Sample Paper

ANSWERKEY																			
1	(b)	2	(c)	3	(a)	4	(b)	5	(d)	6	(c)	7	(d)	8	(b)	9	(a)	10	(c)
11	(a)	12	(b)	13	(b)	14	(a)	15	(d)	16	(a)	17	(a)	18	(a)	19	(d)	20	(d)
21	(c)	22	(d)	23	(c)	24	(c)	25	(b)	26	(b)	27	(d)	28	(d)	29	(c)	30	(b)
31	(a)	32	(a)	33	(d)	34	(b)	35	(b)	36	(c)	37	(c)	38	(b)	39	(a)	40	(d)
41	(c)	42	(b)	43	(a)	44	(d)	45	(a)	46	(d)	47	(c)	48	(d)	49	(a)	50	(b)

SOLUTIONS

1. (b)
2. (c)
(a) $x^{2}+\frac{1}{x}=x^{2}+x^{-1}$ is not a polynomial since the exponent of variable in 2 nd term is negative
(b) $2 x^{2}-3 \sqrt{x}+1=2 x^{2}-3 x^{\frac{1}{2}}+1$ is not a polynomial, since the exponent of variable in 2 nd term is a rational number.
(c) $x^{3}-3 x+1$ is a polynomial.
(d) $2 x^{\frac{3}{2}}-5 x$ is also not a polynomial, since the exponents of variable in 1st term is a rational number
Hence, (a), (b) and (d) is not a polynomial.
3. (a) In $\triangle \mathrm{ABC}$, we have $\mathrm{DE} \| \mathrm{BC}$

$$
\begin{aligned}
& \therefore \quad \frac{A D}{D B}=\frac{A E}{E C} \quad \text { [By Thale's Theorem] } \\
& \Rightarrow \quad \frac{x}{x-2}=\frac{x+2}{x-1} \\
& \Rightarrow \quad x(x-1)=(x-2)(x+2) \\
& \Rightarrow \\
& x^{2}-x=x^{2}-4 \Rightarrow x=4
\end{aligned}
$$

4. (b) No. of sample space $=6 \times 6=36$

Sum total of $9=(3,6),(4,5),(5,4),(6,3)$

$$
\therefore \quad P=\frac{4}{36}=\frac{1}{9}
$$

6. (c)
7. (d) Given : $13 \tan \theta=12 \Rightarrow \tan \theta=\frac{12}{13}$

Now given expression is, $\frac{2 \sin \theta \cdot \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$

Dividing numerator and denominator by $\cos ^{2} \theta$,

$$
\frac{\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta}}{\frac{\cos ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2 \times \frac{12}{13}}{1-\left(\frac{12}{13}\right)^{2}}
$$

$$
\left(\because \tan \theta=\frac{12}{13}\right)
$$

8. (b) $n(\mathrm{~S})=[1,2,3, \ldots, 100]=100$

$$
\begin{aligned}
& \because \quad x+\frac{1}{x}>2 \\
& \therefore \quad x^{2}+1>2 x \\
& \Rightarrow \quad x^{2}-2 x+1>0 \\
& \Rightarrow \quad(x-1)^{2}>0 \\
& x=[2,3, \ldots, 100] \\
& n(\mathrm{E})=[2,3,4, \ldots, 100]=99 \\
& \mathrm{P}(\mathrm{E})=\frac{99}{100}=0.99
\end{aligned}
$$

9. (a) Let the third side be x cm . Then, by Pythagoras theorem, we have
$p^{2}=q^{2}+x^{2}$
$\Rightarrow x^{2}=p^{2}-q^{2}=(p-q)(p+q)=p+q \quad[\because p-q=1]$
$\Rightarrow x=\sqrt{p+q}=\sqrt{2 q+1} \quad[\because p-q=1 \therefore \mathrm{p}=\mathrm{q}+1]$
Hence, the length of the third side is
$\sqrt{2 q+1} \mathrm{~cm}$.
10. (c) Given,

Two circle each of radius is 2 and difference between their centre is $2 \sqrt{3}$

$$
A B=2 \sqrt{3} \Rightarrow A C=\frac{1}{2} A B
$$

In $\triangle A P C, \cos \theta=\frac{A C}{A P}=\frac{\sqrt{3}}{2} \quad\left(\angle C=90^{\circ}\right)$

$$
\Rightarrow \quad \theta=30^{\circ}
$$

We know,

Area of common region
$=2($ Area of sector - Area of $\triangle A P Q)$
$=2\left(\frac{60^{\circ}}{360^{\circ}} \times \pi(2)^{2}-\frac{1}{2} \times(2)^{2} \times \sin 60^{\circ}\right)$
$=2\left(\frac{4 \pi}{6}-\frac{4 \sqrt{3}}{4}\right)=2\left(\frac{2}{3}(3.14)-(1.73)\right)$
$=2(2.09-1.73)=2(0.36)=0.72$.
\therefore Area of region lie between 0.7 and 0.75 .
11. (a)
12. (b) (a) is not true [By def.]
(b) holds $[\because$ degree of a zero polynomial is not defined $]$
(c) is not true [\because degree of a constant polynomial is ' 0 ']
(d) is not true
[\because a polynomial of degree n has at most n zeroes].
13. (b) $\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}=\frac{2(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2)(1-\cos \theta)}$
$=\frac{2\left(1-\sin ^{2} \theta\right)}{2\left(1-\cos ^{2} \theta\right)}=\frac{2 \cos ^{2} \theta}{2 \sin ^{2} \theta}=\cot ^{2} \theta=\left(\frac{15}{8}\right)^{2}=\frac{225}{64}$
14. (a)
15. (d) All the statements given in option ' a ', 'b' and ' c ' are correct.
16. (a)

circumference of circle $=2 \pi r$
Area of $\triangle A B C=[\operatorname{ar}(\triangle A O B)+\operatorname{ar}(\triangle B O C)+\operatorname{ar}(\triangle A O C)]$
$=\frac{1}{2} A B \times r+\frac{1}{2} \times B C \times r+A C \times r$
$=\frac{1}{2} r[A B+B C+A C]=\frac{1}{2} r \times 7 \pi$
From (i) and (ii),
$\frac{\text { Circmference of circle }}{\text { Area of triangle }}=\frac{2 \pi r}{\frac{1}{2} r \times 7 \pi}=\frac{4}{7}$
17. (a) S and T trisect the side $Q R$.

Let $Q S=S T=T R=x$ units
Let $P Q=y$ units
In right $\triangle P Q S, P S^{2}=P Q^{2}+Q S^{2}$
(By Pythagoras Theorem)
$=y^{2}+x^{2}$
In right $\triangle P Q T, P T^{2}=P Q^{2}+Q T^{2}$

$$
\begin{equation*}
=v^{2}+(0 x)^{2}=v^{2}+4 x^{2} \quad(\text { By Pythagoras Theorem) } \tag{i}
\end{equation*}
$$

$$
\begin{gather*}
=y^{2}+(2 x)^{2}=y^{2}+4 x^{2} \tag{ii}\\
=
\end{gather*}
$$

In right $\triangle P Q T, P R^{2}=P Q^{2}+Q R^{2}$
(By Pythagoras Theorem)

$$
\begin{equation*}
=y^{2}+(3 x)^{2}=y^{2}+9 x^{2} \tag{iii}
\end{equation*}
$$

R.H.S. $=3 P R^{2}+5 P S^{2}$
$=3\left(y^{2}+9 x^{2}\right)+5\left(y^{2}+x^{2}\right) \quad[$ From (i) and (iii)]
$=3 y^{2}+27 x^{2}+5 y^{2}+5 x^{2}=8 y^{2}+32 x^{2}$
$=8\left(y^{2}+4 x^{2}\right)=8 P T^{2}=$ L.H.S. [From (ii)]
Thus $8 P T^{2}=3 P R^{2}+5 P S^{2}$
18. (a) Unit digit in $\left(7^{95}\right)=$ Unit digit in $\left[\left(7^{4}\right)^{23} \times 7^{3}\right]$
$=$ Unit digit in 7^{3} (as unit digit in $7^{4}=1$)
$=$ Unit digit in 343
Unit digit in $3^{58}=$ Unit digit in $\left(3^{4}\right)^{4} \times 3^{2}$
[as unit digit $3^{4}=1$]
$=$ Unit digit is 9
So, unit digit in $\left(7^{95}-3^{58}\right)$
$=$ Unit digit in $(343-9)=$ Unit digit in $334=4$
Unit digit in $\left(7^{95}+3^{58}\right)=$ Unit digit in $(343+9)$
$=$ Unit digit in $352=2$
So, the product is $4 \times 2=8$
19. (d) In (a) power of x is -1 i.e. negative
\therefore (a) is not true.
In (b) power of $x=\frac{1}{2}$, not an integer.
\therefore (b) is not true
In (c) Here also power of x is not an integer
\therefore (c) is not true
(d) holds $[\because$ all the powers of x are non-negative integers.]
20. (d) We have, $\sin 5 \theta=\cos 4 \theta$
$\Rightarrow 5 \theta+4 \theta=90^{\circ} \quad\left[\because \sin \alpha=\cos \beta\right.$, than $\left.\alpha+\beta=90^{\circ}\right]$
$\Rightarrow 9 \theta=90^{\circ} \Rightarrow \theta=10^{\circ}$
Now, $2 \sin 3 \theta-\sqrt{3} \tan 3 \theta$
$=2 \sin 30^{\circ}-\sqrt{3} \tan 30^{\circ}$
$=2 \times \frac{1}{2}-\sqrt{3} \times \frac{1}{\sqrt{3}}=1-1=0$
21. (c)
22. (d)
23. (c) In $\triangle P A C$ and $\triangle Q B C$, We have
$\angle P A C=\angle Q B C$
$\left[\right.$ Each $\left.=90^{\circ}\right]$
$\angle P C A=\angle Q C B$
[Common]
$\therefore \quad \triangle P A C \sim \triangle Q B C$
$\therefore \quad \frac{x}{y}=\frac{A C}{B C}$ i.e. $\frac{y}{x}=\frac{B C}{A C}$
Similarly $\frac{z}{y}=\frac{A C}{A B}$ i.e. $\frac{y}{z}=\frac{A B}{A C}$
Adding (i) and (ii), we get

$$
\frac{B C+A B}{A C}=\frac{y}{x}+\frac{y}{z}=y\left(\frac{1}{x}+\frac{1}{z}\right)
$$

$$
\begin{aligned}
& \frac{A C}{A C}=y\left(\frac{1}{x}+\frac{1}{z}\right) \Rightarrow 1=y\left(\frac{1}{x}+\frac{1}{z}\right) \\
& \Rightarrow \frac{1}{y}=\frac{1}{x}+\frac{1}{z}
\end{aligned}
$$

24. (c) On adding both the equations, we get $x=3, y=1$
25. (b) $\mathrm{A}(2-2), \mathrm{B}(-1, \mathrm{x}), \mathrm{AB}=5$
$\Rightarrow \mathrm{AB}^{2}=25$
$\Rightarrow(-1-2)^{2}+(x+2)^{2}=25$
$\Rightarrow 9+\mathrm{x}^{2}+4 \mathrm{x}+4=25$
$\Rightarrow x^{2}+4 x-12=0$
$\Rightarrow \mathrm{x}^{2}+6 \mathrm{x}-2 \mathrm{x}-12=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+6)-2(\mathrm{x}+6)=0$
$\Rightarrow(\mathrm{x}-2)(\mathrm{x}+6)=0$
$\Rightarrow \mathrm{x}=2,-6$
26. (b) As 1 radian $=1$ degree $\times \frac{180^{\circ}}{\pi}$
$\therefore \frac{2 \pi}{3}$ radian $=\left(\frac{2 \pi}{3} \times \frac{180^{\circ}}{\pi}\right)$
\therefore Time $=\frac{120}{6}=20 \mathrm{~min}$.
27. (d) For solution to be infinite, $\frac{-c}{6}=\frac{-1}{2}=\frac{-2}{-3}$ must satisfy. but $\frac{-1}{2} \neq \frac{2}{3}$, so, infinite solution don't exist, for given equations.
28. (d) All the statements given in option (a, b, c) are correct.
29. (c) Let the coordinate of other end be $\mathrm{B}(10, \mathrm{y})$ Given point is $\mathrm{A}(2,-3)$

$$
\begin{aligned}
& \mathrm{AB}=10 \Rightarrow \mathrm{AB}^{2}=100 \\
\Rightarrow & (10-2)^{2}+(\mathrm{y}+3)^{2}=100 \\
\Rightarrow & \mathrm{y}^{2}+6 \mathrm{y}-27=0 \\
\Rightarrow & (\mathrm{y}+9)(\mathrm{y}-3)=0 \\
\Rightarrow & \mathrm{y}=-9,3
\end{aligned}
$$

30. (b) The probability of an event can never be negative.
31. (a) Given, $\sin A+\sin ^{2} A=1$
$\Rightarrow \sin A=1-\sin ^{2} A=\cos ^{2} A$
Consider, $\cos ^{2} A+\cos ^{4} A=\sin A+(\sin A)^{2}=1$
32. (a)
33. (d) Area of the circle $=\pi\left(\frac{7}{\sqrt{\pi}}\right)^{2}=\frac{\pi(49)}{\pi}=49 \mathrm{~cm}^{2}$.

Now, consider $\frac{154}{\pi}=\frac{154 \times 7}{22}=49 \mathrm{~cm}^{2}$
34. (b) Coefficient of all the terms are positive. So, both roots will be negative.
35. (b) Let (x, y) be the point which will be collinear with the points $(-3,4)$ and $(2,-5)$
$\therefore \quad \mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=0$
$\Rightarrow x(4+5)-3(-5-y)+2(y-4)=0$
$\Rightarrow 9 x+15+3 y+2 y-8=0$
$\Rightarrow 9 x+5 y=-7$
By plotting the points given in the options we find that $(7,-14)$ satisfies it.
36. (c) $\cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{a^{2}}{b^{2}}}=\frac{\sqrt{b^{2}-a^{2}}}{b}$
37. (c)
38. (b) A die is thrown once therefore, total number of outcomes are $\{1,2,3,4,5,6\}$
(a) $P($ odd number $)=3 / 6=1 / 2$
(b) $P($ multiple of 3$)=2 / 6=1 / 3$
(c) $P($ prime number $)=3 / 6=1 / 2$
(d) $P($ greater than 5$)=1 / 6$
39. (a) (By definition of similar triangles).
40. (d) Radius of the circle is $13 / 4$

Distance between $(0,0)$ and $\left(-\frac{3}{4}, 1\right)$ is
$\sqrt{\left(0+\frac{3}{4}\right)^{2}+(0-1)^{2}}=\sqrt{\frac{9}{16}+1}$
$=\sqrt{\frac{25}{16}}=\frac{5}{4}<\frac{13}{4}$
Distance between (0,0) and $\left(2, \frac{7}{3}\right)$ is

$$
\sqrt{(2-0)^{2}+\left(\frac{7}{3}-0\right)^{2}}=\sqrt{4+\frac{49}{9}}=\sqrt{\frac{85}{9}}
$$

$$
=3.073<\frac{13}{4}
$$

Distance between $(0,0)$ and $\left(3, \frac{-1}{2}\right)$ is,

$$
\begin{gathered}
\sqrt{(3-0)^{2}+\left(\frac{-1}{2}-0\right)^{2}}=\sqrt{9+\frac{1}{4}} \\
=3.041<\frac{13}{4}
\end{gathered}
$$

Distance between points $(0,0)$ and $\left(-6, \frac{5}{2}\right)$ is
$\sqrt{(-6-0)^{2}+\left(\frac{5}{2}-0\right)^{2}}=\sqrt{36+\frac{25}{4}}=\sqrt{\frac{169}{4}}$
$=\frac{13}{2}=6.5>\frac{13}{4}$
41. (c) $\mathrm{AB}=\sqrt{(2.4)^{2}+(1.8)^{2}}=3 \mathrm{~m}$.
42. (b) $\mathrm{CD}=3.6-2.4=1.2 \mathrm{~m}$
43. (a) $\because \triangle \mathrm{ABC} \sim \triangle \mathrm{AEF}$

$$
\begin{aligned}
& \therefore \frac{A C}{A B}=\frac{A E}{A F} \\
& \Rightarrow \frac{1.8}{3}=\frac{0.9}{A F} \Rightarrow \mathrm{AF}=1.5 \mathrm{~m}
\end{aligned}
$$

44. (d)
45. (a) Time $=\frac{D}{S}=\frac{300}{5}=60 \mathrm{sec}=1 \mathrm{~min}$.
46. (d)
47. (c)
48. (d)
49. (a)
50. (b)
