Booklet No. : ## FT - 16 # Food Technology | Duration of Test : 2 Hours | | Max. Marks : 120 | |----------------------------|----------------------|----------------------| | | Hall Ticket No. | | | Name of the Candidate : | | | | Date of Examination : | OMR Answer Sheet No. | ,: | | Signature of the Candidate | Signature | e of the Invigilator | ### INSTRUCTIONS - This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes - Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer. - 3 Each question carries one mark. There are no negative marks for wrong answers. - This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet. - Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only. - Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully. - OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall - 8 Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall. - 9. No part of the Booklet should be detached under any circumstances. - 10 The seal of the Booklet should be opened only after signal/hell is given. FT-16-A ### FOOD TECHNOLOGY (F1) | 1. | The p | orgment type in | brinja | l is | | | | | | |-------|-----------|-------------------|-------------|-------------------|----------------|---------------|--------|--------------|---| | | (A) | Carotenoid | (B) | Anthocyanin | (C) | Caramel | (D) | Chlorophyll | | | 2. | Phyto | ol chain is prese | ent in | | | | | | | | | (A) | | | Chlaranhull | 100 | Usuvalskin | (D) | Discoursing | | | | (.3) | Carotenoius | (D) | Chlorophyll | (C) | пенодюен | (12) | Tuycocyanin | | | 3. | Whic | h amino acid h | as an a | aromatic pheno | lic sid | e chain? | | | | | | (A) | Histidine | (B) | Cysteine | (C) | Tyrosine | (I) | Tryptophan | | | 4. | Hops | are used in the | mann | facture of | | | | | | | (8.5) | 111 00000 | Wine | | Beer | (*) | Vinegar | (1) | All of these | | | | | | | | | 170 | | | | | 5. | Prote | ins taking part | in the | perception of i | mage | are | | | | | | (A) | Rhodopsin ar | nd pep | sin | (\mathbf{B}) | Rhodopsin a | nd 100 | łopsin | | | | (C) | Pepsin and io | dopsii | 1 | (1) | All the three | as ab | ove | | | | | | | | | | | | | | 6. | | emulsifier is an | | | | | | | | | | (A) | Glyceryl mor | 10Sleat | rate | | Sodram stear | | | | | | (C) | Lecithin | | | (D) | None of the | above | | | | 7. | Bacte | eria do not surv | ive in | highly salted p | ickles | because | | | | | | | Bacteria are l | | | | | | | | | | (B) | Salt inhibits i | | | | | | | | | | (C) | | | ain essentia! nu | urient | | | | | | | (D) | Bacteria do n | 8. | Aflat | oxin is a type o | ď | | | | | | | | | (A) | Plant toxin | | | (B) | Fungal toxin | | | | | | (C) | Bacterial tox | in | | (D) | None of the | above | | | | 9. | Poly | aromatic hydro | earboi | ns are actione of | | | | | | | 85.50 | (A) | Plant toxin | - 341 [-7/] | are a type of | (B) | Fungal toxin | | | | | | (C) | Bacterial tox | in | | (D) | Environment | | ntaminant | | | Set - | | Dacterial (O.) | 11.3 | | 2 | Literation | ai coi | pentillinit | F | | oct. | /1 | | | | ** | | | | Г | FT | IU. | WILL | FOI THE TOHOW I | ny na | s по ащенуще (| и кен | nue group | | | |-------|--------------------|--|---------|----------------------------------|---------|---------------|----------|----------------------------| | | (A) | Fructose | (B) | Glucose | (C) | Sucrose | (D) | Maltose | | | | | | | | | | | | 11. | Adequ | racy of blanchi | ng of | fruits and vege | table s | milk is gene | rally ju | odged by | | | (A) | Amylase test | | | (B) | Lipase test | | | | | (C) | Peroxidase tes | st | | (D) | Phosphatase | test | | | | | | | | | | | | | 12. | This s | weetener is a p | rotein | Áve | | | | | | | (A) | Saccharin | (B) | Monellin | (C) | Stevioside | (D) | Dulein | | | | | | | | | | | | 13. | The b | ioactive compo | und ii | n pepper is | | | | | | | (A) | Piperidine | (B) | Piperizine | 1() | Piperine | (D) | Piperidizine | | | | 0.000 • 1.000 0.00 | | 500 - 1 | | 500*1 S205555 | | 1000 * Gallery Tolkerant | | 14. | Which | ı fatty acid is e | ssentia | al and has three | e doub | de bonds | | | | | | Linoleic acid | | | | Linotenic ac | id | | | | | Arachidonic a | cid | | (1) | None of the | above | | | | | | | | | | | | | 15. | The p | rimary structur | e of a | protein is due | to | | | | | | 14.420.000.000.000 | Hydrogen bor | | • | | Peptide bon | ds | | | | | S-S linkage | 0.00720 | | | Ionic bonds | | | | | | | | | | | | | | 16. | This i | s not a metalloj | orotei | 1: | | | | | | | | Phytochrome | | | (C) | Glycoprotei | n (D) | Ferrodoxine | | | 9.34 | 8 | , | | | | | | | 17. | This | ompound is res | sponsi | ble for buter to | iste in | erane fruit | | | | | (A) | Limonin | | | | (A) (B) | (D) | Both (B) & (C) | | | 1. 1 | | (| | | | | Distribution (C) | | 18. | Enzyr | ne A has a K | of 10: | ² M. while en | nme I | R bas a K of | 10-4 N | M Which fact is true? | | | 220 | 07.5% | | | | 5355 | | | | | (A)
(B) | | | iger affinity to | | | | | | | | | | onger affinity (
Goire Coorbo | | | Enzy | ne D. | | | (C) | | | ffinity for the : | | | | | | | (D) | K _m is not reta | ted to | the affinity of | the su | ostrate. | | | | | N20 32 | WY 00 88 00 | | 9 9H9 40H | | | | | | 19. | This g | lycoside has a | sterox | dal backbone : | | | | | | | (A) | Saponins | | | (B) | Naringin | | | | | (C) | Anthocyanin | | | (D) | None of the | above | | | Set - | A | | | | 3 | | | FT | | w. | Cocn | zynics fatta a | na rai | Date actived | пош у | namm | | | | |-------|--------|-------------------------------|----------|----------------------------|----------|----------------|---------|------------------|-----| | | (A) | B_{i} | (B) | B_2 | (C) | B ₆ | (D) | B_{12} | | | | 70. | 7 5 50 | | | | | | | | | 21. | | sugar can be to | | Course September 1900/2001 | | | | | | | | (A) | 1.actose | (B) | Maltose | (C) | Fructose | (D) | Glucose | | | 22. | Whic | h of these vita | mins 15 | sulphur cont | aining : | 1 | | | | | | (A) | Folic acid | | | (B) | Pantothenic | acid | | | | | (C) | Biotin | | | (D) | All of the al | NTNU. | | | | 23. | D.G. | iency of this v | itamin | rambe in as | arci al | san eda a | | | | | | | | | | | | 115 | T | | | | (A) | A | (B) | V | 1(_) | Б | (1) | E. | | | 24. | Anae | robic respiration | on of a | nimals produ | ces | | | | | | | | | | | | Lactic acid - | + wate | er | | | | (C) | $C_2H_5OH + O$
Glucose + O | _ | | iD) | CO + H O | | | | | | 11 | Oldeose 1 O | 2 | | | CO2 11120 | | | | | 25. | A goo | od quality ice- | cream : | should have | | | | | | | | (A) | Small number | er of sr | nall sized ice | crystals | | | | | | | (B) | Small numbe | er of la | rge sized ice | crystals | | | | | | | (C) | Large numbe | er of sr | nall sized ice | crystals | | | | | | | (D) | Large numbe | er of la | rge sized ice | crystals | | | | | | 26. | Stalin | ig of <i>idlis</i> is du | ie to | | | | | | | | | (A) | Denaturation | | stein | (B) | Gelatinizatio | in of s | ator b | | | | (C) | | | | | All of the ab | | 1,564 61- | | | | | | | | | | | | | | 27. | This p | polysaccharide | is pre | sent in oats: | | | | | | | | (A) | α-Glucan | (B) | β-Glucan | (C) | a, β-Glucan | (D) | All of the above | | | 28. | Whie | h sucar will oi | ve mai | cimum Maill: | ard brow | ming on react | ion w | ith amino acid ? | | | end t | (A) | Glucose | | Fructose | | Lactose | | Sucrose | | | 2,,4 | A | | | | 4 | | | | FT | | oct - | 14 | | | | 4 | | | | L I | | 49. | Suga | rs mainty present in noney are | | | |-------|----------------|---|----------------|--| | | (A) | Glucose and galactose | (B) | Galactose and fructose | | | (C) | Glucose and fructose | (D) | All the three sugars as above | | 30. | 28°B | sugar solution can be performed by | y addin | g | | | (A) | 28g sugar in 72 ml water | (B) | 28g sugar in 1L of water | | | (C) | 28g sugar in 100 ml water | (D) | None of the above | | 31. | Spec | ific gravity can be used to estimate | | | | | (A) | Protein in a beverage | (B) | Minerals in water | | | (C) | Alcohol in beer and wine | ([) | None of the above | | 32. | Nutra | aceuticals associated with Age Rela | ted Ma | icular Degeneration are | | | (A) | Lycopene and lutein | (\mathbf{B}) | Zeavanthin and lycopene | | | (C) | Lutein and zeaxanthin | 1]): | All the three as above | | 33. | This | product has the lowest water activit | y: | | | | (A) | Watermelon (B) Jam | (C) | Potatoes (D) Tee trozen at =50°C | | 34. | Conc | hing and refining are operations in | rolved | in. | | | (A) | Coffee processing | (B) | Cocoa processing | | | (C) | Spice processing | (D) | None of the above | | 35. | | ad samples A and B have a bulk defollowing is true? | ensity | of 0.430 and 0.330, respectively. Which of | | | (\mathbf{A}) | Texture of A is softer than B. | (B) | Texture of B is softer than A | | | (C) | Texture of A and B are similar. | (D) | Bulk density is not correlated to texture. | | 36. | Over | run in ice-cream is generally | | | | | (A) | 10-40% (B) 40-70% | (C) | 90-100℃ (D) ~200% | | 37. | A pec | culiar amino acid present in bacteria | al cell | wall is | | | (A) | Glutamate | (B) | Alanine | | | (C) | Diaminopimelic acid | (D) | Aspartate | | Set - | A | | 5 | FI | | | Tir dos | eptic processii | ng. Stermiza | aron or pe | revaging | t material is | (terne) | ·u | | |-------|---------|-----------------|----------------|-------------|-----------|---------------|----------|--------------|----| | | (A) | by passing t | hrough an | alcohol ba | ath | | | | | | | (B) | by passing t | ınder UV 1 | amp | | | | | | | | (C) | by passing t | hrough hye | drogen pe | roxide | | | | | | | (D) | by passing t | hrough IR | lamp | | | | | | | 39. | Carbo | onation of bev | erages is b | est done a | at | | | | | | | (A) | 10 °C | (B) 20 |) °C | (C) | 30 °C | (D) | 40 °C | | | 40, | Mass | spectrometry | is based o | n | | | | | | | | (A) | Charge of th | he molecul | 2 | 1B) | Mass of th | ie molec | rule | | | | (C) | Mass/Charg | e ratio | | ([)) | None of the | ie above | | | | 41. | This | polysaccharid | e is of mici | robial orig | in | | | | | | | (A) | Guar gum | | | (B) | Gum trag. | icanth | | | | | (C) | Xanthan | | | (D) | Gum kara | ya | | | | 42. | Oleon | resins are obta | ined from | | | | | | | | | (A) | Oilseeds | (B) O | ils | (C) | Seeds | (D) | Spices | | | 43. | Freez | ing takes long | ger than the | wing und | er other | wise simila | r condit | ions because | | | | (A) | Thermal cor | nductivity | it ice is n | ore that | that of liqu | uid wate | ٠r | | | | (B) | Density of i | ce is less tl | ian that of | f liquid | water | | | | | | (C) | Specific hea | it of ice is l | less than t | hat of li | quid water | | | | | | (D) | All the abov | /e | | | | | | | | 44. | This | water is most | suitable fo | r carbonat | ion of b | everages : | | | | | | (A) | Soft water | | | (B) | Mildly ha | rd | | | | | (C) | Medium hai | rd | | (D) | Very hard | | | | | 45. | The c | olour of black | c tea is due | to | | | | | | | | (A) | Oxidation o | f carbohyd | rates | (B) | Oxidation | of lipid | S | | | | (C) | Oxidation o | f chloroph; | VII | (D) | None of th | ne above | 1 | | | Set - | A | | | | 6 | | | | FT | | | | | | | | | | | | | 40, | LIIIU | ent nom mis mausify win have mas | amum | UUD. | | |-------|-------|--------------------------------------|---------|-----------------------------|----| | | (A) | Orange juice processing | (B) | Whey from cheese processing | | | | (C) | Bread processing | (D) | Black tea processing | | | 47. | Paste | urization of milk is achieved by hea | ting | | | | | (A) | 72 °C for 15 seconds | (B) | 72 °C for 30 seconds | | | | (C) | 82 °C for 15 seconds | (D) | 82 °C for 30 seconds | | | 48. | This | oolymer is biodegradable : | | | | | | (A) | Polypropylene | (B) | Polyester | | | | (C) | Polylactic acid | ı[]ı | Polyvinyl chloride | | | 49. | This | packaging material would have low | esi W | VTR | | | | (A) | Paper (B) Glass | (C) | Polyethylene (D) Polyester | | | 50. | Sauer | kraut is a type of | | | | | | (A) | Meat | +B + | Fermented cabbage | | | | (C) | Fermented cereal based product | 1[]: | Wine | | | 51. | Mayo | onnaise is an emulsion of the type | | | | | | (A) | Water-in-oil | (B) | Oil-in-water | | | | (C) | Water-in-oil-in-water | (D) | Oil-in-water-in-rol | | | 52. | The r | heological behaviour of tomato kete | chup is | ; | | | | (A) | Newtonian | (B) | Dilatant fluid | | | | (C) | Pseudoplastic fluid | (D) | Bingham plastic | | | 53. | This: | spectrophotometry is used for analy | sis of | minerals | | | | (A) | Flame spectrophotometer | | | | | | (B) | Mass spectrophotometer | | | | | | (C) | | eter | | | | | (D) | All of the above | | | | | 54. | | odextrins are characterized in terms | | | | | | (A) | Dextrinising Units | (B) | Dextrose Equivalent | | | | (C) | Dextrinising Equivalent | (D) | All of the above | | | Set - | A | | 7 | | FT | | 22. | тие р | пистріє от гуорії | nization is dascu o | 11 | | | | | |-------|--------|---------------------|-----------------------|----------------|-----------------|--------|--------------|----| | | (A) | Boiling of wate | Γ | (B) | Sublimation | of w. | ter | | | | (C) | Freezing of wat | er | (D) | All of the abo | ove | | | | 56. | Gossy | pol is a toxic cor | istituent in this oil | 1 | | | | | | | (A) | Groundmut (| B) Rapeseed | (C) | Cottonseed | (D) | Jatropa | | | 57. | This i | s an assay for ant | ioxidant activity. | | | | | | | | (A) | DPPH assay (| B) FRAP assay | (C) | ABTS assay | (D) | All of these | | | 58. | Olive | oil is a rich sourc | ce of | | | | | | | | (A) | Polyunsaturatec | l fatty acids | (\mathbf{B}) | Saturated fat | ty aci | ds | | | | (C) | Monounsaturate | ed fatty acids | (D) | None of the | above | | | | 59. | The b | ioactive nutraceu | tical component p | resent | in rice bran oi | lis | | | | | (A) | Vitamin A (| B) Coenzyme A | (C) | Phytosterols | (I) | Oryzanol | | | | | | | | | | | | | 60. | А дос | d frying oil shou | ld have | | | | | | | | (A) | Low smoke poi | nt and low flash po | oint | | | | | | | (B) | High smoke por | int and high flash p | oint | | | | | | | (C) | Low smoke poi | nt and high flash p | oint | | | | | | | (D) | High smoke po | int and low flash p | oint | | | | | | | | | | | | | | | | 61. | Sodiu | | processing brings | about | | | | | | | (A) | Formation of ni | | | | | | | | | (B) | Retention of co | lour | | | | | | | | (C) | Inhibition of C/ | ostralium botalinu | m | | | | | | | (D) | All of the above | 2 | | | | | | | 62. | As co | mpared to cocom | ut oil, groundnut o | il has | | | | | | | (A) | Low saponification | tion value and low | iodin | e value | | | | | | (B) | High saponifica | tion value and hig | h iodi | ne value | | | | | | (C) | High saponifica | tion value and low | iodin | ie value | | | | | | (D) | Low saponifica | tion value and high | ı iodir | ie value | | | | | Set - | A | | | 8 | | | | FT | | | | | | | | | | | | uə. | vitan | nins not prese | ասեթ | am 1000s are | | | | | | |-------|--------|------------------|-----------|------------------|----------------|------------------|-------------------|---------------------|----| | | (A) | Vitamins A. | D and | E | (B) | Vitamins A. | K and | $1\mathrm{B}_+$ | | | | (C) | Vitamins A. | D and | B ₁₂ | (D) | Vitamins D. | B ₁ an | nd B ₁₂ | | | 64. | β-An | ıylase cleaves | starch | to | | | | | | | | (A) | Głucose | (B) | Maltose | (C) | Limit dextri | n(D) | All of these | | | 65. | These | e amino acids | give a y | yellow colour (| m reac | ction with anil | ine hy | vdrogen phthalate : | | | | (A) | Proline and | valine | | (\mathbf{R}) | Value and h | ydro | (yproline | | | | (C) | 1.eucine and | proline | 2 | (1) | Proline and I | ivito | xyproline | | | 66. | This | polysaecharid | e is a po | olymer of galet | uronk | acid: | | | | | | (A) | Cellulose | (B) | Chitin | (C) | Pestin | (1) | Amylopectin | | | | | | | | | | | | | | 67. | The I | imiting amino | acid in | cereals is: | | | | | | | | (A) | 1.ysine | (B) | Methionine | (C) | Valme | ([)) | Leucine | | | | | | | | | | | | | | 68. | This p | protein is a tra | insport | protein: | | | | | | | | (A) | Collagen | (B) | Hemoglobin | (C) | Hordein | (\square) | Glycoprotein | | | | | | | | | | | | | | 69. | | amino acid is | • | | | | | | | | | (A) | Tyrosine | (B) | Methionine | (C) | Tryptophan | (D) | Arginine | | | 70. | This | amino acid is | the pred | cursor of ethyle | ene in | fruits : | | | | | | (A) | Cystine | (B) | Valine | (C) | Histidine | (D) | Methionine | | | 71. | Paste | urization of m | nlk is ai | insed to inhibit | | | | | | | | (A) | Bacillus sub | tilis | | (B) | Salmonella 1 | yphin | nteritem | | | | (C) | Mycobacter | um rub | verculosis | (D) | Vibrio chole | rae | | | | 72. | Durin | ig cooking, ric | e unde | rgoes | | | | | | | | (A) | Hydrolysis | of stare | h | (B) | Gelatinizatio | on of s | starch | | | | (C) | Retrogradat | ion of s | tarch | (D) | All of the above | | | | | Set - | A | | | | 9 | | | | FT | | Set - | A | | | | 10 | | | | FT | |-------|--------------|--------------------------------|---------------|---------------------------------|---------|----------------------------|--------|---------------------|----| | | (A) | Proteins | (B) | Carbohydrate | s(C) | Polyphenois | (D) | All of these | | | 82. | The a | stringency in te | ea is at | ttributed to | | | | | | | | (A) | Calcium | (B) | Sodium | (C) | Iodine | (D) | Magnesium | | | 81. | This i | nineral is assoc | | | | | | | | | | (C) | Głucose and g | galacti | ose | (D) | All of the ab | 97.0 | | | | 80. | (A) | | nanne | nse | (B) | Galactose ar | ĸl mai | тполе | | | 19. | (A) | s an indicator c
Uric acid | | Citire acid | | | | | | | 70 | | 1 1 P 10 | | | | | | | | | | (D) | All of the abo | | | | 1 | | | | | | (C) | | | wheat not clea | | operly | | | | | | (A)
(B) | | | ed with microc
sprouted whea | , 850 | 1115 | | | | | 78. | | insoluble ash in | | | | | | | | | | | | | | | - | | | | | 77. | | eficiency of thi
Folic acid | s vita
(B) | 7.7 | | r megaloblast
B s | | mia
All of these | | | | (2) | Пуцгорновіс | 45500 | iations | (12) | An or the ab | 010 | | | | | (A)
(C) | Hydrogen bor
Hydrophobic | | iations | | Peptide bone All of the ab | | | | | 76. | | dary structure | | rotein is due to | | D | ř. | | | | | (A) | Pectin | (B) | Chitin | (C) | Chitosan | (D) | Cellulin | | | 75. | This p | oolysaccharide | is pres | sent in the exo: | skeleto | on of prawns a | and er | abs : | | | 74. | A pne
(A) | spholipid prese
Phytosterol | | Cholesterol | (C) | Lecithin | (D) | All of these | | | 74 | 1 ab | ook din Lara | ont in | a a reall as | | | | | | | | | Sugar and act | | | | All the three | | ove | | | | | Pectin and su | | | (B) | Pectin and a | cid | | | | 10. | THE R | exture in jams i | s que | 10 | | | | | | | oo, | 11118 0 | can work as a c | ocoa t | outter Suosinut | ۲. | | | | | |-------|---------|--|---------|--|----------------|---------------|---------|--------------|----| | | (A) | Coconut oil | | | (B) | Hydrogenatt | ed ve | getable fat | | | | (C) | Mango kerne | l fat | | (1)) | All of the ab | ove | | | | 84. | This s | starch has the b | iggest | size among th | e follo | wing: | | | | | | (A) | Rice | (B) | Wheat | (C) | Potato | (D) | Corn | | | 85. | A dia | betic would bei | nefit n | nost from | | | | | | | | (A) | Food having | low G | I | (B) | Food having | low | holesterol | | | | (C) | Food having | low so | dium | (1) | All of the ab | 175 | | | | 86. | Ajino | moto is chemic | ally | | | | | | | | | (A) | Monosodium | aspar | tate | (\mathbf{B}) | Monosodiun | n gluta | anxite | | | | (C) | Disodium asp | artate | | (\prod) | Disodium gl | utama | ite | | | 87. | Amor | ng the following | g, this | is the richest s | source | of vitamin C | 9 | | | | | (A) | 17 m | 700 | Amla juice | | | | Litchi juice | | | 88. | The h | ydrocolloid sho | owing | maximum hys | teresis | 18 1 | | | | | | (A) | Gelatin | | Alginate | | | (D) | Starch | | | 89. | Tetra | pyrrole structur | e is a | anmon betwee | 'n | | | | | | ~~. | | Chlorophyll a | | | | Haemoglobi | n and | lycopene | | | | | Chlorophyll a | | 7. T. | | | | 8-4 | | | | | 00.560 (±00.50000 ♣ 10.5 ≠ 00.500) (| | Walter Control of the | | | | | | | 90. | The c | o-factor for the | enzyı | me polypheno! | oxida | se is | | | | | | (A) | Magnesium | (B) | Iron | (C) | Zinc | (D) | Copper | | | 91. | Const | ituents involve | d in th | ne formation of | f nitros | samines are | | | | | | (A) | Amino acids | and ni | trate | (B) | Secondary a | mines | and nitrate | | | | (C) | Secondary an | nines a | and nitrite | (D) | Amino acids | s and r | nitrite | | | 92. | Vitan | un involved in | synthe | esis of collage | n 15 | | | | | | | | Pantothenic a | | an a | (B) | Folic acid | | | | | | (C) | Vitamin C | | | (D) | Riboflavin | | | | | Set - | A | | | | 11 | | | | FT | | 73, | Annu. | o acids essenii | JI 101 I | шашу ше | | | | |-------|-------|-------------------------------------|----------|------------------------|---------------------|-----------------------|---------------------------| | | (A) | Arginine and | methi | onine | (B) | Histidine and met | hionine | | | (C) | Arginine and | histid | ine | $(\mathrm{D} \cdot$ | Arginine, methior | nine and histidine | | | | | | | | | | | 94. | The a | mino acids vita | al in fu | nctionality of | gluten | are | | | | (A) | Lysine and e | ysteino | | (B) | Cysteine and cyst | ine | | | (C) | Cystine and I | ysine | | (D) | All the three as ab | ove | | 95. | Hydro | ocolloid showi | ng thei | mally reversib | le, tra | nsparent and elastic | gelis | | | 38 | Agar | | 87 | | Carrageenan (D) | | | | 88.16 | | | S 19350 | 2 | | | | 96. | Hydro | ocolloid having | | eh: | | | | | | (A) | Guar gum | (B) | Gum Arabic | (C) | Gum karaya (D) | Gum tragacanth | | | | | | | | | | | 97. | This | chromatograph | y is ge | nerally used fo | r anal | vsis of fatty acid co | omposition in toods | | | (A) | High Pressur | e Liqu | id Chromatogr | aphy | | | | | (B) | Gas Chromat | ograpi | ny | | | | | | (C) | Thin Layer C | hroma | tographty | | | | | | (D) | Supercritical | Fluid | Chiomatograpi | hy | | | | 98. | The v | itamin injected | l in ne | wborns is | | | | | | (A) | Vitamin C | (B) | Vitamin B ₁ | (C) | Vitaniin K (D) | Vitamin A | | | | | | | | | | | 99. | | iemic index is:
least affected b | | sure of the amo | sunt o | f glucose released p | ostprandial and is likely | | | (A) | Carbohydrate | type (| or content in fo | iod | | | | | (B) | Fat content in | ı food | | | | | | | (C) | Soluble fiber | conte | nt in food | | | | | | (D) | Mineral conto | ent in 1 | food | | | | | Set - | A | | | | 12 | | FT | | rou. | тие о | the objective of fermening a food substrate is to | | | | | | | | | |-------|--|--|--|----------------------------|---|----|--|--|--|--| | | (A) | Improve the sensor | y properties of th | ie fo | food | | | | | | | | (B) | Increase the nutrition | anal quality of fo | od | f. | | | | | | | | (C) | Extend the storage | period | | | | | | | | | | (D) | All of the above | | | | | | | | | | 101. | Food | safety and Standards | Act, 2006 conta | ins | s number of chapters. | | | | | | | | (A) | A 2007 1550 | XI (| | | | | | | | | 102 | NIADI | , stands for | | | | | | | | | | 102. | (A) | DEVENT OF THE PERSON PE | Donal for Library | (B) National Accreditation Board for Testing and Calibration of Laboratories (C) National Accreditation Board for Testing and Certification of Laboratories | (D) | National Analytical | Board for Testii | ug al | and Calibration of Laboratories | | | | | | | 103. | 103. If the test reports for the sample of analysis are found to be at variance, then de officer shall send one part of sample to | | | | | | | | | | | | (A) | Referral Laboratory | ¢ i | $\mathbf{B}_{\mathcal{F}}$ | Food Analyst | | | | | | | | (C) | FSSAI | | D) | Central Laboratory | | | | | | | 104. | Barric
harms | ers to Trade (SPS
onization of food star | and TBT Ag
idards. | reen | and Phytosanitary Measures and on Technic
ements) both encourage the internation | | | | | | | | (A) | Uganda Round Agr | | В) |) Uruguay Round Agreement | | | | | | | | (C) | Zurich Round Agre | ement (| D) | India Round Agreement | | | | | | | 105. | Code | Alimentarius Comi | mission was creat | ted t | I by joint efforts of | | | | | | | | (A) | WHO and World B | ank (| В) |) WHO and FAO | | | | | | | | (C) | WHO and FOO | (| D) |) WHO and FSO | | | | | | | 106. | | vork required for ci
en the initial and fina | and the state of the second state of the second | 5.000 | s proportional to the logarithm of the rat | io | | | | | | | (A) | Rittinger's law | (| B) |) Kick's law | | | | | | | | (C) | Bond's law | (| D) |) Boyle's law | | | | | | | Set - | A | | 1 | 3 | 3 | FΊ | | | | | | (A) Δ P is minimum at start and maximum at the end of the filtration run. | | | | | | | | | | | |---|--|--|---------------|---------------|----------------------|-----|--|--|--|--| | | (B) Δ P is constant throughout the run. | | | | | | | | | | | | (C) | (C) ΔP is maximum at start and minimum at the end. | | | | | | | | | | | (D) | (D) Independent of ΔP . | | | | | | | | | | 108. | Filter | aid is used to | | | | | | | | | | | (A) | increase the filtering efficie | ency | | | | | | | | | | (B) | decrease the filtering efficie | ency | | | | | | | | | | (C) | give body to the filtrate | | | | | | | | | | | (D) | increase the mass of cake | | | | | | | | | | 109. A multiple effect evaporator has a capacity to process 400 kg of concentrated day when it is concentrating from 10 % to 25% solids. The water evaporated kg pe | | | | | | | | | | | | | (\mathbf{A}) | 600 (B) 2400 | (C) | 6(300 | (D) 1600 | | | | | | | 110. | The r | noisture content in excess of | equilibrium i | noisture con | em is call ed | | | | | | | | (A) | Saturated moisture | (B) | Free moisti | re-content | | | | | | | | (C) | Specific moisture content | (D) | None of the | above | | | | | | | 111. | Whic | h of the following is variable | area meter ? | | | | | | | | | | (A) | Venturi meter | (B) | Rota meter | | | | | | | | | (C) | Orifice meter | (D) | All of the a | bove | | | | | | | 112. | The respe | | A to vapour p | pressure of E | is called as of A wi | h | | | | | | | (A) | Volatility | (B) | Diffusivity | | | | | | | | | (C) | Relative volatility | (D) | Relative dit | fusivity | | | | | | | 113. | As per Stephan - Boltzmann law the total energy emitted by a black body directly proportional to fourth power of its | | | | | | | | | | | | (A) | Surface area | (B) | Emissive po | nwer | | | | | | | | (C) | An absolute temperature | (D) | Energy | | | | | | | | Set - | A | | 14 | | 1 | ·Т. | | | | | 107. In Constant fate intration | 114. | 51 UII | n or overan ner | actran | SICI CUCIIK | ICHI 15 | | | | | | |------|---|---|---------|--------------|------------|--------------|-------------|------------|------|--| | | (A) | $W/(m^2 K)$ | (B) | (m2 K)/W | (C) | Wm² K | (D) | W K/m | | | | 115. | Dew | point is the ten | nperati | ure at which | h the | | | | | | | | (A) | Boiling occur | rs | | (B) | Evaporatio | n occu | rs | | | | | (C) | Condensation | i occil | rs | (D) | Freezing o | ccurs | | | | | 116. | Natur | ral convection i | s char | acterized b | y | | | | | | | | (A) | Grashof number | | | (B) | Peckt number | | | | | | | (C) | Reynolds nur | nber | | (I) | Prandil nu | mber | | | | | 117. | What | is the effect of | the b | oiling point | elevation | in multiple | effect (| evaporator | rs ? | | | | (A) | Reduce the ca | apacit | У | = (B) | Reduce the | econo | my | | | | | (C) | Increase the e | econoi | my | ([) | Increase ca | apacity | | | | | | | | | | | | | | | | | 118. | Which of the following laws is associated with the amount of crushing energy required to create new surface ? | | | | | | | | | | | | (A) | Kopp's law | | | (B) | Fourier's l | H_{2}^{2} | | | | | | (C) | Fick's law | | | (D) | Rittinger's | ia W | | | | | 119. | Cons | tant rate period | is tha | t drying pe | riod durin | g which | | | | | | | (A) The moisture content of the substance remains constant | | | | | | | | | | | | (B) | B) The rate of vaporization per unit of drying surface area is constant | | | | | | | | | | | (C) | The rate of vaporization increase with time | | | | | | | | | | | (D) | D) The rate of vaporization decrease with the time | | | | | | | | | | 120. | The angle formed by pouring a powder as heap on a flat surface is known as | | | | | | | | | | | | 7.1 | Contact angle | 3 | | (B) | Angle of n | ip | | | | | | (A) | - | | | | | | | | | | | (A)
(C) | Angle of repo | se | | (D) | Critical an | gle | | | | ### SPACE FOR ROUGH WORK