 1 Working Principle 1 Two uses $\frac{1}{2} + \frac{1}{2}$		
	Magnetic field out of the paper Deflection plate Deflection plate Deflection plate	atform 1	
	frequency is so adjusted as to accelerate the particle whenever it crosses the space between the dees. A relatively small electric field can then be used to accelerate particles to very high energy values.	1	
	Uses: (i) To accelerate charged particles to very high energies	1/2	
	(ii) To implant ions into solids to modify their properties. [or any other use]	1/2	3
17			
	(a) Diagram of compound microscope Working of compound microscope 1 (b) Consideration for choosing lenses for eye piece and objective 1/2 + 1/2		
	(a)		
		1	

55/1/1 Page **10** of **26**

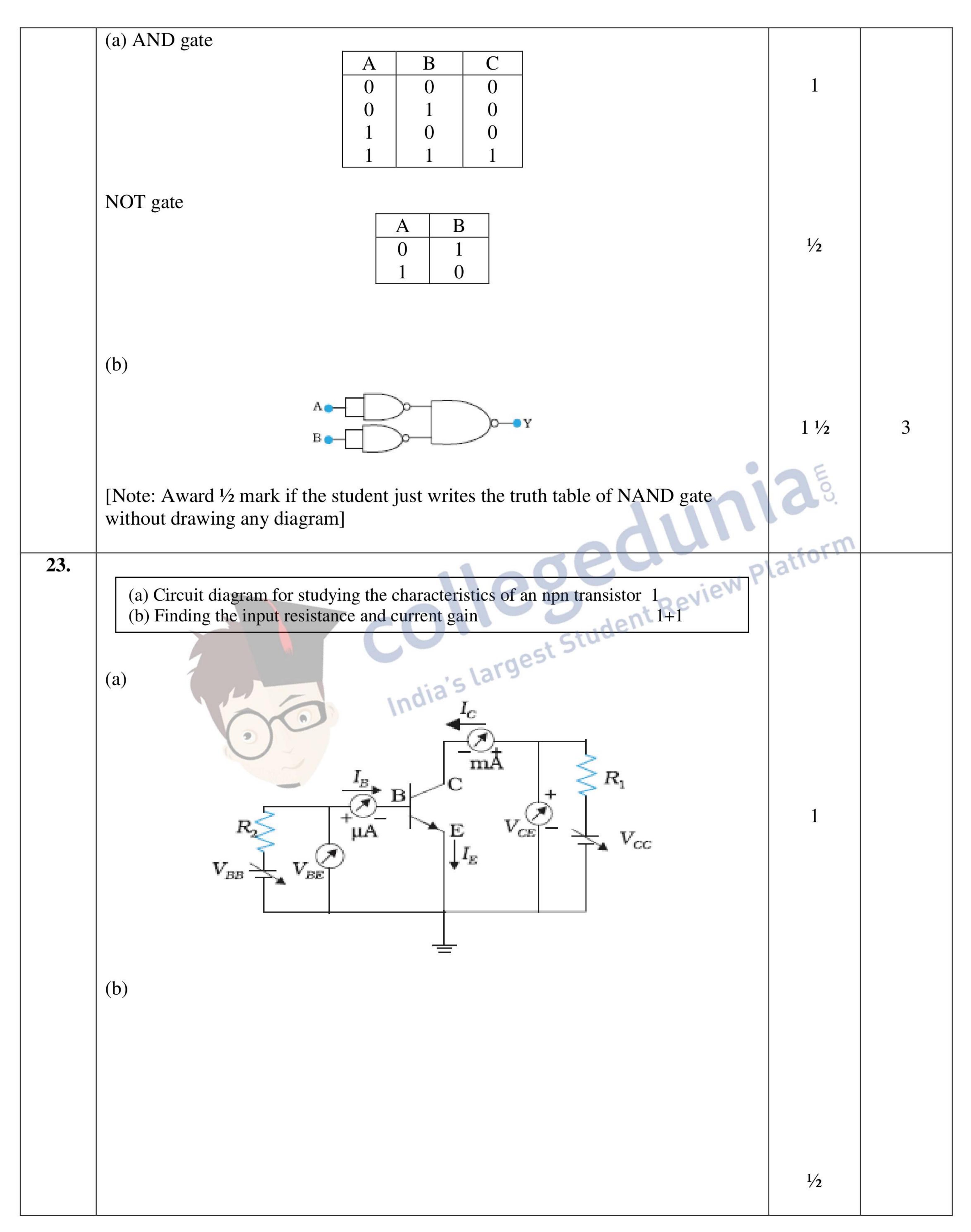
55/1/1 Page **11** of **26**

	or $\frac{-v}{-u} = \frac{B'P + PF}{PF} = 1 + \frac{B'P}{PF}$		
	or $\frac{v}{u} = 1 - \frac{v}{f}$	1	3
	$\operatorname{or} \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$		
	OR		
	Ray diagram 1 Derivation of mirror formula 2		
	A 3 AM	260. 1	
	CONTREVIEW :	Latforni	
	$\frac{A'B'F}{MP} = \frac{B'F}{PF} = \frac{B'P + PF}{PF}$		
	or $\frac{A'B'}{AB} = \frac{B'P + PF}{PF}$ (i)	1/2	
	$\frac{A'B'C \sim \Delta ABC}{\frac{A'B'}{AB}} = \frac{B'C}{BC} = \frac{B'P+PC}{PC-PB} \qquad (ii)$	1/2	
	or $\frac{B'P+PF}{PF} = \frac{B'P+PC}{PC-PB}$		
	or $\frac{v-f}{-f} = \frac{v-2f}{-2f+u}$		
	Cross multiply and divide by uvf: $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	1	3
19.			
	(a) Explanation for formation of diffraction pattern (b) Calculation of separation 1		

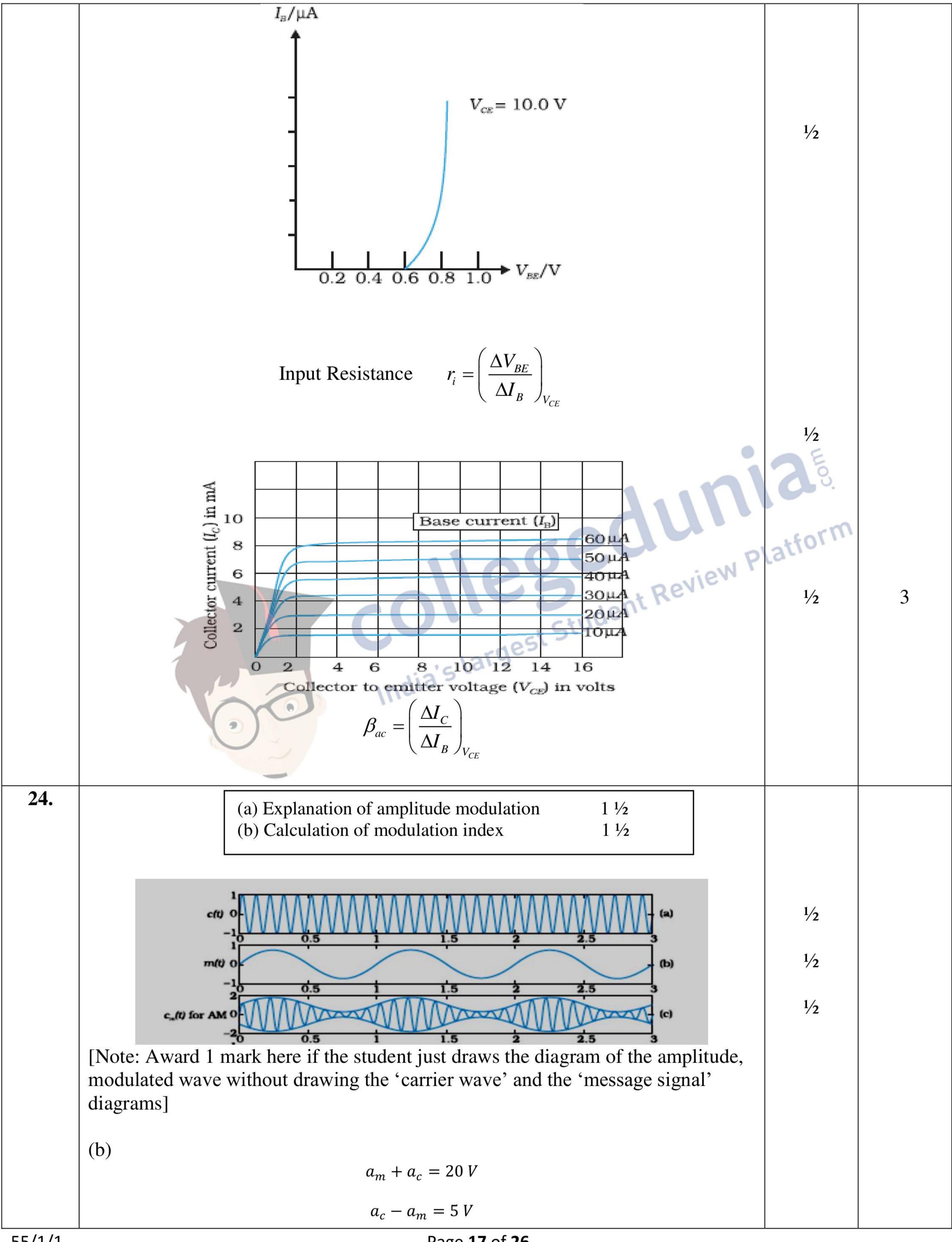
55/1/1 Page **12** of **26**

	(0)		
	From S $M_1 \bullet M_2 \bullet M_2$ To C $M_2 \bullet M_2$	1/2	
	Path difference, NP-LP=NQ =a $\sin \theta$ $\approx a\theta$	1/2	
	At C on the screen, $\theta=0^0$. All path differences are zero and hence all wavelets meet in phase and produce a maxima at C. At points P on the screen for which path difference is λ , 2λ , 3λ ,n λ ; the wavelets will cancel each other in pairs and produce minima. $\therefore a\theta = n\lambda - \cdots = \text{condition for minima}$ $(n=1,2,\dots,)$ At points P on the screen for which path difference is $\frac{\lambda}{2}$, $3\frac{\lambda}{2}$,	atfizerm	
	(b) separation between 1 st secondary maxima of the two wavelengths $= \frac{3D}{2d} (\lambda_2 - \lambda_1)$	1/2	
	$= \frac{3 \times 1.5}{2 \times 2 \times 10^{-4}} \times 60 \times 10^{-10} \text{ m}$ $= 67.5 \times 10^{-6} \text{ m}$ $= 67.5 \mu\text{m}$	1/2	3
20.	(a) Graph (b) Einstein's equation 1 Two factors which cannot be explained by wave theory 1/2 + 1/2		

55/1/1 Page **13** of **26**



	(a)		
	Photo elettric	1	
	Saturation current		
	23		
	-Vo1 -Vo2 Collector Plate potential ->		
	(b) Einstein's photoelectric equation $K_{max} = h \upsilon - \emptyset_0$		
	$\kappa_{max} - \kappa v - \varphi_0$		
	Alternatively		
	$eV_0 = h \upsilon - \emptyset_0$		
	Alternatively	25	
	$eV_0 = h\upsilon - h\upsilon_0$	1/	
	Two Factors: (i) Maximum KE of emitted photoelectrons is independent of the intensity of incident radiation	latform	
	(ii) There is a threshold frequency below which photo electrons are not emitted	1/2	3
	[OR any other valid factor]		
21.	dia's larges		
	(a) Highest energy level to which atom will be excited 1 (b) Calculation of longest Lyman wavelength 1		
	(c) Calculation of longest Balmer wavelength 1		
	(a) Maximum Energy that the excited hydrogen atom can have is		
	E=-13.6eV + 12.5eV=-1.1 eV	1/2	
	Now $E_3 = \frac{-13.6}{3^2} eV = -1.5 eV$ (< (-1.1 eV)) $E_4 = \frac{-13.6}{4^2} eV = -0.85 eV$ (> (-1.1 eV))		
	It follows that the electron can only be excited up to the n=3 state.	1/2	
	(b) Longest wavelength of Lyman series:		
	$\frac{1}{\lambda_L} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = R \cdot \frac{3}{4}$	1/2	
	$\therefore \lambda_L = \frac{4}{3} \times \frac{1}{R}$ $4 \qquad \qquad \approx 1210.40$	1/2	
	$= \frac{1}{3 \times 1.1 \times 10^7} m \cong 1218 A^0$		
	Longest wavelength of Balmer series:	1/2	
	$\frac{1}{\lambda_B} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right]$	72	
55/1/1	Page 14 of 26		


	$\lambda_B = \left(\frac{36}{5 \times 1.1 \times 10^7}\right) m \approx 6560 A^0$	1/2	3
2.2.			
	(a) Name and Principle of the device (b) Circuit diagram Working (c) I- V characteristics 1/2 + 1/2 1 1/2 1/2		
	(a)		
	Zener diode is used as a voltage regulator It works on the principle that after the breakdown voltage V_Z , a large change in the reverse current can be produced by an almost insignificant change in the reverse bias voltage	1/2	
	Alternatively: The Zener Voltage remains constant, even when the current	1/2	
	through the Zener diode varies over a wide range.		
	(b)	aso.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	atform	
	If the input voltage increases the current through R_S and Zener diode also increases. This increases the voltage drop across R_S without any change in the voltage across the Zener diode. If input voltage decreases, the current through R_S and Zener diode decreases. The voltage across R_S decreases without any change in voltage across the Zener diode. (c)	1/2	
	$I(\mathrm{mA})$		
	Reverse bias Vz Forward bias	1/2	3
	→ V (V)		
	z (piza)		
	OR		
	(a) Truth tables of AND and NOT gates 1+½ (b) Obtaining OR gate from NAND gates 1½		
55/1/1	Page 15 of 26		

55/1/1 Page **16** of **26**

55/1/1 Page **17** of **26**

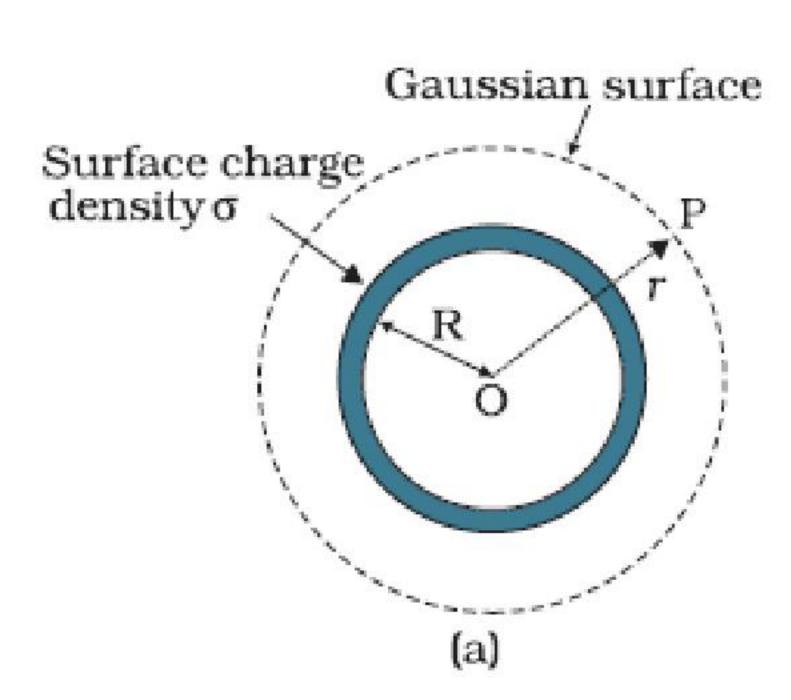
8		1 /	
	$\Rightarrow a_c = 12.5 V$	1/2	
	$a_m = 12.5 V$		
	Modulation index $u = \frac{a_m}{a_m}$	1/2	
	Modulation index $\mu = \frac{a_m}{a_c}$ 7.5	1/2	2
	$=\frac{7.5}{12.5}=0.6$	1/2	3
	SECTION - D		
25.			
	(a) Derivation of expression for the resultant capacitance in (i) parallel (ii) series (b) Calculation of energy stored in the 12μf capacitor 2		
	(a) (i) Parallel C ₁	as.	
	Q C ₂ C ₃ Student Review P	1/2	
	$Q_1 = C_1 V,$ $Q_2 = C_2 V,$ $Q_3 = C_3 V,$	1/2	
	But $Q=Q_1 + Q_2 + Q_3$ $\therefore Q = C_1V + C_2V + C_3V$ $\therefore CV = C_1V + C_2V + C_3V$ $C = C_1 + C_2 + C_3$	1/2	
	(ii) <u>Series</u>	1/2	
		72	
	Potential difference across the plates of the three capacitors are:		
	Q		
	$v_1 = \overline{C_1}$		
	$V_2 = \frac{Q}{C_2}$		
EE /4 /4	D 40 - 6 0C		

55/1/1 Page **18** of **26**

$V_3 = \frac{Q}{C_3}$		
But $V = V_1 + V_2 + V_3$ Q = Q + Q	1/2	
$V = \frac{\mathcal{C}}{C_1} + \frac{\mathcal{C}}{C_2} + \frac{\mathcal{C}}{C_3}$		
$\therefore \frac{Q}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	1/2	
$\therefore \frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$		
(b) Potential difference across the capacitor of 4µf capacitance		
$V = \frac{Q}{C} = \frac{16\mu C}{4\mu F}$ $= 4V$	1/2	
Potential across 12µf capacitor =12 V- 4V	1/2	
=8V	3 8	
Energy stored on this capacitor 1	1/	
$U = \frac{1}{2}CV^2$	atform	
$=\frac{1}{2}(12 \times 10^{-6})8^2$ joule		
den		
$=6 \times 64 \times 10^{-6} \text{ joule}$ $=384 \times 10^{-6} \text{ J}$	1/2	5
$=384 \mu J$		
OR		
(a) Derivation of expression for the Electric field		
(i) inside (ii) outside (b) Graphical variation of the Electric field 1		
(c) Calculation of Electric flux		
(a) (i) Inside		
Surface charge Gaussian density σ		

The point P is inside the spherical shell. The Gaussian surface is a sphere through P centered at 'O'

Flux through this surface= $E \times 4\pi r^2$


collegedunia [India's largest Student Review Platform

However there is no charge enclosed by this Gaussian surface. Hence using Gauss's Law

$$E \times 4\pi r^2 = 0$$
$$=> E=0$$

1/2

Outside

1/2

To calculate Electric Field \vec{E} at the outside point P, we take the Gaussian surface to be a sphere of radius 'r' and with center O, passing through P.

1/2

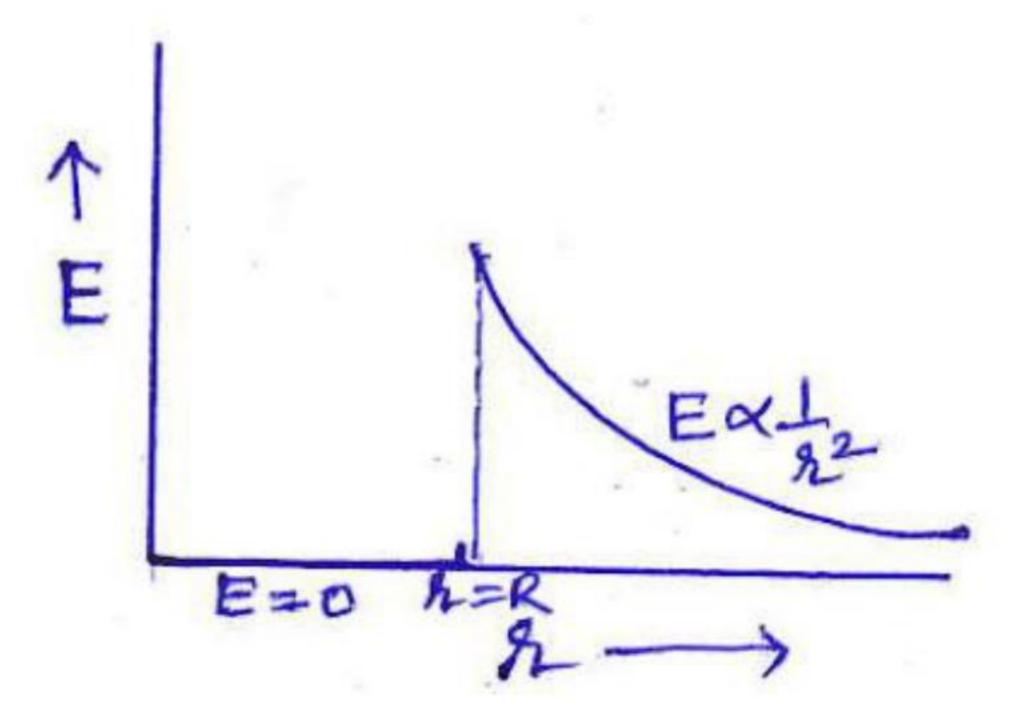
Electric Flux through the Gaussian surface $\varphi = E \times 4\pi r^2$

1/2

Charge enclosed by this the Gaussian surface = $\sigma \times 4\pi R^2$

By Gauss's Law

$$E \times 4\pi r^2 = \frac{\sigma \times 4\pi R^2}{\epsilon_0} = \frac{q}{\epsilon_0}$$


Where q= total charge on the spherical shell.

$$\therefore E = \frac{q}{4\pi\epsilon_0 r^2}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_{0}'} \frac{q}{r^{2}} \hat{r}$$

1/2

(b)

1

(c) Electric flux passing through the square sheet

$$\phi = \int \overrightarrow{E}.\overrightarrow{ds}$$

1/2

55/1/1

Page **20** of **26**

	=EA $\cos\Theta$ =200 × 0.01 × $\cos 60^{0}$ =1.0 Nm ² /C [Note: The student may do the calculation by taking Θ =30 ⁰ and get $\sqrt{3}Nm^{2}/C$ as the answer. In that case award ½ mark only for part (c)]	1/2	5
26.	(a) Derivation of the expression for the average power 3 (b) Definition of terms (i) watt less current (ii) Quality factor 1+1		
	(a) Power at any instant 't' $P=Vi$ $= (V_m sin wt)(i_m sin(wt + \varphi))$	1/2	
	$= \frac{V_m i_m}{2} (2 \sin wt \sin(wt + \varphi))$ V_i	1/2	
	$= \frac{V_m i_m}{2} \left[\cos \varphi - \cos(2wt + \varphi) \right]$ The term $\cos(2wt + \varphi)$ is time dependent and its average over a cycle is zero. Therefore average power	1/2	
	$\overline{p} = \frac{V_m i_m}{2} \cos \varphi$ $\overline{p} = \frac{V_m i_m}{\sqrt{2}\sqrt{2}} \cos \varphi$ $\overline{p} = V_{mm} i_{mm} \cos \varphi$	1/2	
	(b) (i) When no power is dissipated even through a current is flowing in the circuit, the current is then called a wattles current.		
	Alternatively The net power dissipation in a circuit containing an ideal inductor or a capacitor is zero. Therefore, the associated current is wattless current.	1	
	(ii) Q factor of LCR circuit is defined as the ratio of its resonant angular frequency (ω_0) to the band width $(2\Delta\omega)$ of the circuit.		
	$Q = \frac{\omega_0}{2\Delta\omega}$		
	$Q = \frac{\omega_0 L}{R}$		
	Alternatively Quantity factor is the ratio of rms voltage drop across inductor or the capacitor, in		
55/1/1	Page 21 of 26		

55/1/1 Page **21** of **26**

resonance condition, to the rms voltage applied to the circuit.

$$Q = \frac{(V_{rms})_L [/(V_{rms})_C]}{(V_{rms})_R}$$

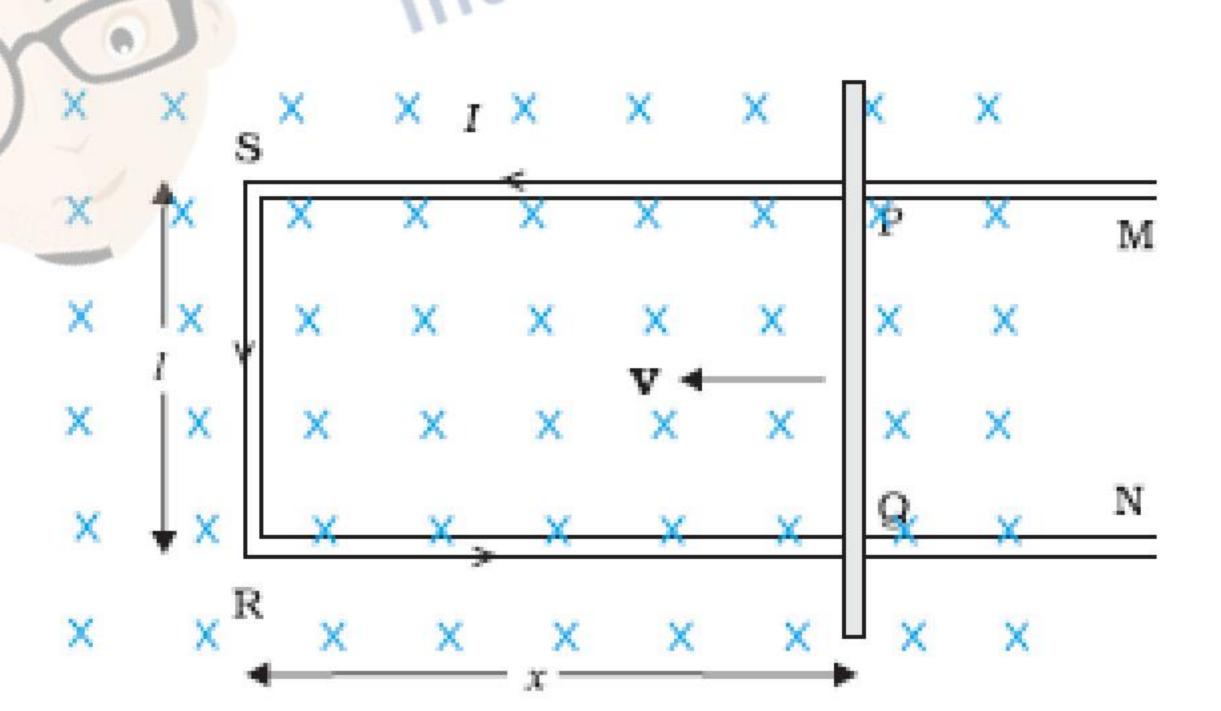
Alternatively

Quantity factor is measure of the sharpness of the resonance in LCR circuit.

Alternatively

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

1 ;


OR

- (a) Statement of Faraday's Laws
- (b) Derivation of the expression for the emf induced across the ends of a straight conductor
- (c) Derivation of Magnetic energy stored
- (a) (i) Whenever there is a change in magnetic flux linked with a coil, an emf is induced in the coil, however it lasts so long as magnetic flux keeps on changing.
 - (ii) The magnitude of the induced emf is equal to the rate of change of magnetic flux through the circuit

Alternatively

$$\varepsilon = \frac{-d\phi}{dt}$$

(b)

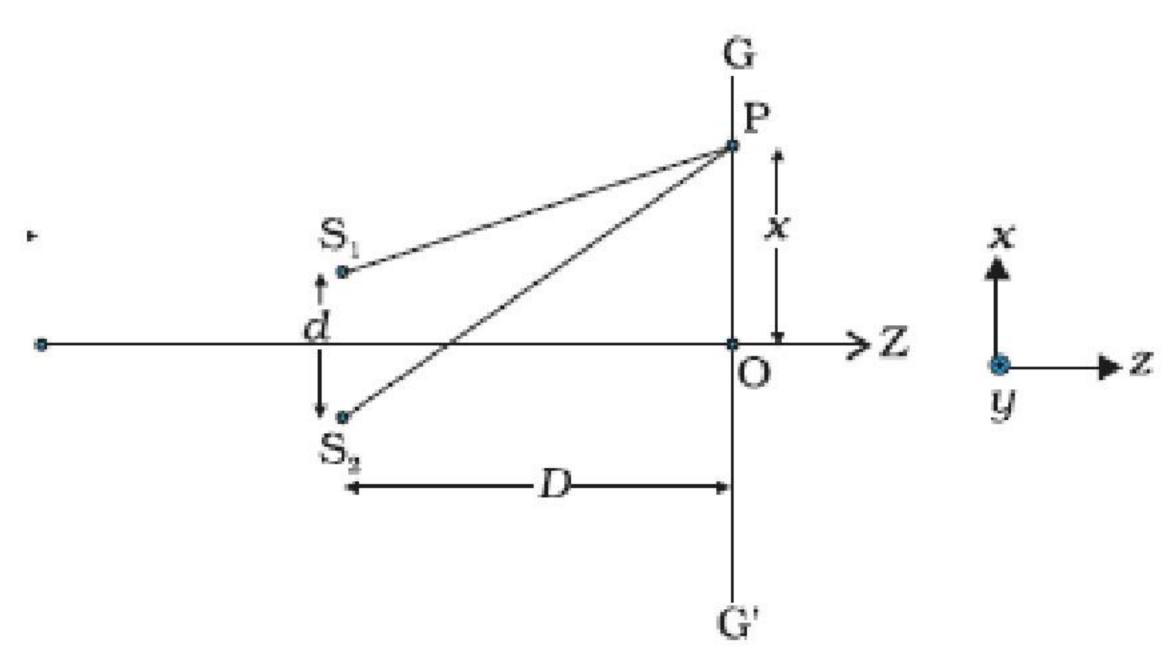
1/2

Straight conductor PQ of length 'l' is moving with velocity 'v' in uniform magnetic field B, which is perpendicular to the plane of the system.

Length RQ=x, RS=PQ=1

Instantaneous flux= (normal) field × area The magnetic flux (ϕ_B) enclosed by the loop PQRS,

1/2


 $\therefore \phi_B = B1x$

Since 'x' is changing with time, there is a change of magnetic flux. The rate of change of this magnetic flux determines the induced emf

55/1/1 Page **22** of **26**

	1		
	$\therefore e = \frac{-d\phi}{dt} = \frac{-d}{dt}(Blx)$ $= -Bl\frac{dx}{dt}$ $e = Blv$ $\operatorname{as} \frac{dx}{dt} = -v$	1/2	
	(c) Work done (that gets stored as the magnetic potential energy) when current 'I' flows in the solenoid. $dW = (e)(Idt)$ $\therefore dW = \left(L\frac{dI}{dt}\right) \cdot (Idt)$ $\therefore dW = LIdI$	1/2	
	Total work done $W=\int dW=\int LI\ dI$ $W=\frac{1}{2}L\ I^2$ For the solenoid, we have $L=\mu_0n^2Al$ and $B=\mu_0nI$	1/2	
27.	$W = \frac{1}{2} (\mu_0 n^2 A l) \left[\frac{B}{\mu_0 n} \right]^2$ $= \frac{B^2 A l}{2\mu_0}$	1/2	5
<i>L1.</i>	(a) Answer and justification (b) Explanation of the formation of interference fringes and derivation of expression of fringe width (c) Finding the intensity of light 1/2 + 1/2 1 1		
	(a) No, Because to obtain the steady interference pattern, the phase difference between the waves should remain constant with time, two independent monochromatic light sources cannot produce such light waves.	1/2	
	(b) When light waves from two coherent sources, in Young's double slit experiment, superpose at a point on the screen, they produce constructive/ destructive interference, depending on the path difference between the two waves.		
55/1/1	Page 23 of 26	1/2	
ಷ್ಯ ಕ್ಷನ್			

*These answers are meant to be used by evaluators

Path difference between the waves reaching at point P from two sources S₁ and S₂

$$S_2P - S_1P \approx \frac{xd}{D}$$

For constructive interference (i.e for nth bright fringe on the screen)

$$\frac{xd}{D} = n\lambda \qquad \text{where } n = 0, \pm 1, \pm 2, \dots \dots$$

1/2

$$\therefore x_n = \frac{n\lambda D}{d}$$

Similarly for (n+1)th bright fringe

$$x_{n+1} = \frac{(n+1)\lambda D}{d}$$

$$x_{n+1} = \frac{(n+1)\lambda$$

Fringe width $\beta = x_{n+1} - x_n$

$$=\frac{\lambda D}{d}$$

[Alternatively

Path difference for nth dark fringe on the screen

$$\frac{xd}{D} = (n + \frac{1}{2})\lambda$$

$$x_n = \frac{(n + \frac{1}{2})\lambda D}{d}$$

For (n+1)th dark fringe

$$x_{n+1} = \frac{(n + \frac{3}{2})\lambda D}{d}$$

Fringe width $\beta = x_{n+1} - x_n$

$$=\frac{\lambda D}{d}$$

 $\frac{1}{2}$

(c) The intensity at a point on the screen where waves meet with a phase difference (ϕ) , is given by

55/1/1 Page **24** of **26**

	$I = 4I_0 \cos^2 \frac{\phi}{2}$		
	Phase difference (φ) when path difference is 'x' 2π		
	$\phi = \frac{2\pi}{\lambda}.x$		
	$\therefore \text{ for } x = \lambda, \text{ we have}$ $\phi = 2\pi$		
	$\therefore \text{Intensity } I = 4I_0 cos^2 \pi = K$		
	$\therefore 4I_0 = K$		
	$\therefore I_0 = \frac{K}{4}$ Phase difference, when path difference is $\lambda/4$, is		
	$\phi' = \frac{2\pi}{\lambda} \cdot \lambda /_4 = \pi/2$	1/2	5
	$\therefore I' = 4I_0 \cos^2 \frac{\pi}{4}$		
	$=2I_0$ $=2\frac{K}{4}=\frac{K}{2}$	aso.	
	OR Review P	(ati	
	(a) Sketch of the refracted wave front (b) Verification of laws of refraction 2 (c) Estimation of speed and wavelength 1+1		
	(a) India	1	
	Incident		
	• F		
	Spherical wavefront		
	of radius f		
	(b)	1/2	
		1/2	
55/1/1	Page 25 of 26		

55/1/1 Page **25** of **26**

Incident wavefront		
Medium 1	1/2	
v_1 i v_1 i v_1 i	1/2	
v_2 v_2 Refracted wavefront	1/2	
In right triangle ABC BC		
$\sin i = \frac{BC}{AC}$ In ΔAEC	1/2	
$\sin r = \frac{AE}{AC}$		
$\frac{\sin i}{\sin r} = \frac{BC}{AE} = \frac{v_1 \tau}{v_2 \tau} = \frac{v_1}{v_2} = \mu$	1/2	
(c) Speed of yellow light inside the glass slab	mage	
$v = \frac{c}{\mu}$ $= \frac{3 \times 10^8}{1.5} m/s$ $= 2 \times 10^8 m/s$	1/2	5
Wavelength of yellow light inside the glass slab $\lambda' = \frac{\lambda}{\mu}$		
$=\frac{590}{1.5}nm$		
=393.33nm		