JEE-Main-27-06-2022-Shift-2 (Memory Based)

Chemistry

Question: Assertion: Fluorine forms only one oxo acid

Reason: It is small and electronegative

Options:

- (a) Both assertion and reason are true, reason is correct explanation of assertion.
- (b) Both assertion and reason are true, but reason is not a correct explanation of assertion.
- (c) Assertion is true, but reason is false
- (d) Assertion is false, but reason is true

Answer: (a)

Solution: Due to high electronegativity and small size, fluorine forms only one oxoacid, HOF known as fluoric (I) acid or hypofluorous acid.

Question: The gas produced by treating an aqueous solution of ammonium chloride with sodium nitrite is

Options:

- (a) N_2O
- (b) NH₃
- $(c) N_2$
- (d) Cl₂

Answer: (c)

Solution: $NH_4Cl(aq) + NaNO_2(aq) \rightarrow N_2(g) + 2H_2O(l) + NaCl(aq)$

Question: Which of the following ions have half & completely filled f-orbital respectively in lanthanides ions?

[Given Atomic No.: Eu-63, Sm-62, Tm-69, Tb-65, Yb-70, Dy-66]

Options:

- (a) Eu²⁺, Tm²⁺
- (b) Tb^{4+} , Yb^{2+}

- (c) Dy^{3+} , Yb^{3+}
- (d) Sm²⁺, Tm³⁺

Answer: (b)

Solution: Electronic configuration of $Tb^{4+} = [Xe] 4f^7$ and for $Yb^{2+} = [Xe] 4f^{14}$

Question: In 3d series, the metal having the highest negative M²⁺/M standard electrode potential is

Options:

- (a) Cu
- (b) Fe
- (c) Zn
- (d) Cr

Answer: (d)

Solution: The elements Cr has the highest negative M²⁺/M standard electrode potential (– 0.90 V).

Question: Correct order of increasing ionic radii of Na+, F-, Mg2+, O2-, N3-

Options:

- (a) $O^{2-} \le Na^+ \le F^- \le Mg^{2+} \le N^{3-}$
- (b) $N^{3-} \le Na^+ \le O^{2-} \le Mg^{2+} \le F^-$
- (c) $Mg^{2+} \le Na^+ \le F^- \le O^{2-} \le N^{3-}$
- (d) $Mg^{2+} \le N^3 \le O^2 \le Na^+ \le F^-$

Answer: (c)

Solution: The ionic radii of isoelectronic species increases with a decrease in the magnitudes of nuclear charge.

The arrangement of the given species in order of their increasing nuclear charge is as follows:

$$N^{3-} \le O^{2-} \le F^- \le Na^+ \le Mg^{2+}$$

Therefore, the arrangement of the given species in order of their increasing ionic radii is as follows: $Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$

Question: Match the following.

Column-I	Column-II	
COLUMNIA L	COLUMNITIES	

A) Antipyretic	i) Reduces pain
B) Analgesic	ii) Reduces stress
C) Tranquilizer	iii) Reduces fever
D) Antacid	iv) Reduces acidity (Smooth)

Options:

(a)
$$A \rightarrow i$$
; $B \rightarrow iv$; $C \rightarrow ii$; $D \rightarrow iii$

(b)
$$A \rightarrow iii$$
; $B \rightarrow iv$; $C \rightarrow ii$; $D \rightarrow i$

(c)
$$A \rightarrow i$$
; $B \rightarrow ii$; $C \rightarrow iii$; $D \rightarrow iv$

(d)
$$A \rightarrow iii$$
; $B \rightarrow i$; $C \rightarrow ii$; $D \rightarrow iv$

Answer: (d)

Solution:

- A) Antipyretic ⇒ Reduces fever
- B) Analgesic ⇒ Reduces pain
- C) Tranquilizer \Rightarrow Reduces stress
- D) Antacid ⇒ Reduces acidity (Smooth)

Question: Increasing order of magnetic moment

 $[FeF_6]^{3-}$, $[Fe(CN)_6]^{3-}$, $[MnCl_6]^{3-}$ (high spin), $[Mn(CN)_6]^{3-}$

Options:

(a)
$$[Fe(CN)_6]^{3-} \le [Mn(CN)_6]^{3-} \le [MnCl_6]^{3-} \le [FeF_6]^{3-}$$

(b)
$$[Fe(CN)_6]^{3-} \le [Mn(CN)_6]^{3-} \le [FeF_6]^{3-} \le [MnCl_6]^{3-}$$

(c)
$$[MnCl_6]^{3-} \le [Mn(CN)_6]^{3-} \le [FeF_6]^{3-} \le [Fe(CN)_6]^{3-}$$

(d)
$$[FeF_6]^{3-} \le [Mn(CN)_6]^{3-} \le [Fe(CN)_6]^{3-} \le [MnCl_6]^{3-}$$

Answer: (a)

Solution:

$$[FeF_6]^{3-}$$

$$\text{Fe}^{3+} \Rightarrow [\text{Ar}] 3\text{d}^5$$

No. of unpaired electrons = 5

As F is a weak field ligand

$$\mu = \sqrt{n(n+2)} = \sqrt{5(5+2)} = 5.92 \text{ BM} \dots (1)$$

 $[Fe(CN)_{6}]^{3-}$

$$Fe^{3+} \Rightarrow [Ar] 3d^5$$

No. of unpaired electrons = 1

As CN⁻ is a strong field ligand

$$\mu = \sqrt{n(n+2)} = \sqrt{1(1+2)} = 1.73 \text{ BM}$$

 $[MnCl_6]^{3-}$

$$Mn^{3+} \Rightarrow [Ar] 3d^4$$

No. of unpaired electrons = 4

As Cl- is a weak field ligand

$$\mu = \sqrt{n(n+2)} = \sqrt{4(4+2)} = 4.89 \text{ BM}$$

 $[Mn(CN)_6]^{3-}$

$$Mn^{3+} \Rightarrow 3d^4$$

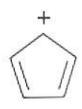
No. of unpaired electrons = 2

As CN⁻ is a strong field ligand

$$\mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = 2.87 \text{ BM}$$

Increasing order of magnetic moment

$$[Fe(CN)_6]^{3-} \le [Mn(CN)_6]^{3-} \le [MnCl_6]^{3-} \le [FeF_6]^{3-}$$


Question: Which of the following species is most stable?

Options:

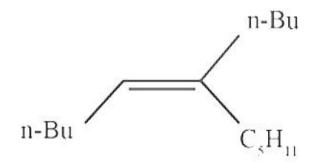
(a)

(b

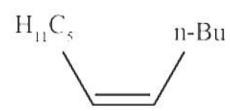
(c)

(d)

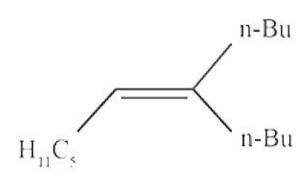
Answer: (d)


Solution: Due to aromaticity, most stable species is (d).

Question: Major product is


n-Bu-
$$\equiv$$
 $\frac{\text{(i) n-BuLi}}{\text{n-C}_5 \text{H}_{11} \text{Cl}}$?

Options:


(a)

(b)

(c)

(d)

Answer: (b)

Solution:

n-Bu—
$$\equiv \frac{\text{n-BuLi}}{\text{n-C}_{5}\text{H}_{11}\text{Cl}}$$
 n-Bu— $\equiv -\text{C}_{5}\text{H}_{11}$ lindlar catalyst, H₂

n-Bu

(cis-alkene)

Question: What is the monomer of Buna-N?

Options:

(a) 1,3-Butadiene and Acrylonitrile

(b) 2-Chloro-1,3-butadiene

(c) 1,3-Butadiene and Styrene

(d) Phenol and formaldehyde

Answer: (a)

Solution:

n CH₂ = CH-CH=CH₂ + nCH₂ = CH

1,3-Butadiene

Acrylonitrile

$$\begin{array}{c}
CN \\
Copolymerisation \\
CN \\
CH_2-CH = CH-CH_2-CH_2-CH_2
\end{array}$$

$$\begin{array}{c}
CN \\
CN \\
CH_2-CH = CH-CH_2-CH_2-CH_2-CH_2
\end{array}$$
Buna-N

Question: pH of 10^{-3} M NaOH is

Options:

(a) 11

(b) 9

(c)7

(d) 12

Answer: (a)

Solution:

$$[OH^-] = 10^{-3} M$$

$$pOH = -log_{10}[OH^{-}]$$

$$pOH = -log_{10}10^{-3} = -(-3log_{10}10) = 3$$

$$pH + pOH = 14 \text{ at } 298 \text{ K}$$

$$pH = 14 - 3 = 11$$

Question: Consider the following reaction,

$$\frac{\text{(i) CHCl}_3 + \text{aq. NaOH}}{\text{(ii) H}^+}$$

The major product formed in the above reaction is:

Options:

(a)

(b)

(c)

(d)

Answer: (c)

Solution:

Question: Match the reagent with organic conversions.

Column-I	Column-II
(i)	(P) Na ₂ Cr ₂ O ₇ /H ⁺
OH	
(ii)	(Q) Zn
OH O	408375958
(iii)	(R) FeCl ₃

Options:

(a) i
$$\rightarrow$$
 Q; ii \rightarrow P; iii \rightarrow S; iv \rightarrow R

(b)
$$i \rightarrow P$$
; $ii \rightarrow Q$; $iii \rightarrow R$; $iv \rightarrow S$

(c)
$$i \rightarrow S$$
; $ii \rightarrow R$; $iii \rightarrow Q$; $iv \rightarrow P$

(d)
$$i \rightarrow R$$
; $ii \rightarrow P$; $iii \rightarrow S$; $iv \rightarrow Q$

Answer: (a)

Solution:

Question: Match the acid radicals present in column I with their characteristic observation in column II

Column-I	Column-II
i) CO ²⁻ ₃	(P) Brisk Effervesence
ii) NO 3	(Q) White precipitate
iii) SO ₄ ²⁻	(R) Brown ring
iv) S ²⁻	(S) Rotten egg smell

Options:

(a)
$$i \rightarrow S$$
; $ii \rightarrow R$; $iii \rightarrow Q$; $iv \rightarrow P$

(b)
$$i \rightarrow P$$
; $ii \rightarrow Q$; $iii \rightarrow R$; $iv \rightarrow S$

(c)
$$i \rightarrow P$$
; $ii \rightarrow R$; $iii \rightarrow Q$; $iv \rightarrow S$

(d)
$$i \rightarrow P$$
; $ii \rightarrow R$; $iii \rightarrow S$; $iv \rightarrow Q$

Answer: (c)

Solution:

i) $CO_3^{2-} \Rightarrow$ Brisk Effervesence

ii) $NO_3^- \Rightarrow Brown ring$

iii) $SO_4^{2-} \Rightarrow$ White precipitate

iv) $S^{2-} \Rightarrow$ Rotten egg smell

Question: Statement 1: In extraction of gold, the oxidation state of gold in the cyanide complex formed is +3.

Statement 2: When the cyanide complex is treated with zinc, Zn gets oxidised to +2 state.

Options:

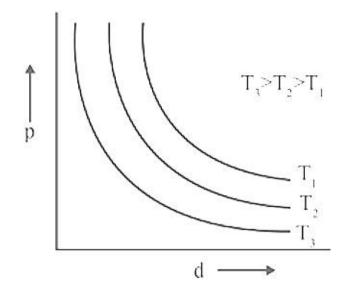
- (a) Statement 1 and statement 2 both are correct.
- (b) Statement 1 is correct but statement 2 is wrong.
- (c) Statement 1 is wrong but statement 2 is correct.
- (d) Statement 1 and statement 2 both are wrong.

Answer: (c)

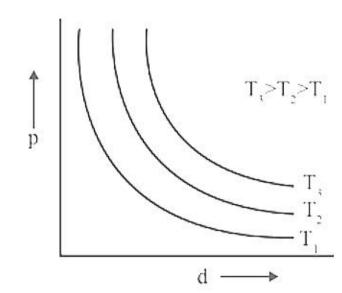
Solution:

$$4Au(s) + 8CN^{-}(aq) + 2H_2O(aq) + O_2(g) \rightarrow 4[Au(CN)_2]^{-}(aq) + 4OH^{-}(aq)$$

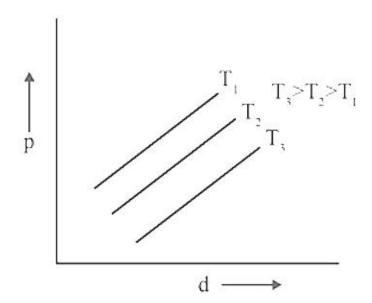
$$2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$$



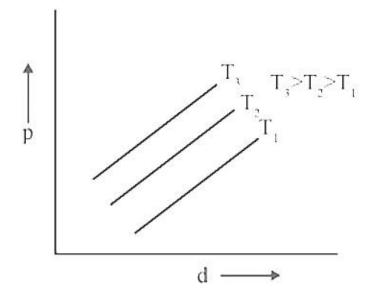
Oxidation state of Gold in complex $[Au(CN)_2]^-$ is +1 and oxidation state of Zn in Zn complex is +2.


Question: Which of the following curve is correct for an ideal gas?

Options:


(a)

(b)



(c)

(d)

Answer: (d)

Solution:

 $PM = dRT : P \propto d \cdot T$

So, curve is linear and $T_3 > T_2 > T_1$

Question: In the stratospheric clouds, the hydrolysis of chlorine nitrate gives product A and B and also when it reacts with HCl it gives product B and C. What is Product A, B and C?

Options:

- (a) HOCl, HNO₃, Cl₂
- (b) Cl₂, HNO₃, HOCl
- (c) HClO₂, HNO₂, HOCl
- (d) HOCl, HNO₂, Cl₂O

Answer: (a)

Solution:

$$ClONO_2(g) + H_2O(g) \rightarrow HOCl(g) + HNO_3(g)$$

(A)

$$ClONO_2(g) + HCl(g) \rightarrow Cl_2(g) + HNO_3(g)$$

(C) (B)

