Mse Modeculer Human Genetics

15P/288/5

1959	2000000	(To be	filled up	by the	candid	ate by	blue/bi	lack ball-point pen)
Roll No.								
Roll No. (Write the d	ligits in	words)			********		• • • • • • • • • • • • • • • • • • • •	
Serial No.	of OMR	Answer	Sheet			••••••		
Day and D	ate				••••		•••••	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

| उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं|

[No. of Printed Pages: 32+2

No. of Questions/प्रश्नों की संख्या : 150

10/सम्ब : 2 Hours/घण्टे

Full Marks/पूर्णीक : 450

- (1) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्नं करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
 - बदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
- 1. The total random kinetic energy of one gram of nitrogen at 300 K is
 - (1) 133.4 joule

(2) 135·6 joule

(3) 234·7 joule

(4) 2.34 joule

(P.T.O.)

1)

1

2.	Which of the following particles is energy and momentum in a nucle	responsible for carrying away the missing ar decay process?
	(1) Alpha-particle	(2) Neutrino
	(3) Lepton	(4) Proton
3.	Solar cell works on the principle of	of .
	(1) laser technology	(2) photo-conduction
o ² 0	(3) thermal emission	(4) Tyndall effect
4.	The force between two long paralle	el conductors is inversely proportional to
	(1) radius of conductors	•
	(2) product of current in two cond	luctors
	(3) distance between the conducto	ra
	(4) length of conductors	
5.	The ground state energy of a harn	nonic oscillator is
	(1) $E = h\omega$ (2) $E = \frac{h\omega}{2}$	(3) $E = (2/3) h \omega$ (4) $E = \frac{h \omega}{4}$
6.	In laser production the state in which the lower one is called	h more atoms are in the upper state than in
	(1) metal stable state	(2) normal state
	(3) inverted population	(4) excited state
(341)		2

	(1) a difference of 7-6 on the Celsius scale					
	(2) a difference of 9.0 on the Fahrenheit scale					
	(3) a difference of 2.8 on the Rankine scale					
	(4) a difference of 6-5 on the Fahrenheit scale					
3 .	The following equation is an example of which type of nuclear reaction?					
	$^{12}C_6 + ^4He_2 \rightarrow ^{16}O_8 + energy$					
	(1) Fusion (2) α-decay (3) Fission (4) β-decay					
9.	Out of the following pairs, choose the pair in which the physical quantities do not have identical dimension?					
	(1) Pressure and Young's modules					
	(2) Planck's constant and angular momentum					
	(3) Impulse and moment of force					
	(4) Force and rate of change of linear momentum					
٥.	The LED is usually made of materials like					
v.	(1) GaAs (2) C and Si (3) GcAs (4) GeAr					
1.	Of the following natural phenomena, which one is known in Sanskrit as 'deer's thirst'?					
	(1) Rainbow (2) Earthshine (3) Halo (4) Mirage					
41)	3 (P.T.O.)					

'. A temperature difference of 5 K is equal to

12.	Pyrometer works	based on which o	f the	following prod	cases?
	(1) Laser technol	logy	(2)	Photo-conduc	tion
	(3) Thermal emis	ssion	(4)	Tyndall effect	:
13,	Optical fibre oper	rates on the princi	ple o	f	
	(1) total internal	reflection	(2)	Compton effe	ct
	.(3) photoelectric	effect	(4)	laser technok	26 0'
14.	Two thin lenses of the Focal length of the	f power + 5 D and - ne combination is	2 D	are placed in c	ontact with each other.
	(1) + 3 m	(2) - 3 m	(3)	0·33 m	(4) - 0 · 33 m
15.	Which type of len	as is used in a sim	ple r	nicroscope?	
	(1) Biconvex	(2) Biconcave	(3)	Plano convex	(4) Cylindrical
16.	Shape of molecule	es arises due to			
	(1) electrostatic fo	orce			
	(2) directional nat	ture of covalent bo	nd		
	(3) metallic bond				4
	(4) hydrogen bone	1			
17.	Which of the follo	wing has T-shape?	ĺ		
	(1) BF ₃	(2) NF ₃	(3) 1	BrF ₃	(4) PF ₃
(341)		4			

•	Shape of a molecule is explained by	,		
	(1) molecular orbital theory	(2)	crystal field theory	3
	(3) ligand field theory	(4)	VSEPR theory	
•	Boiling point decreases in the follow			
	(1) $H_2O > H_2S > H_2Se > H_2Te$	(2)	H ₂ Te > H ₂ O > H ₂ Se > H ₂ S	
	(3) $H_2Se > H_2Te > H_2S > H_2O$	(4)	H ₂ S>H ₂ Se>H ₂ O>H ₂ Te	
	In water molecule, oxygen has hybr	idize	ation	
	(1) sp^2 (2) sp^3	(3)	dsp^{2} (4) dsp^{3}	
•	Clathrate compounds involve			
	(1) hydrogen bonding	(2)	electrostatic forces	
	(3) weak forces	(4)	covalent forces	*
•	Eriochrome black-T is			
	(1) metal indicator			
	(2) redox indicator			
	(3) acid-base indicator			•
	(4) conductometric titration indicate	or'	•	
•	Dimethyl oxime is used for gravime	tric	determinaton of	
	(1) Al (2) Ni	(3)) Ga (4) Fe	*
				(P.T.O.)
L)	5		•	
	*			

24. Which is not true for a precipitate to be used as gravimetric determi	ination	m
---	---------	---

- (1) Stability and composition should not change with temperature
- (2) Stability and composition should not change with concentration
- (3) Stability and composition should not change with solvent
- (4) Stability and composition should change with temperature

25. Which is not true for colorimetric determination?

- (1) Solution should have colour
- (2) Solution should follow Lambert-Beer law
- (3) A particular wavelength of light should be used for measurement
- (4) Absorption is independent of concentration of the solution

26. Activation energy of a reaction is

- (1) the energy released during reaction
- (2) the energy evolved when activated complex is formed
- (3) minimum amount of energy needed to overcome the potential barrier
- (4) the energy needed to form one mole of the product

27. The molecularity of reaction

CH₃COOC₂H₅ + H₂O → CH₃COOH + C₂H₅OH

is 2. The order of reaction is

(1) 0

(2) 1

(3) 2

(4) 4

(341)

6

₿.	For a reaction $2A + B \rightarrow C + D$, the coof A is tripled. The rate of reaction	ncentration of B is kept constant and disc
	(1) will increase nine times	(2) will increase three times
	(3) will decrease three times	(4) cannot be predicted
9.	Increase in the rate of reaction due	to rise in temperature is due to
	(1) increase in collision frequency	
	(2) lowering of activation energy	
	(3) increase in number of effective of	collisions
	(4) decrease in collision frequency	*
0.	Which one does not influence the re	ate of reaction?
	(1) Nature of reactant	(2) Concentration of reactant
	(3) Temperature	(4) Molecularity
1.	The role of oxygen in respiration is	to
	(1) promote Krebs' cycle	(2) promote glycolysis
	(3) act as last electron acceptor	(4) oxidise organic food
2.	Nitrosomonas and Nitrobacter into Nitrosomonas oxidizes ammonium ion to nitrate is an example of	eraction in the nitrogen cycle where as to nitrite and Nitrobacter oxidizes nitrite
	(1) Protocooperation	(2) Syntropism
	(3) Commensalism	(4) Mutualism
41 }	. 7	(P.T.O.)

33.	Morphologically different forms of san	ne organisms are known as
		(3) biome (4) population
34.	Which of the following bacteria are en spillage?	nployed to reduce pollution of petroleum
	(1) Pseudomonas sp.	(2) Mycoplasma sp.
2	(3) Escherichia coli	(4) Azotobacter sp.
35.	In grassland ecosystem, the pyramid	of blomass is
	(1) upright	(2) inverted
	(3) spindle shaped	(4) None of these
36.	Term MAB stands for	
	(1) Man and biotic community	(2) Man and biosphere
	(3) Man, antibiotics and bacteria	(4) Mayer, Anderson and Bisby
37.	Species that occur in different geograpiare	hical regions separated by special barrier
	(1) Allopatric	(2) Sympatric
	(3) Sibling	(4) None of the above
38.	What name is given to conditions un breeds?	der which members of species live and
	(1) Ecosystem	(2) Habitat
	(3) Niche	(4) Carrying capacity
(341)	8	

	The exchange pool in carbon cycle is	8	
	(1) fossil fuels		sedimentary rocks
	(3) the oceans	(4)	the atmosphere
	Becteroids is a special form of bacte	•	*
	(1) photosynthesis	(2)	nitrogen fixation
	(3) respiration	(4)	photorespiration
•	No. of binding sites for O2 molecule	s in	a single leghaemoglobin molecule
	(1) 1 (2) 2	(3)	3 (4) 4
l. .	Which of the following is not found (1) Iron (2) Molybdenum		
١.	The percentage of alcohol in bevera	ge is	called
	(1) the proof	(2)	the alcohol percentage
	(3) the alcohol concentration	(4)	the fermentation
٤.	Study of enology deals with		
	(1) probiotics	(2)	cheese production
v	(3) wine production	(4)	antibiotic production
F1)		9	(P.T.O.)

45.	 In industrial production of streptomycin the secondary metabolite or by produits 					
	(1) vitamin 12 (2) vitamin C (3) vitamin 6 (4) ethanol					
46.	Radial symmetry is best seen in					
	(1) sponge (2) Mollusca (3) starfish (4) fishes					
47.	During digestion in protozoans, the medium is first					
	(1) acidic (2) basic (3) neutral (4) highly basic					
48.	Alternation of generation in Obelia is termed as					
	(1) Metamerism (2) Metamorphosis					
	(3) Metagenesis (4) Dimorphism					
49 .	Planarians have extra power of regeneration due to the presence of					
	(1) Parenchyma (2) Rhabdites					
	(3) Neoblast cells (4) Interstitial cells					
50.	The excretory product in an insect is					
	(1) guanine (2) ammonia (3) urea (4) uric acid					
51.	Notochord is rod like and persistent throughout life in					
	(1) Hemichordates (2) Urochordates					
	(3) Cephalochordates (4) Echinoderms					
(341)	10					

ı.	Tail in cyclostomes is		•
	(1) homocercal (2) heterocercal	(3) hypocercal (4) diphycer	rcal
ı.	The accessory respiratory organ in	lung fishes is	*
	(1) gills	(2) swim bladder	223
	(3) lung	(4) urinary bladder	100
١.	Neoteny refers to		
	(1) retention of rudimentary organs	8	
	(2) metamorphosis	•	
	(3) retention of larval characters in	adults	
	(4) degeneration of larval character	rs in adults	
Б.	In birds, the last 3 to 4 tail verteb	orae are fused to form	
	(1) Furcula (2) Pygostyle	(3) Synsacrum (4) Keel	
6.	Ovulated eggs of mammals are arr	rested at	
	(1) metaphase-I stage	(2) metaphase-II stage	
	(3) diplotene stage	(4) pachytene stage	
7.	Spermiogenesis in mammals result	t in the formation of	
	(1) spermatid	(2) spermatozoa	
	(3) spermatogonia	(4) spermatocyte	4
41)		11	(P.T.O.)

58.	In oogenesis, how many polar bodie	es aı	re formed at the end of meiosi	s ?
	(1) 2 (2) 3	(3)) 4 (4) 1	
59.	In the testes, androgens are produc	ed l	by	
	(1) Sertoli cells	(2)	interstitial cells	
	(3) spermatocytes	(4)	sperm mother cells	
60.	Ability of spermatozoa to fertilize th	e ov	rum is called as	
	(1) acrosome reaction	(2)	fertilization	
	(3) capacitation	(4)	egg activation	
61.	In most cases protein kinases			
	(1) hydrolyze proteins	(2)	polymerize amino acids	
	(3) remove amino acids	(4)	add phosphate groups to pro-	teins
62.	The histone protein that joins with I nucleosome is	H2A,	, H3, H4 to form one tetramer	unit o
	(1) H2A (2) H2B	(3)	H1 (4) H3	
63.	Which of the following correctly mat	ches	s an organelle with its function	.2
	(1) Mitochondrion—Photosynthesis		2	••
	(2) Nucleus—Cellular respiration			
	(3) Ribosome-Manufacture of lipids	ĵ.		
	(4) Central vacuole-Storage			
(341)	.12			

	The enzyme that catalyzes the synth	lesis of DNA
	(1) endonuclease	(2) gyrase
	(3) helicase	(4) DNA polymerase
	Gap junctions are constructed of	
	(1) connexin (2) GAPs	(3) cadherin (4) integrin
	An enzyme that relieves strain while	e double-strand DNA is being unwound
	(1) DNA helicase	(2) DNA ligase
	(3) DNA gyrase	(4) DNA polymerase
٠.	Meselson-Stahl experiment in 1958	provides evidence for
	(1) continuous DNA synthesis	
	(2) discontinuous DNA synthesis	*
	(3) conservative DNA synthesis	
	(4) semiconservative DNA synthesis	
5.	The discovery of Okazaki fragments	s suggested that DNA synthesis is
	(1) discontinuous	(2) continuous
	(3) semiconservative	(4) All of the above
9.	Cyclic AMP is formed from ATP by	
	(1) adenylyl cyclase	(2) cAMP phosphodiesterase
	(3) guanylyl cyclase	(4) protein kinase A
,1		(P.T.O.)

(341)

70 .	DNA replication takes place in	
	(1) M-phase of the cell cycle	(2) S-phase of the cell cycle
	(3) G1-phase of the cell cycle	(4) G2-phase of the cell cycle
7 1.	Leydig cells are found in	
	(1) liver	(2) testis
	(3) kidney	(4) ovarian follicle.
72.	Estrogens are secreted by	
	(1) pituitary	(2) corpus luteum
	(3) testis	(4) thyroid
73.	The single most abundant protein	n in animal tissues is
	(1) collagen (2) talin	(3) fibronectin (4) vinculin
74.	Which eukaryotic polymerase tran	nacribe mRNA?
	(1) RNA polymerase I	(2) RNA polymerase II
	(3) RNA polymerase III	(4) DNA polymerase I
75.	Which one of the following modifi	cations leads to protein degradation?
	(1) Methylation	(2) Acetylation
	(3) Phosphorylation	(4) Polyubiquitination

		8			
Which of the following processes occur	ır du	ring mito	sis (M-phase	e) of cell cyc	:le?
(1) DNA replication	(2)	Crossing	-over	E	
(3) Sister chromatid segregation	(4)	DNA da	mage contro	ol .	
Most human cells are diploid with mitosis, the DNA content of each of	total	DNA co	ntent of 2c	. At anaph	ase of
(1) 4c (2) 2c	(3)	3c	(4)	lc	
					à
Holocentric chromosomes are					
(1) chromosomes with multiple cer	ıtrom	cres	,		
(2) additional chromosomes					K S
(3) short chromosome with many	genes				* 2 <u>*</u>
(4) centromere at the centre					*
					•
Polytene chromosomes are formed	due	to			
(1) repeated S-phase but no M-ph	asc		I*\		
(2) repeated karyokinesis but no	cytoki	nesis	90		
(3) repeated S-phase but M-phase	with	out anap	hase		
(4) non-disjunction of chromosom	es				

15

1)

(P.T.O.)

80.	C-value paradox tells us about	
	(1) colinearity between genome siz	e and complexity of organism
	(2) non-colinearity between genome	size and complexity of organism
	(3) dosage compensation	
	(4) number of chromosome	
81.	Dosage compensation of sex chrom	osome in human is brought about by
	(1) inactivity of one X-chromosome	in females
	(2) hyperactivity of single X-chrome	osome in males
	(3) hypoactivity of both X-chromose	ome in females
	(4) hyperactivity of autosomes in fe	emales
B2.	Protein translation occurs in	
	(1) nucleus	(2) mitochondria
	(3) cytoplasm	(4) None of the above
33,	The function of peroxisome is	
	(1) lipid biosynthesis	(2) protein degradation
	(3) storage of starch	(4) removal of free radical
14.	The function of lysosome is	

(341)

(1) lipid biosynthesis

(3) storage of starch

(2) protein degradation

(4) removal of free radical

	What locks all transmembrane prot	eins i	in the bilayer?
	(i) Covalent bonds	(2)	Hydrophilic interactions
	(3) Hydrophobic interactions	(4)	None of the above
	Variant phenotypes inherited only mo	aterr	nally are due to mutations in the DNA
	(1) mitochondria	(2)	autosomes
	(3) X-chromosome	(4)	Y-chromosome
	The maximum percentage of recom	bina	nt offspring can be
	(1) 25% (2) 50%	(3)	75% (4) 100%
	During cukaryotic recombination, strand invasion are catalyzed by	the p	pairing of the homologous DNAs and
	(1) Rad51 and Dcm1	(2)) RecA protein
	(3) Rad52 and Rad59	(4)	MRX protein
).	During recombination, chi sites co	ntrol	the activities of
	(1) RuvAB complex	(2	RuvC
	(3) RecBCD	(4	1) DNA polymerases
).	Karyotype of a patient of Turner	syndr	rome is written as
	(1) 45,X (2) 47,XXY		3) 47,XXX (4) 47,XYY
		17	(P.T.O.)
11)		- The Control of the	

		5	
91.	Epicanthal folds is one of the	characteristics of	
	(I) Edward syndrome	(2) Klinefelter syndrome	·
	(3) Patau syndrome	(4) Down syndrome	
92.	Patients of Cri-du-chat syndron	me have aneuploidy of chromosomal arm	^
	(1) 13q (2) 5p	(3) 21q (4) 7p	
93.	C-banding of human chromoso	mes specifically revelas	
	(1) polymorphism of constitution and Y	ve heterochromatin of chromosomes 1, 9	, 16
	(2) polymorphism of constitution and X	ve heterochromatin of chromosomes 3, 7	, 12
3	(3) polymorphism of facultative (4) all the highly repetitive sequ	heterochromatin of chromosome X	
94.	Dark bands of the G banded ha		
	(1) euchromatin	(2) heterochromatin	
	(3) high copy number repeats	(4) low copy number repeats	
95.	The first chromosome banding t	echnique described was	
	(1) DA-DAPI banding	(2) R banding	
	(3) G banding	(4) Q banding	
41)		. 18	

The smallest human chromosome on the basis genomic size (in base pairs) is

(1) chromosome 20

(2) chromosome 21

- (3) chromosome 22
- (4) Y chromosome

Pleiotropy means

- (1) one gene can affect more than one trait
- (2) one trait can be affected by more than one genes
- (3) one trait can only be affected by one gene
- (4) two closely linked genes affect one trait

Extranuclear inheritance occurs due to

- (1) chromosomes that may become detached from the spindle during meiosis
- (2) chromosomes that may become detached from the spindle during mitosis
- (3) genetic material that is found in chloroplasts and mitochondria
- (4) mutations that disrupt the integrity of the nuclear membrane

Nonsense mutation is

- (1) mutation that results in codon change that do not alter the amino acid
- (2) mutation that results in a changed amino acid
- (3) mutation that results in truncated protein
- (4) mutation that results in gain of function of a protein

- 100. Some human diseases are caused by mutations in mitochondrial genes. Which of the following statements is false?
 - (1) Mitochondrial diseases usually follow a maternal inheritance pattern
 - (2) Mutations associated with mitochondrial diseases often affect cells with a high demand for ATP
 - (3) The symptoms associated with mitochondrial diseases tend to improve with age
 - (4) Heteroplasmy plays a key role in the severity of disease symptoms
- 101. Leber Hereditary Optic Neuropathy (LHON) occurs due
 - (1) a mutation in one of several mitochondrial genes that encode respiratory chain proteins
 - (2) a mutation in the ATPase6 gene
 - (3) a mutation in a gene that encodes a tRNA for leucine
 - (4) a mutation in a gene that encodes a tRNA for lysine
- 102. Fragile-X syndrome the consequence of
 - (1) deletion of FMR1 gene on q arm of X chromosome
 - (2) tri-nucleotide repeat expansion of 5'-untranslated region of FMR1 gene
 - (3) tri-nucleotide repeat expansion of 3'-untranslated region of FMR1 gene
 - (4) tri-nucleotide repeat expansion of coding region of FMR1 gene
- 103. Fraction of the total human genome consisting of coding sequences is
 - (1) 1-2%
- (2) 5-10%
- (3) 10-20%
- (4) about 40%

6. ·	The current estim	ate for the total numb	er of transcribed genes in the numan
	(1) about 100000	(2)	about 60000
	(3) about 30000	. (4	about 20000
5.	Genetic linkage	occurs because	
	(i) genes that ar	e on the same chromo	some may affect the same trait
	(2) genes that a transmitted t	are close together on ogether to offspring	the same chromosome tend to be
	(3) genes that ar	re on different chromo	somes are independently assorted
	(4) genes that ar	e on different chromo	somes may affect the same trait
6.	Recombination fr	raction is a measure o	f
	(1) genetic distan	nce between two loci	
	(2) physical distr	ance between two gene	es es
	(3) locus heterog	geneity	
	(4) epistasis		
17.	A single recombi	ination event produces	
	(1) four recombi	nant chromatids	
	(2) one non-reco	mbinant and three re	combinant chromatids

(3) two non-recombinant and two recombinant chromatids

41)

(4) three non-recombinant and one recombinant chromatids

21

(P.T.O.)

108. Haplotype is

- (1) sets of alleles on the same chromosomal segment that tend to be transmitted as a block through a pedigree.
- (2) sets of alleles on the same chromosomal segment that are almost always assorted independently through a pedigree
- (3) sets of alleles on different chromosomes that are almost always assorted independently through a pedigree
- (4) haploid set of chromosomes

109. Pericentric inversion is

- (1) inversion of a chromosomal segment that does not include centromere
- (2) inversion of a chromosomal segment that includes centromere
- (3) fusion of two homologous chromosomes involving short arms where one is inverted resulting in one dicentric chromosome
- (4) fusion of two non-homologous chromosomes involving short arms where one is inverted resulting in one dicentric chromosome

110. micro-RNA is

- (1) fragmented mRNA that codes for incomplete protein
- (2) mRNA of micro-organisms
- (3) non-coding RNA that binds to tRNA
- (4) non-coding RNA that binds to complementary mRNA

(341)

ı.	If the egg white protein, ovalbumin, is denatured in a hard-boiled egg, then which of the following is least affected?
	(1) The primary structure of ovalbumin
	(2) The secondary structure of ovalbumin
	(3) The tertiary structure of ovalbumin
	(4) The quaternary structure of ovalbumin
2.	Enzyme having slightly different molecular structure but performing identical activity is
	(1) holoenzyme (2) apoenzyme (3) isoenzyme (4) coenzyme
3.	Catalytic efficiency of two enzymes can be compared by the
¥	(1) formation of the product (2) K_m value
	(3) molecular size of the enzyme (4) pH of optimum value
.4.	Sythases belongs to which class of enzyme?
	(1) Ligases (2) Transferases (3) Epimerases (4) Lyases
5.	Election Commission number for alcohol dehydrogenases
	(1) 1.2.1.1 (2) 1.1.1.2 (3) 1.2.2.1 (4) 1.1.1.1
41	23 (P.T.O.)

(341)

glucose and glycogen metabolism? (1) NAD ⁺ (2) Fructose 2,6-bisphospha (3) Acetyl-CoA (4) Fructose 1,6-bisphospha 117. The cells dependent solely on glucose as an energy source are (1) muscle cells (2) brain cells	regulation of
(3) Acetyl-CoA (4) Fructose 2,6-bisphospha 117. The cells dependent solely on glucose as an energy source are (1) muscle cells (2) brain cells	
117. The cells dependent solely on glucose as an energy source are (1) muscle cells (2) brain cells	ate
(1) muscle cells (2) brain cells	ate
(2) Mant Cens.	. •
(3) kidney cells (4) liver cells	
118. During vigorous exercise, pyruvate produce by glycolysis is conve	erted to
(1) acetate (2) lactate	
(3) monosodium phosphate (4) pyruvic acid	
119. Saliva contains all of the following, except	
(1) hormones (2) amylase	
(3) bacterial-killing enzymes (4) antibodies	
120. The conversion of pyruvate to oxaloacetate	
(1) requires biotin	
(2) involves the fixation of carbon dioxide	
(3) occurs in the mitochondria	
(4) All of the above	

24

	Two major products of pentose phosphate pathway are	
	(1) nicotinamide adenine dinucleotide and ribose 5-phosphate	
	(2) flavine adenine dinucleotide and glucose 5-phosphate	
	(3) FAD and CoA	
	(4) NADPH and NAD	
1.	A catabolic intermediate which stimulates phosphofructokinase would stimulate	
	(1) gluconeogenesis (2) glycolysis	
*	(3) glycogen synthesis (4) None of these	
3.	Pyruvate is initially converted to which of the following in the gluconeogenesis? (1) Glycerol (2) Phosphoenolpyruvate (3) Oxaloacetate (4) Acetyl CoA	
4.	Citric acid accumulation would	
	(1) stimulate phosphofructokinase activity	
	(2) stimulate fructose 1,6-diphosphatase activity	
	(3) inhibit phosphofructokinase activity	
	(4) Both (2) and (3)	
41	25 (P.T.C).j

125.	Phosphofructokinase, the major flux-controlling enzyme of glycolysis is allosterically inhibited and activated respectively by
	(1) ATP and PEP (2) AMP and Pi
	(3) ATP and ADP (4) Citrate and ATP
126.	In eukaryotes, fatty acid breakdown occurs in
	(1) mitochondrial matrix (2) cytosol
(£	(3) cell membrane (4) endoplasmic reticulum
127.	How many ATPs are formed during complete oxidation of palmitate?
	(1) 35 (2) 96 (3) 129 (4) 131
128.	Membrane potential and the proton gradient
	(1) are both required to make ATP
	(2) are sufficient, separately, to make ATP from ADP + Pi
	(3) reinforce one another when respiratory inhibitors are present
	(4) cancel one another when uncouplers are present
129.	Coenzyme Q is involved in electron transport as
	(1) directly to O ₂
	(2) a water-soluble electron donor
	(3) covalently attached cytochrome cofactor
	(4) a lipid-soluble electron carrier
341)	26

A purine with an amine (NH ₂) group on the 6th carbon is
(1) adenine (2) cytosine (3) thymine (4) guanine
The chromosomal DNA complexes with
(1) three types of histone as H1, H2A and H4
(2) five types of histone as H1, H2A, H2B, H3 and H4
(3) four types of histone as H1, H2A, H3 an H4
(4) two types of histone as H1 and H4
If one cell has AT contents 40%, what will be the percentage of guanine residue? (1) 60%
(2) 15%
(3) 30% (4) Guanine residue cannot be calculated
In protein synthesis in prokaryotes
(1) the initiating amino acid is N-formyl methionine
(2) the initiating amino acid is methionine
(3) the initiating amino acid is phenyl alanine
(4) None of the above
) 27 (P.T.O.)

341)	28
	(3) vector (4) None of these
	(1) injector (2) transformer
137.	The DNA molecule to which the gene of insert is integrated for cloning is called
	(3) both (1) and (2) (4) conjugation
	(2) 1 -41 (1) 1 (4)
	(1) transformation (2) transduction
136.	The mechanism of intake of DNA fragments from the surrounding medium by a cell is called
	(4) bound to neither tryptophan nor DNA
	(3) bound to both DNA and tryptophan
	(2) bound to DNA
	(1) bound to tryptophan
135.	In the presence of tryptophan in the cell, the repressor is
	(4) None of the above
	(3) encoding beta-galactosidase only
	(2) encoding beta-galactosidase and galactose permeases
	(1) encoding beta-galactosidase, galactose permeases and thio-galactosidase transacetylase respectively
	AND DEPOSITE AND DESCRIPTION OF THE PARTY OF

134. The lac operon contains the z, y and structural genes

5.	Which of the following is the most important discovery that leads to the development of recombinant DNA technology? (1) Discovery of double helix model by Watson and Crick (2) Discovery of DNA as genetic material		
	(3) Discovery of restriction enzymes		
	(4) All of these		
9,	Who discovered restriction enzymes?		
	(1) Watson and Crick (2) Jacob and Monad		
	(3) Nathan, Arber and Smith (4) Boyer and Cohen		
٥.	Restriction enzymes capable of making internal cuts in a DNA molecule is called		
	(1) restriction exonuclease (2) restriction endonuclease		
	(3) both (1) and (2) (4) \$1 nuclease		
1.	A cDNA version of a gene includes (1) sequence corresponding to exons (2) sequence corresponding to introns (3) sequence corresponding to introns and exons both (4) sequence corresponding to hnRNA		
411	29 (P.T.O.)		

142. Match the following:

List-I

- (i) Restriction endonuclease
- (ii) DNA fingerprinting
- (iii) Polymerase chain reaction
- (iv) Monoclonal antibodies
- (1) (i)-(s), (ii)-(r), (iii)-(p), (iv)-(q)
- (3) (i)-(q), (ii)-(r), (iii)-(p), (iv)-(s)

List-II

- (p) Kary Mullis
- (q) Kohler and Milstein
- (r) Alec Jaffreys
- (s) Arber
- (2) (i)-(s), (ii)-(r), (iii)-(q), (iv)-(p)
- (4) (i)-(s), (ii)-(p), (iii)-(q), (iv)-(r)
- 143. Which of the following statements about a vector is correct?
 - (1) All vectors are plasmids only
 - (2) Plasmids, phages can be used as vectors
 - (3) Fungi can also be used as vectors
 - (4) Cyanobacteria can also be used as vectors
- 144. Which one of the following statements are not attributed to plasmids?
 - (1) They are circular DNA molecule
 - (2) They have antibiotic resistant genes
 - (3) They have the ability of autonomous replication
 - (4) They have DNA that is as long as chromosomal DNA

(341)

١,	In restriction endonuclease EcoR1, E' stands for			
	(1) Extraction	•		
	(2) the first letter of the genus in w	hich it is present		
	(3) Endonuclease			
	(4) Exonuclease	•		
i. Fruit juice or coconut milk is added to plant tissue culture media beca				
	(1) it is a source of micronutrients			
	(2) it is a source of macronutrients			
	(3) it is a source of growth regulator	rs ,		
	(4) it helps in maintaining pH of the media			
'.	The bacterium used for gene transfer in plants is			
	(1) E. coli	(2) Rhizobium		
	(3) Azotobacter	(4) Agrobacterium		
ļ,	Match the following:			
	List—I	List—II		
	(i) Restriction endonucleases	(p) Small DNA segments used in DNA fingerprints		
•	(ii) Ligases	(q) Molecular scissors		
	(iii) Probe	(r) Virus free plants		
	(iv) Meristem culture	(s) Molecular stichers		
	(1) (i)-(q), (ii)-(s), (iii)-(p), (iv)-(r)	(2) (i)-(p), (ii)-(q), (iii)-(r), (iv)-(s)		
	(3) (i)-(q), (ii)-(s), (iii)-(r), (iv)-(p)	(4) (i)-(p), (ii)-(s), (iii)-(q), (iv)-(r)		

31

(P.T.O.)

149. The Klenow fragment of E. coli, DNa polymerase I has

- (1) 5' to 3' exonuclease activity
- (2) 3' to 5' exonuclease activity
- (3) DNA ligation activity
- (4) phosphatase activity

150. A hybridoma is

- (1) a hybrid cell obtained by fusing aβ-lymphocyte with a myeloma cell in vitro
 - (2) a hybrid cell obtained by fusing aβ-lymphocyte with a myeloma cell in vivo
 - (3) a hybrid cell obtained by fusing 2 β-lymphocyte cells in vitro
 - (4) a hybrid cell obtained by fusing any 2 body cells in vitro

32

D/5(341)-2000

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषवुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग मे दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया वायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया वायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर तथित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये बृत को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार येन से गाक़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भारने पर वह उत्तर गलत माना जायेगा।
- 10. थ्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृतों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ॰एम॰आर॰ उत्तर-पन्न* परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो यह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।

