(To be fill	led up by the ca	ndidate by	blue/black	ball-p	oint pen)	
Roll No.				T		
Roll No. (Write the d			<u> </u>			drageria en la constanta de la
Serial No. of OMR A	oswer Sheet	&		••••		•
Day and Date	***************************************	***************************************		-	(Signature	of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom, Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting it allowed in the entries of Roll No.; Quantion Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Offention Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the currect option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Auswer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Skeet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test,
- 14. If a candidate attempts to use any form of mofair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 32 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिवे गए हैं।]

ROUGH WORK एक कार्य

No. of Questions: 120

Time: 2 Hours

Full Marks: 360

- Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- 01. Which of the following is nominal variable:
 - (1)Blood sugar level
 - Blood Group (A.B.O & AB) (2)
 - (3)Severity of pain
 - (4) Area of residence (rural, semi-rural & urban)
- 02. The quantitative variables, such as-weight, cholesterol, blood pressure, etc that take numerical values in range, are called :
 - (1) Ordinal

Nominal

(3) Continuous

Discrete

- 03. Quantitative data can be best represented by :
 - (1) Ple chart

(2) Pictogram

(3) Histogram

(4) Bar diagram

- 04. Mean and standard deviation, can be worked out only if data are on :
 - Interval/ratio scale

Nominal scale

Ordinal scale

Dichotomous scale

P.T.O.

05	Arith	metic mear	of 10	observation	s is 2	5, but late	r, it is de	etected the	at
0 3.	on of	seemation (f 24 w	as wrongly v	writte:	n as 14. Th	e correc	t arithmet	ic
•		of the sar					848		
	(1)		(2)	25.5	(3)	26.0	(4)	26.5	
	(1)	24.0	(2)	20.0					
06.	Arith	metic mea	an (A.N	(i.) and me	dian	of 100 ite	ms are	50 and !	52
	TPSTY	ectively. Th	e value	of the large	est ite	m is 100.	It was la	ter detect	ea
	that	the largest	item v	which was a	ctual	y 110. was	s wrongi	y written	as
				d median a					
	(1)	50.0 and			(2)	50.10 an	d 52.5	*	
	(3)	50.10 and			(4)	50.0 and	52.5		
	500 best	410 160	, 270, for th	dence in a 210, 300, 3 e assessme	350, 4	4,000, 430	, 400 a	ild 510.	
		Arithmeti		1	(2)	Geometr	ric mear	1	
	(1) (3)	Harmonic			(4)	Median			
						abildren is	12 kg v	with stand	lard
08	3. Ari	thmetic me	an of t	he weight of	100	detion (%)	of the W	eight will	be
	dev	riation of 3	kg. The	coefficient	or var	(A)			
	(1)		(2)		(3)	45.0%	(4) 55.0%	
				ariation from	m me	an is :			
0	9. Ro	ot mean so	uare u	eviation from	(0	o Standa	rd devia	tion	
	(1)	Standar			(2				
				from mean	1 (4) Varian	CC		

10. In a cross sectional study conducted at a clinic, a researcher is interested to know what proportions of patients are having T.B. and HIV. The results are given below:

HIV patients	with T.B.	With out T.B.	Total
Positive	16	4	20
Negative	24	456	480
Total	40	460	500

Point prevalence rate of T.B. is:

(1) 2.0%

(2) 4.0%

(3) 8.0%

- (4) Can not be computed
- 11. The height of men in certain community is distributed with mean 165 cm and SD 13.5 cm. Then 95.0% of these men will have their heights between:
 - (1) 160 cm and 170 cm
- (2) 138 cm and 192 cm
- (3) 124.5 cm and 205.5 cm
- (4) 155 cm and 175 cm
- 12. If the two lines of regression coincide, then simple correlation coefficient (r) will be:
 - (1) r = +1 or r = -1
- (2) r = 0

(3) r = 0.5

(4) -1 < r < + 1

13.		e correlation lues of X as 6). The correl	7770	ac V are	Transition	HIGH DY	d Tions per-	A STATE OF THE PARTY OF THE PAR
		0.63			(2)	< 0.63		
		= 0.63			(4)	Can not	be calcula	ited
14.	When	height and	weigl	nt in a pop	oulatio	n are per	rfectly corr	elated, the
	coeffi	cient of corre	latio	n (r) is :				
	(1) :	= + 1 or -1				<-1		10
	(3)				(4)	> 1		
15.	Degr	ees of freede	om ir	a 4×4 C	onting	ency Tal	ble for app	olying Chi-
	Squa (1)	re test will b 4	(2)	8	(3)	9	(4)	16
	inter agai sign (1) (3)	n Systolic BF vention for on in determine ificance of in Chi-Square Paired t-tes one way Analared signific	test test	of Varian	(2) (4)	Unpair F-test	e applied ed Studen	for testing t's t-test means are
	(1)	If between variability i	grous large grous sm	up variab up variab all	ility is	s large	and the w	rithin group rithin group up variability within group
	(3) (4)		gro	up variab	ility is	not equ	al to the	within group

18	3. T	he mean	Hb level in	healthy	wome	n is 13.5	ø/di wi	th SI	of 1	E/AI
	T	he Z-Scor	e for a won	an with	Hb lev	rel of 15.0	o∉/dI w	dll be		У/Ш .
	(1	24	(2)	10.0	(3			(4)		
19). T	ne equival	ent Non Pa	rametric	Test i	or 'paired	l t-test'	is:		
	(1)	The state of the s		•	(2	• 2	on Sign		ank T	est
٠	(3)	Mann '	Whitney U	Test	(4)			·		
20	. Th	e mean o	f a sample i	a 2 30 ar	nd the	standard	error is	10.0). The	95%
	CO	nudence I	imits of the	mean v	would l	oe :				
	(1)	•			(2)	•	10			
	(3)	225-23	5		(4)	230-21	0			
21.	Jug	usuc nas	a value of	2.00 (wi	th P>	0.05). Pr	esume	in n	ealthy	the
	(1) (3)	Type I e		m emesi	(2)	Type II	error		mple	of:
	(1)	Simple F	a village in sampled i tandem Sa ic Samplin	randomly mpling	7. This (2)	lanes ar is an ex Stratified Cluster	ample o	of: om S		
				7						

23.	In a p	population en with a S	of pre	gnant fe	males, H	b (mg.%) iard error	is estimat	ed on 100	
	(1)		(2)	0.1	(3)	0.01	(4)	10.0	
24.	Whic	h of the fol	iowing	is a pa	rametric	test?			
	(1)	U test			(2)	Student	's t-test		
	(3)	Sign test			(4)	Wilcoxo	n Rank St	ım test	
25.	Spec	cificity is re	lated t	o:					
	(1)	True posit	ive		(2)	True No	egative		
	(3)	False posi			(4)	False N	legative		
	36/ Mai (1) 7. Des (1) (2)	1,000. The ternal Morternal Morternal Morternal Morternal Morternal Morternal Mid year Total no.	ere ar ality R (2) of the popul of dea	e 5 ma ate, will 13.9 Crude E ation ths	ternal d be: (3) Sirth Rate	20.0	the popu	th Rate is lation. The	
	(3)								
	(4)	10131 110	, or one			*			

28. The socio-economic status of the community is best reflected by :

(1) Infant mortality rate

(2) Under 5 mortality rate

(3) Maternal mortality rate

(4) Peri-natal mortality rate

29. An investigator wants to select 5% (1 in 20) sample of the households in a village, consisting of 100 households. He decides to select a random number between 1 and 20 and then, every 20 person thereafter. If 13 was the person selected at random, then selected sample would comprise of:

(1) 13, 18, 23, 28, 33 etc

(2) 13, 23, 33, 43, 53 etc

(3) 13, 33, 53, 73, 93 etc

(4) 13, 28, 43, 58, 73 etc

30. An investigator wants to draw a random sample to ensure proper representation of men and women of the population. What sampling method would be use?

(1) Simple random sampling

(2) Systematic sampling

(3) Cluster sampling

(4) Stratified random sampling

31. A group of public health persons wish to study the prevalence of HIV/AIDS in the State of U.P. As it is impossible to survey every person of the State and so, the State was divided into different geographically regions districts, talukas, villages and households. The research team wants to have a sampling scheme, representing all above 4 levels districts, talukas, villages and households. The sampling scheme appropriate for the purpose ensuring representation of entire State would be:

(1) Simple random sampling

(2) Stratified random sampling

(3) Multi stage sampling

(4) Cluster sampling

014500000		* Introduce		
32.	effec	erson chose to conduct a etiveness as measured by eting such a school, which ty	the st	in a school, known for its andardized test scores. For sampling should he use?
	(1)	Quota sampling	(2)	Convenience sampling
	(3)	Random sampling	(4)	Purposive sampling
33.	was this	found to be 3/1 000 in st	udving	ing from a particular disease expected no. of deaths from of such patients, distribution
	(1)	Normal	(2)	Binomial
	(3)	Chi-square	(4)	Poisson
34.	In I	Binomial distribution :		, minnee
	(1)	Always, mean = variance	(2)	Always, mean < variance
	(3)	Always, mean > variance	(4)	none
35.		Multiple Regression Analysis	, the r	number of dependant variables
	(1)	Two	(2)	Three
	(3)	122700112	(4)	Multiple
36	ch	r testing the significance of ildren in 3 socio-economic gr st is :	differe oups,	nce amongst heights of school the most appropriate statistical
	(1)	as 1 - No 4 test		
		at i tost		
	(2)			
	(3) paired t-test		

(4) One Way Analysis of Valance

	in the	time to several years, to identi- e assisted reproductive tech	fy wor	nen exposed	and not e	exposed to
	tec	hnologies on stemming multip	le birt	hs. This type	of study	is called :
	(1)	A ANALYSI DAGE SIGN	(2)		100	
	(3)	Retrespective cohort study	(4)	Historical	study	
38	bai 15 res dis	cohort study was conducted the weight and respiratory discord to another sies were compared to another years of follow-up, 80 out of piratory discases. Twenty out cases. The relative risk of resight babies, is:	400 ases. 400 of 400	A group of 40 up of 400 he low birth — healthy bab	00 low bird calthy bab weight ba	th-weight tes. Over bies had
39.	(1) In a	2 (2) 3 case control study of risk facts	(3) ors fo	4 Schlzophre	(4) 5	o factoro
		e present in 15 out of 100 cars ratio (OR) for exposure is :	ses ar	nd 10 out of	200 cont	rols. The
	(1)	15/100	(2)	(15/100)/(10/200	
	(3)	(15/85)/(10/190)	(4)	(15/100)/8		
40.	The (OR)	95% Confidence Interval (CI) is considered statistically sig	of Re	lative Risk ()	RR) or Ode	ds Ratio
	(1)	Cl does not include 0			,	
	(2)	Cl includes 1				
	(3)	Cl does not include any nega	tive r	umber		
		Cl does not include 1	***************************************			
		. 11				P.T.O.

37. An Investigator chooses to use existing medical records which go back

- 41. In an attempt to study the effect of two drugs in reducing the blood sugar, an Investigator administered Drug I to the first half of the patients and Drug II to the other half of patients. After noting the responses, he administered the Drug II to the first half of the patients and drug I to the other half of the patients. Presuming that the gap in the usage of the two drugs was sufficient to was out the effect of the previous drug, the study design used above is known as:
 - (1) Cross-over design
- (2) Cohort study
- (3) parallel design
- (4) Case control design
- 42. The screening results of a diagnostic test and the true disease status are given in the following table in which letters a, b, c, d represent numbers.

Screening results	True disease	status	Total
of diagnostic test	Diseased	Non- diseased	
Positive	а	b	a + b
Negative	c	d ·	c + d
Total	a+c	b+d	a+b+c+d

Here, (a+d)/(a+b+c+d) is called:

(1) Precision

(2) Accuracy

(3) Reliability

(4) None of the above

- 43. The unique feature of the survival analysis is :
 - (1) Analysis of variable which is time to event
 - (2) Underlying time to event variable is always non negative
 - (3) Analysis of censored data
 - (4) End point is always death
- 44. The Kaplan-Meier estimates are used :
 - (1) When the hazard rates have to be estimated
 - (2) When the survival probabilities are steadily decreasing
 - (3) To estimate regression coefficients in the Cox's regression
 - (4) To calculate the survival probabilities when the censorship is present
- 45. If 78 of 236 patients, followed for mortality after renal transplant, survived after 26 months and 62 patients survived up to 27 months, then the hazard rate at 26th month is:
 - (1) 0.2051

(2) 0.2627

(3) 0.7949

- (4) 0.3305
- 46. The Logrank test is used when :
 - (1) Survival functions for two treatment are compared
 - (2) There is no censorship present
 - (3) No. of patients in the two treatment groups are unequal
 - (4) The hazard is not constant over time

- 47. A clinical trial is considered double blind when :
 - (1) Patients and investigators are, blinded
 - (2) Patients and outcome assessors are blinded
 - (3) Investigator and outcome assessors are blinded
 - (4) Patients, investigator and outcome assessors are blinded
- 48. For a qualitative dependent variable (say, patients' prognosis: improved/not improved) with several independent variables (e.g., socio-economic status, severity of disease, diet -groups etc), multivariate analysis to be used to identify the role of independent variables, contributing significantly towards the prediction of patients' prognosis, is called as:
 - (1) Factor analysis
 - (2) Logistic regression analysis
 - (3) Multiple linear regression analysis
 - (4) Cluster analysis
- 49. for a quantitative dependent variable (say, diastolic BP after treatment in hypertensive patient) with many independent variables (e.g., age, height, BMI, serum cholesterol etc), the multivariate analysis to be used to indentify the role of significant independent variables, is known as:
 - (1) Logistic regression analysis
 - (2) Multiple linear regression analysis
 - (3) Discriminant analysis
 - (4) Survival analysis

- 50. For lung cancer, if Odds Ratio (OR) amongst smokers is 4.3, compared to non- smokers, it means:
 - (1) Risk of lung cancer in non-smokers is 4.3 times more than smokers
 - (2) Risk of lung cancer in smokers is 4.3 times more than nonsmokers
 - (3) Risk of lung cancer in smokers is 4.3 times less than non-smokers
 - (4). Risk of smoking who did not have lung cancer is 4.3 times more than those who have this disease
- 51. In a study of ability of rapid antigen test to diagnose strep pharyngitis. 90% of patients with strep pharyngitis have a positive rapid antigen test (true positive), while only 5% of those without strep pharyngitis, have a positive test (false positive). The likelihood ratio for positive (LR+) test for the ability of rapid antigen test to diagnose strep phyaryngitis is:
 - (1) 5/90
- (2) 90/5
- (3) 10/95
- (4) 95/10

- 52. The sampling errors are due to:
 - (1) Inadequate sample size only
 - (2) Use of incorrect sampling method only
 - (3) Inadequate size of sample as well as use of incorrect sampling method
 - (4) Observational and analytical lapses that occur during data collection and analysis

53. A drug company is developing a new pregnancy test-kit for use in an out-patient basis. Company uses pregnancy test on 100 women who are known to be pregnant and out of these 100 women, 99 showed positive values. Upon using the same test on 100 non-pregnant women, 90 showed negative result. The sensitivity of the test is:

(1) 90%

(2) 99%

(3) 10%

(4) 100%

54. In a clinical trial-comparing efficacy of new drug with that of a standard drug, apart from the rough estimates of efficacy with new as well as standard drug from previous studies, estimation of minimum sample size also depends on:

(1) Type I error alone

(2) Type II error alone

(3) Type I & II errors

(4) None of the above

55. The Mann-Whitney U- Test is also called:

(1) Kruskal-Wallis test

(2) Wilcoxon Signed Rank test

(3) Wilcoxon Rank Sum test

(4) Friedman's test

56. Registrar General of India is responsible for :

(1) Census

(2) National Family Health Survey

(3) Medical research

(4) Medical education

57	. In	statistical literature	data are	hma	adly classified as interval scale
					l data. Blood groups will be an
		ample for :			8p- nm be m
	(1)	Interval scale data		(2)	Ordinal scale data
,	(3)	Nominal scale data	L	(4)	None of the above
58	. For	a country a sex ratio	more th	an 10	000 means, country is:
	(1)	Under developed		(2)	Developing
	(3)	Developed		(4)	Can't be decided
59.	ln eith	normal (Gaussian) der side is :	curve, the	e area	a between 2 SD from mean on
	(1)	68 %	y 11	(2)	95%
	(3)	99%		(4)	None of the above
60.	His	ogram is made for :			•
	(1)	Dichotomous data			
	(2)	Ordinal data			
	(3)	Quantitative discrete	data		
,	(4)	Quantitative continu		L	
61.	If HI	level of healthy won would be the Z score	nen has r	nean Man	13.5 gm% with SD 1.5gm.%, with Hb level 15.0 gm%?
	(1)	1 E (-)	.5	(3)	10.5 (4) 1.0
		* **			

P.T.Q.

- 62. For a Gaussian distribution all of the following are true except:
 - (1) Mean, median and mode are same
 - (2) It can have two modes
 - (3) Bell shaped
 - (4) Mean ± 2Sd includes nearly 95% observations
- 63. For 70 smokers, the age at start of smoking was reported ranging from 15 years to 22 years with only one person reporting 22 years. The person starting smoking at age 22 years was removed and was replaced by another person starting smoking at age 24 years. This will change:
 - (1) Mean age at start of smoking
 - (2) Median age at start of smoking
 - (3) Modal age at start of smoking
 - (4) None of the above.
- 64. The range of regression coefficient is:
 - (1) Between 0 and + 1
- (2) Between -1 to + 1
- (3) Between -1 to 0
- (4) Between ∞ to + ∞
- 65. The HDL = a + b (calorie intake) + c (level of physical activity) is an example of:
 - (1) Simple linear regression
 - (2) Simple curvilinear regression
 - (3) Multiple linear regression
 - (4) Multiple curvilinear regression

66	In a sample of 50 men who had myocardial infarction, the mean CPK level is 280 u/I and the SD is 18 u/I. The standard error of mean would be :									
	(1)	280/18	100	(2)	18/√50					
	(3)	18/50		(4)	•					
67	. If a 3.7	%, the chance that	terval for the preva	preva lence	lence of tuberculosis is 2.4% to could be less than 2.4 is :					
	(3)	J70 .			•					
	(4)	The information is	insuffici	ent	•					
68.	Wh of 5	ich of the following fo ioo observations wil	ormula to	calcu ?	late confidence interval of mean					
	(1)	Mean $+Z_n SD/\sqrt{n}$		(2)	Mean $\pm Z_{\alpha/2}SD/\sqrt{n}$					
	(3)	Mean $\pm Z_{\alpha} SD^2/\sqrt{n}$		(4)	Mean ±Z _{az} SD/n					
69.	The	probability of comit	itting typ	e II er	ror in the experiment decides:					
	(1)	P value		(2)	Level of significance					
	(3)	Power of the test		(4)						
70.	If that	the two population's	n from tw distribut	o noi	n Gaussian population, to test similar or different, one should					
	(1)	Unpaird t test	٠	(2)	Wilcoxon sign rank test					
	(3)	Mann Whitney test		(4)	None of the above					
			(19		P.T.O.					

71. If the probability to solve a problem by A is 1/2 and by B is 3/4, what would be probability that the problem will not be solved?

(1) 1.0000

(2) 0.3750

(3) 0.1250

(4) 0.5623

72. In rating the service provided by a waiter/waitress, the following responses are possible: excellent, above average, average, below average, and poor. The responses are coded from 1 to 5 with 5 being excellent. These observations are on the:

(1) Nominal scale

(2) Ordinal scale

(3) Interval scale

(4) Ratio scale

73. The relative frequency for a class in a frequency distribution is calculated by:

- (1) Dividing the frequency of the class by the number of classes
- (2) Dividing the frequency of the class width
- (3) Dividing the frequency of the class by the total number of observations in the data set
- (4) Subtracting the lower limit of the class from the upper limit and multiplying the difference by the number of classes

74. Consider these three variables; (i) whether you are a SA citizen (ti) your marital status (iii) the time it took you to get to UCT this morning. In the order given, these variables are:

(1) nominal, interval, interval

(2) interval, interval, nominal

(3) nominal, interval, nominal

(4) nominal, nominal, interval,

75	. If 1	hree i	numbers x, y,	z are such	1 tha	tx+y+	z = 98, x:	y :: 2:3 and
			Then the aver	rage of x ar	ad z	are:		
	(1)	30	(2)	32	(3)	34	(4)	39
76	. If a	verag	e of 5 consecu	utive numb	ers i	s 30, wha	t will be th	e difference
	be	tween	the smallest	and the la	rgest	numbers	3 ?	
	(1)	40			(2)	140		
	(3)	240	Į.		(4)	Data is	s insufficier	at
77.	103	Pecuty	he mean and ely. Then the ely are :	variance o	of five	e given n ance of f	umbers an	e 10 and 0 st numbers
	(1)		and the same		(0)		27	
			and 10	\$	(2)	10 and	0	
*	(0)	10 a	and 10 *		(4)	Data is	insufficier	rt
78.	For	any fi	nite distributi σ and range	on, the mos	st jus	tified rela	tion betwee	n standard
		$\sigma \leq R$		*****	(2)	σ≥ R/2		
	(3)	$\sigma = 1$	2/2		(4)	$\sigma = R$		
79.	If P	(A) = ays tra	0.7, P(B) = 0 se about P (A,	.6, then w	hich	of the fo	llowing sta	tements is
	(1)	0.7			(2)	≥ 0.5		
	(3)	≤0.5			(4)	0.6		
80.			rown as long at throws will be	THE THREE THE	TYW.	a 4 to tu	rn up. Give probability	n that the that more
	(1)	125/		· · · · · · · · · · · · · · · · · · ·	(2)	91/216		
	(3)	215/	216		(4)	1/216		
		Ĭ.			(*)	4/410		
				8				
				21		100		
		117						P.T.O.

31 .	The	suitable formula for computir	ng the	number of classes is:
	(1)	3.322 logN	(2)	0. 322 logN
	(3)	1+3. 322 logN	(4)	1-3. 322 logN
82.	A so	urce note in a statistical table	e is gi	ven ;
	(1)	At the end of a table	(2)	In the beginning of a table
	(3)	In the middle of a table	(4)	Below the body of a table
83.	ln a	statistical table, column capt	ions	are called;
	(1)	Box head	(2)	Stub
	(3)	Body	(4)	Title
84.	The	headings of the rows of a tal	ole ar	e called:
	(1)		(2)	Titles
	(3)	Stubs	(4)	Captions
85	. The	e suitable diagram to represe cenditure on different items b	nt th y a fa	e data relating to the monthly
	(1)	Historigram	(2)	
	(3)	Multiple bar diagram	(4)	Pie diagram
86	. Th	e historigram is the graphi	cal p	resentation of data which are
	cla	ssified;		a ar and collect
	{1}	Geographically	(2)	. It is to time
	(3)	Qualitatively	(4	According to time

87	. Cu	Cumulative frequency polygon can be used for the calculation of :							
	(1)		(2)						
	(3)	Mode	(4)	Geometric mean					
88	. W	nich of the following values	of Pean	sonian coefficient of correlation					
	r _{zy}	depicts weakest linear rela	tionship	between x and y variables:					
	(1)		(2)	0					
	(3)	0.5	(4)	can not say					
89	. The	e value we would predict	for the	dependent variable when the					
	ind	ependent variables are all	equal to	zero is called;					
	(1)		(2)	Sum of residual					
	(3)	Intercept	(4)	can not say					
90.	The	predicted rate of response	of the	dependent variable to changes					
	in t	he independent variable is	called:	The state of the s					
	(1)	Slope	(2)	Intercept					
	(3)	Error	(4)	Regression equation					
91.	The	independent variable is al		:					
	(1)	Regressor	(2)	Regressand					
	(3)	Predictand	(4)	Estimated					
92.	Reg	ression coefficient is indepe	endent o	f :					
	(1)	Units of measurement	(2)	Scale and origin					
1/4	(3)	Both (a) and (b)	25	None of these					
			•						

93.	If $r_{xy} = 0.75$, then correlation coefficient between $u = 1.5 \text{ X}$ and $v = 25$								
	is:								
	(1)	0	(2)	0.75	(3)	-0.75	(4)	1.543	

- (1) 0

- (4) 1.543
- 94. On what is the width of the confidence interval estimate for the predicted value of Y dependent?
 - (1) The standard error of the estimate
 - Sample size (2)
 - The value of X for which the prediction is being made
 - (4) All the options are correct
- 95. In a study, the data was taken from the RBI reports. What kind of data is this?
 - (1) Primary
 - Secondary (2)
 - Both (3)
 - (4) Neither primary nor secondary
- 96. For fitting a regression line one uses the method of least squares which minimizes the sum of squared difference between :
 - Predicted y and actual y
 - Predicted y and mean y (2)
 - predicted x and actual x (3)
 - predicted (x,y) and(mean x, mean y)

- 97. Simple linear regression involves the use of a:
 - single numerical independent variable to predict the numerical dependent variable
 - (2) single categorical independent variable to predict the numerical dependent variable
 - (3) single numerical independent variable to predict the categorical dependent variable
 - (4) single categorical independent variable to predict the categorical dependent variable
- 98. When using a simple regression model, extrapolating the linear relationship between X and Y is acceptable under what conditions?
 - (1) Extrapolation is acceptable only when predicting Y using values of X that are "above" the maximum value found in the sample from which the model was derived.
 - (2) Extrapolation is acceptable only when predicting Y using values of X that are either "above" the maximum or "below" the minimum value found in the sample from which the model was derived
 - (3) Extrapolation is acceptable only when predicting Y using values of X that are "below" the minimum value found in the sample from which the model was derived
 - (4) Extrapolation is never acceptable
 - 99. To meet the assumptions for simple linear regression, what type of relationship should be observed between the residual values and values of X?
 - (1) if the linear model is appropriate for the data, there should be no apparent relationship between the residual values and values of X
 - (2) a statistically significant positive slope (i.e., positive correlation) should be found between the residual values and values of X.
 - (3) A moderately positive slope (ie.e. positive correlation) should be found between the residual values and values of X
 - (4) a moderately negative slope (i.e., negative correlation) should be found between the residual values and values of X

100. The Y intercept in a line represents the:

- (1) predicted y at x = 0
- (2) predicted y
- (3) variation over y axis
- (4) estimated change in y against unit change in x

101. The slpoe represents:

- (1) predicted y
- (2) the estimated change in average Y per unit change in X
- (3) predicted y at x = 0
- (4) variation around the line of regression

102.5 cards are selected randomly from a well shuffled deck of 52 cards. What is the probability of these 5 cards to be in sequence and from the same suit?

(1) 10C₈/52C₅

(2) $40/^{52}C_5$

(3) 13C,/52C,

103. What is the probability that a 5 digit number randomly formed by using 0,1,3,5,7 (without repetition) is divisible by 4

- (1) 0
- (2) 1/5 (3) 5/16
- (4) 1

104. Which of the following relations is always true for two random variables X and Y with finite means:

- $E [max (X,Y) \le max [E(X), E(Y)]$ (1)
- $E [max (X,Y)+min(X,Y)] \le max [E(X), E(Y)]$ (2)
- E [max (X,Y)+min(X,Y)] = [E(X)+E(Y)](3)
- E [max(X,Y)+min(X,Y)] > [E(X)+E(Y)](4)

	ans :	Pearson:	s coefficient of Kurtosis $p_1 = 1$
(1)		ue with c	ertainty
(2)			
(3)			The state of the s
(4)		ut uny s	india oc cqui propanic
106.Th	e maximum variance poss	fble for a	bino(n.p) population is:
(1)		(2)	np
(3)	n(1-P)	(4)	n/4
107.A I	Poisson population has a coprobability that x will take	ouble me	de at $x = 1$ and $x = 2$. What is ther 1 or 2?
(1)		(2)	4/e ²
(3)	2/e4	(4)	4/e²
108. For	an exponential populatio	n:	*
(1)	mean < median	(2)	median < mean
(3)	mean = median / 2	(4)	all the three are possible
1 09. All P (of the following options su l), except :	pport the	probability statement P(AB) =
(1)	$\mathbf{B} = \mathbf{\Omega}$	(2)	$A = \phi$
(3)	A = B	(4)	BoA
10. In app	analyzing categorical data	the follo	wirlg graphical device is NOT
(1)	Ple chart	(2)	Bar chart
(3)	Pareto diagram	(4)	Stem and leaf display
2			

censuses of India:

(1)	pi chart		(:	2)	circular diag	ram	
(3)	Rectangular	diagrai	m (4)	Simple bar d	liagram	
	ich of the follo Indian :	wing w	ill be used	to i	dentify the av	verage i	ncome of
Calcara Co	AF HEST VALUE OF		ſ	2)	Frequency p	olvgon	
(1)	Histogram					orygon	
(3)	Frequency co	urve	ť	4)	Ogive		
	mean of two r	umber	s is xy. If or	ne o	f these numb	er is x ti	hen their
(1)	(3xy - x)/2		(2)	ху-х		
(3)	2xy-x		(4)	xy		
num me (1)	e mean of first mbers is 30 a an of first nun 20 e algebraic sun is 2. If this dis	nd 40 nber an (2) 2	respectively d last num 5 deviations	7. If ber (3) of 2	last number is: 30 0 observation	(4) 3	5 ared from
***		dibuu		(2)	30.1	7	
(1) (3)	15.1 40.1			(2)	Information	is insui	ficient
116. Let var is.	a random va riance both equ approximately	ual to 1	00. The val	ally lue	distributed voice of mean device 7	vith a nation ab	nean and out mode
(1)				(4)	Information	is insu	fficient
(3)	8			(1)			
			28				31

111. Which of the following should be used to represent the previous

(4) 0.025

849	THE PARTY OF THE P	ea unde			ribution with to the left o		
(1)	84%	(2)	34%.	(3)	16%	(4)	Zero
var	a random lance both pectively, ar	equal to	X be no	rmally en thire	distributed d and fourth	with a	mean and al moments
(1)	(10, 30)	(2)	(0, 30)	(3)	(10, 300)	(4)	(0, 300)
119. For	a standard	normal	váriate X	, P [X >	1.96] is :		
(1)	0.95	(2)	0.5	(3)	0.05	(4)	0.025

120. Let the random variable X follows an exponential distribution with mean 10. Then P(X >301X > 10) equals:

(1) I - exp(-2) (2) exp(-2) (3) exp(-3) (4) 1/10

600

ROUGH WORK

ROUGH WORK एक कार्य

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुरित्का पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यदा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के बार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी कृतों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपूष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

