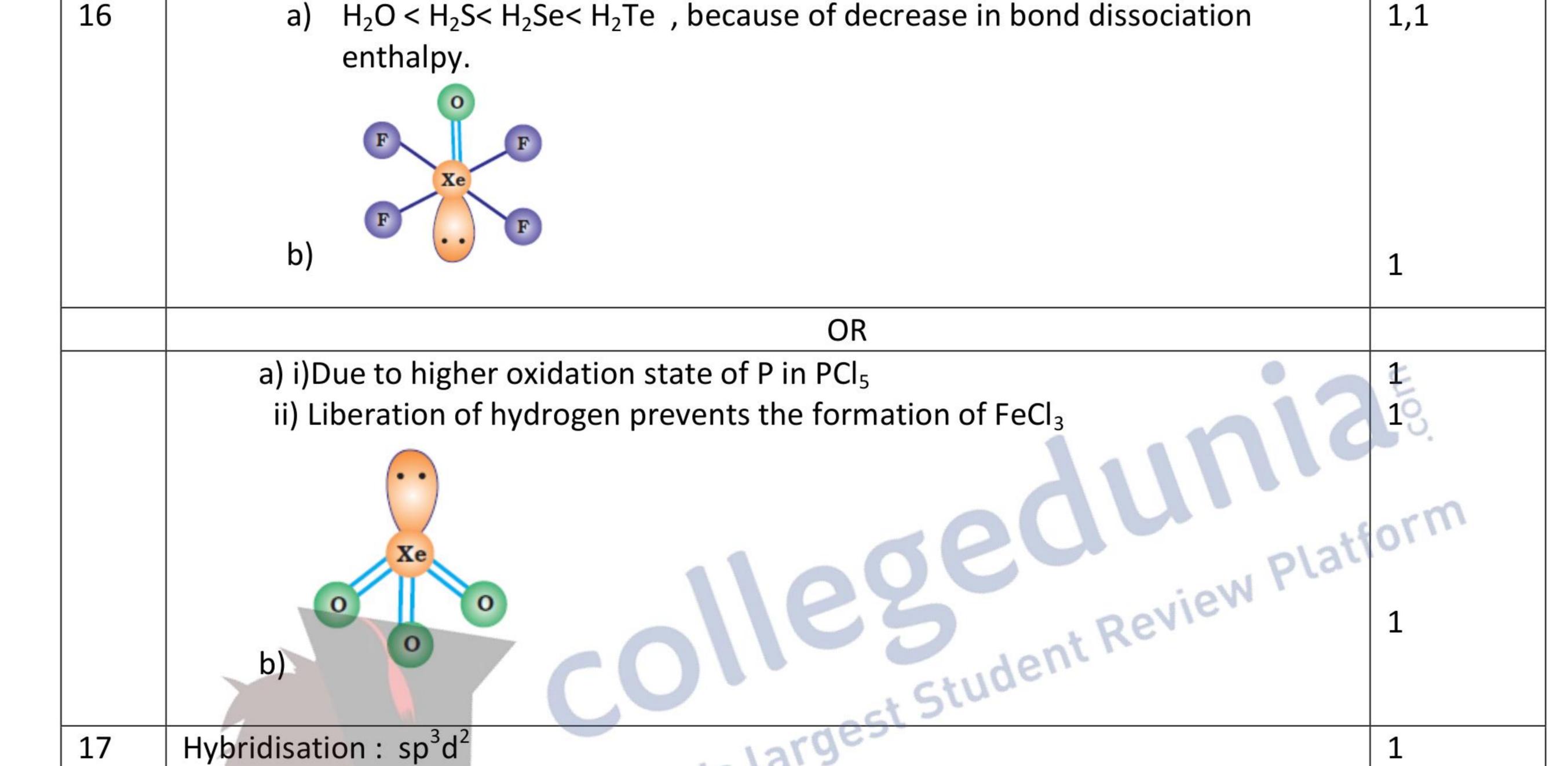
CBSE Class 12 Chemistry Compartment Answer Key 2017 (July 17, Set 1 - 56/1/1)

Marking scheme – 2017 (Compartment)

CHEMISTRY (043)/ CLASS XII

Set 56/1/1


Q.No	Value Points	Marks
1	hcp	1
2	$AICI_3 / AI^{3+}$	1

3	Orbital splitting energies are not sufficiently large for forcing pairing	1	
4	2,3-dinitro phenol		
5	Having no α- hydrogen		
6	Vapour pressure of the solvent decreases in the presence of non – voilatile solute (glucose) hence boiling point increases		
7	(i) First order		
	(ii) s ⁻¹ / time ⁻¹		
8	Hypophosphorous acid is a good reducing agent as it contains two P-H bonds. There		
	is no P-H bond in orthophosphoric acid , so it is not a reducing agent		
	Example : It reduces AgNO ₃ to metallic silver/ chemical equation		
	OR		
8	a) 4 b) Due to lower bond dissociation enthalpy of BiH₃ as compared to SbH₃	arm	
9	i. Due to resonance the two O-O bond lengths are identical.	1	
	ii. Due to strong bond formed by it with other elements.	1	
10.	i) (b) is chiral	1	
	ii) (a) will undergo S _N 2 reaction faster	1	
11	In bcc, z=2; $d = (zxM)/a^3 x N_A$ (i) No. of atoms = $\frac{w}{M} \times N_A$	1/2	
	$2.5 \times 10^{24} = \frac{500 \text{ g}}{M} \times \text{N}_{\text{A}}$ $M = [500 \times \text{N}_{\text{A}}] / 2.5 \times 10^{24} \text{(ii)}$ Putting values of M in equation (i) $d = 2 \times 500 \text{ g} \times \text{N}_{\text{A}} / [2.5 \times 10^{24} \text{ atoms} \times (400 \times 10^{-10} \text{ cm})^3 \times \text{N}_{\text{A}}]$ $d = 6.25 \text{ g/ cm}^3 \text{(or any other correct method)}$	1 ½ 1	
12	$p_{total} = p_1^{\circ} + (p_2^{\circ} - p_1^{\circ}) \frac{x_2}{2}$	1	
	$p_{\text{total}} = p_1 + (p_2 - p_1)^{-2}$ $600 = 450 + (700 - 450)^{-3/2}$	1	
	$\frac{X_2}{2} = 0.6$	1/2	
	$\frac{x_2}{2} = 1 - 0.6 = 0.4$	1/2	
13	$P_{A} = 2Po - Pt$	1/2	
	$= (2 \times 0.4) - 0.7 = 0.1$	1/2	
	$k = \frac{2.303}{t} \log PO/P_A$		
	$k = \frac{2.303}{100} \log 0.4/0.1$	1	
	$k = \frac{2.303}{100} \times 0.6021$		
	100 = 1.39 × 10 ⁻² s ⁻¹	1	
14	i) The process of removing an adsorbed substance from a surface on which it is	1	

*These answers are meant to be used by evaluators

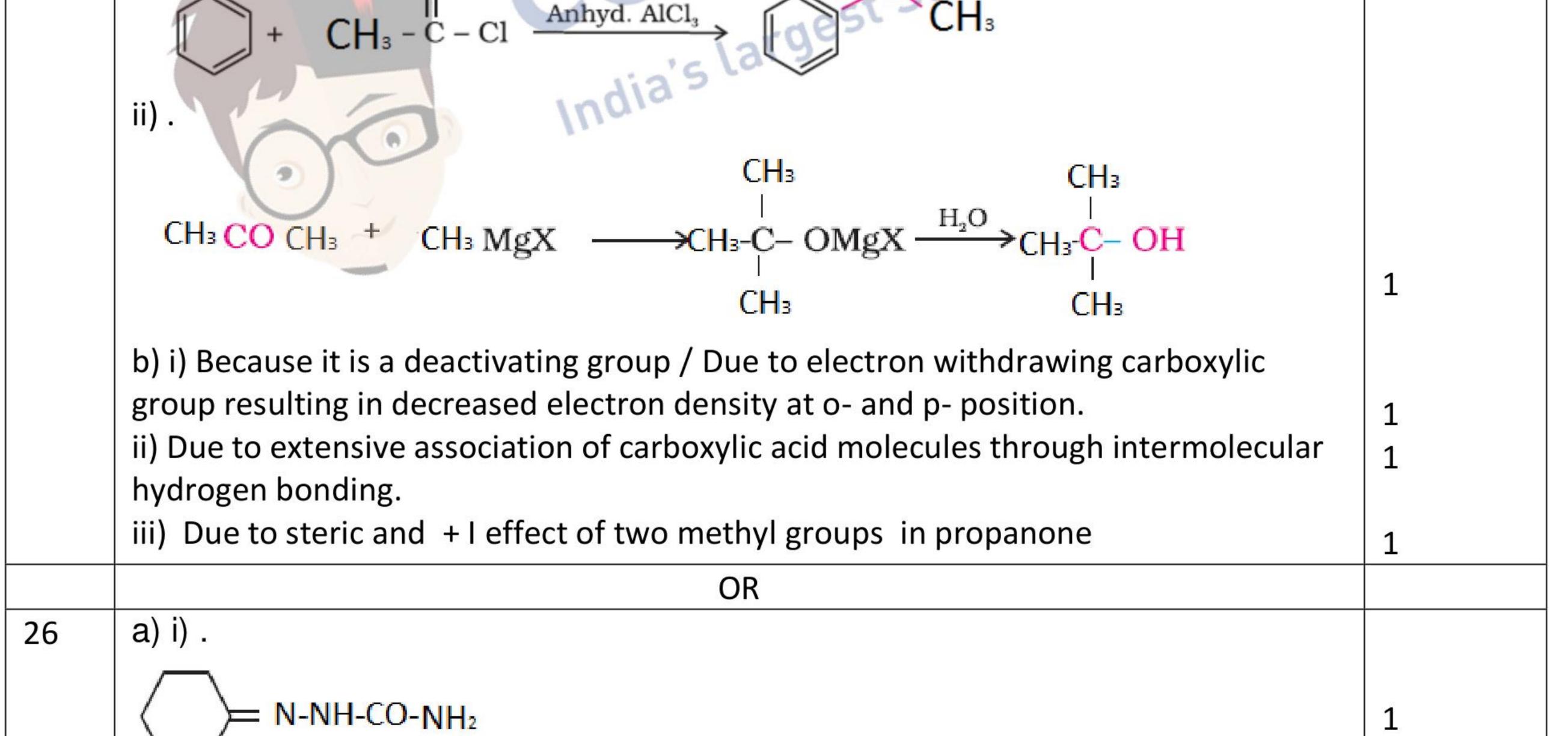
	adsorbed.	
	ii) The formation of micelles takes place only above a particular concentration	
	called CMC.	
	iii) The catalytic reaction that depends upon the pore structure of the catalyst and	
	size of the reactant and product molecules.	
15	a) The metal is converted into its volatile compound and collected	
	elsewhere. It is then decomposed to get the pure metal.	
	b) i)Ni ii) Ti/Zr	
	c) It is used to separate two sulphide ores by preventing one to form froth.	1
10		1 1

17	Hybridisation : sp ³ d ² Magnetic character : Paramagnetic a 5 Jarge	1
	Magnetic character : Paramagnetic 2	1
	Spin nature: High spin	1
18.	a) A: CH ₃ - CH=CH ₂	1/2 × 4
	B: CH ₃ - CH ₂ -CH ₂ Br	
	C: CH ₃ - CH ₂ -CH ₂ I	
	D: CH ₃ - CH ₂ -CH ₂ MgI	
	$\int V_{2}^{N_{2}X} C_{u,X_{1}} \int V_{1}^{N_{2}X} V_{1} = V_{1}^{N_{2}X} V_{1} = V_{1}^{N_{2}X} V_{1}^{N_{2}X} V_{1}^{N_{2}X} = V_{1}^{N_{2}X} V_{1}^{N_{2}X} = V_{1}^{N_{2}X} V_{1}^{N_{2}X} V_{1}^{N_{2}X} = V_{1}^{N_{$	
	\longrightarrow $($ + N ₂	1
	Aryl halide	
	$X = CI, B_1, CN$	
10		
19.	a) $CH_3-O-CH_3 + HI \longrightarrow CH_3-OH + CH_3-I$	
	b)	
	b).	

*These answers are meant to be used by evaluators

Protonation of alkene to form carbocation by electrophilic attack of H_3O^* . $H_2O + H^* \rightarrow H_3O^*$ $\downarrow C = C < + H - O = H \implies -L + H_2O = H_2O$ Nucleophilic attack of water on carbocation. $H = -C - C + H_2O = H + H_2O$ $H = -C - C + H_2O = H$

	I I I		
	Deprotonation to form an alcohol.		
	H H H		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	\sim	1	
		L _	
20.	i) A: CH ₃ - CH ₂ CN; B: CH ₃ - CH ₂ - CH ₂ NH ₂ ;C: CH ₃ - CH ₂ - CH ₂ -NH-COCH ₃	1⁄2 ×3	
20.	NO_2 NH_2	/2	
		E	
	ii) A: $Ar - \frac{1}{N_2 BF_4}$; B: C :	1/2 ×3	
21	a) Glycosidic linkage	1	
	b) Source : Meat, Fish, egg, curd (any one) ; Pernicious anaemia	1/2,1/2	
	c) DNA is double strand while RNA is single strand molecule (or any other correct difference)	1	
22	i) Treatment of hyperacidity	1/2	
		1/2	
	ii) Relieve pain and produce sleep	1/2	
	Class : Antacids ii) Relieve pain and produce sleep Class: Narcotic analgesics iii) Relieve pain and reduce fever is stargest Studies	1/2	
	iii) Relieve pain and reduce fever Class: Non- Narcotic analgesics / Analgesics	1/2	
	Class. None that colle analyesics / Analyesics	1/2	
23	a) Poly β-hydroxybutyrate – co-β-hydroxy valerate / (PHBV) OH	1/2	
	Monomers : CH ₃ -CH-CH ₂ -COOH CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -COOH	1/2,1/2	
	Repeating unit :		
		1/2	
	$ \begin{pmatrix} \mathbf{O} - CH - CH_2 - \mathbf{C} & -\mathbf{O} - CH - CH_2 - C \\ & & \\ CH_3 & \mathbf{O} & CH_2 CH_3 & \mathbf{O} \end{pmatrix} $		
	b) PHBV is used in speciality packaging, orthopaedic devices and in controlled	1/2,1/2	
	release of drugs.(any two)	1/2,1/2	
~ ~	c) Concern for environment, caring (or any other)	4	
24	a) E^0 value of silver is lower than that of gold, hence silver displaces gold	1	
	which gets deposited on the silver object. E^0 value of common is lower than that of silver honce silver connet displace		
	E^0 value of copper is lower than that of silver, hence silver cannot displace	1	
	copper from its solution. b) i) Electrons flow from Zn to Ag plate	1/2	
	 b) i) Electrons flow from Zn to Ag plate. ii) Zn as anode and Ag acts as cathode 	1/2	
	iii) Cell will stop functioning	1/2	
	iv) Concentration of Zn^{2+} ions will increase and that of Ag^+ ions will decrease.	1/2, 1/2	
	v) No change	1/2	
	OR		
		□	


*These answers are meant to be used by evaluators

1/2

24a) When concentration approaches zero, the molar conductivity is known as limiting
molar conductivity
The change in Am with dilution is due to the increase in the degree of dissociation and
consequently the number of ions in the total volume of the solution that contains 1 mol of
electrolyte , hence Am increases steeply.b) $E_{cell} = E^{\circ}_{cell} - \frac{0.059}{n} \log \frac{|Mg^2+1|}{|Cu2+1|}$
 $= 2.71 V - \frac{0.059}{2} \log \frac{0.1}{0.001}$ $= 2.71 V - \frac{0.059}{2} \log 10^2$

	= 2.651 V			
25	a) A: Na ₂ CrO ₄ ; B: Na ₂ Cr ₂ O ₇ ; C : K ₂ Cr ₂ O ₇			
	4 FeCr ₂ O ₄ + 8 Na ₂ CO ₃ + 7 O ₂ \rightarrow 8 Na ₂ CrO ₄ + 2 Fe ₂ O ₃ + 8 CO ₂			
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$			
	$Na_2Cr_2O_7 + 2 KC1 \rightarrow K_2Cr_2O_7 + 2 NaC1$			
	$na_2 c_{12} c_{7} + 2 m c_{1} - 7 m_2 c_{12} c_{7} + 2 m a c_{1}$			
	OR			
25	a) i)Copper; Due to high $\Delta_{a}H^{\Theta}$ and low $\Delta_{hyd}H^{\Theta}$ ii) Cerium ; Due to stable 4f ⁰ configuration / Tb ; Due to stable 4f ⁷ configuration b) i) Due to ability of oxygen to form multiple bonds to metal ii) HCl is oxidized to chlorine iii) Due to strong interatomic metallic bonding.	$\frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}$ 1 1 1 1 1		
26	a) i).	1		

ii) CH₃COOH
iii) CH₃ -CH(Br)-COOH
b) i) Add ammonical solution of silver nitrate / Tollen's reagent to both the compounds, propanal will give silver mirror while propanone does not.
ii) Add NaHCO₃ solution to both the compounds, benzoic acid will give effervescence and liberate CO₂ while benzaldehyde will not. (Or any other suitable test)

*These answers are meant to be used by evaluators

1

1

1

1	Dr. (Mrs.) Sangeeta Bhatia	6	Sh. Rakesh Dhawan
2	Dr. K.N. Uppadhya	7	Dr. (Mrs.) Sunita Ramrakhiani
3	Prof. R.D. Shukla	8	Mrs. Preeti Kiran
4	Sh. S.K. Munjal	9	Dr. Azhar Aslam Khan
5	Sh. D.A. Mishra	10	Ms. Garima Bhutani

*These answers are meant to be used by evaluators

