(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO) ## (MPH/PHD/URS-EE-2019) CHEMISTRY Code Sr. No. _____10012. SET-"X" Time: 1¼ Hours Total Questions: 100 Max. Marks: 100 Roll No. _______ (in figure) ________ (in words) Name: _______ Father's Name: _______ Date of Examination: ______ (Signature of the candidate) (Signature of the Invigilator) CANDIDATES MUST READ THE FOLLOWING INFORMATION/ INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER. - 1. All questions are compulsory. - 2. The candidates must return the Question book-let as well as OMR answer-sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated. - 8. Keeping in view the transparency of the examination system, carbonless OMR. Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate. - 4. Question Booklet along with answer key of all the A,B,C and D code will be got uploaded on the university website after the conduct of Entrance Examination. In case there is any discrepancy in the Question Booklet/Answer Key, the same may be brought to the notice of the Controller of Examination in writing/through E. Mail within 24 hours of uploading the same on the University Website. Thereafter, no complaint in any case, will be considered. - 5. The candidate MUST NOT do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question book-let itself. Answers MUST NOT be ticked in the Question book-let. - 6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer. - 7. Use only Black or Blue BALL POINT PEN of good quality in the OMR Answer-Sheet. - 8. BEFORE ANSWERING THE QUESTIONS, THE CANDIDATES SHOULD ENSURE THAT THEY HAVE BEEN SUPPLIED CORRECT AND COMPLETE BOOK-LET. COMPLAINTS, IF ANY, REGARDING MISPRINTING ETC. WILL NOT BE ENTERTAINED 30 MINUTES AFTER STARTING OF THE EXAMINATION. Sample copy for website the Or Ob Scanned by CamScanner | Question
No. | Questions | |-----------------|--| | 1. | The molecule $(OC)_{\delta}M = CPh(OCH_{\delta})$ obeys 18 electron rule. The two 'M' satisfying the condition are | | | (1) Cr, Re ⁺ (2) Mo, V | | | (3) V, Re ⁺ (4) Cr, V | | 2. | The number of lines exhibited by a high resolution EPR spectrum of the species [Cu(ethylenediamine) ₂] ²⁺ is [Nuclear spin (I) of copper is $3/2$ and of N = 1] | | | (1) 12 (2) 15 | | F8 | (3) 20 (4) 36 | | 3. | Complexes of general formula, fac- $[Mo(CO)_3 \text{ (phosphine)}_3]$ have the C–O stretching bands as given below:
Phosphine: PF_3 (i); $PC\ell_3$ (ii); $P(C\ell)Ph_2$ (iii); PMe_3 (iv)
V(CO): in cm ⁻¹ : 2090 (a); 2040 (b); 1977 (c); 1945 (d) | | | The correct combination of the phosphine and the stretching frequency is, | | | (1) (i-a) (ii-b) (iii-c) (iv-d) (2) (i-b) (ii-a) (iii-d) (iv-c) | | | (3) (i-d) (ii-c) (iii-b) (iv-a) (4) (i-c) (ii-d) (iii-a) (iv-b) | | 200 | Which one of the following will NOT undergo oxidative addition by methyl iodide ? | | | (1) $[Rh(CO_2)I_2]$ (2) $[\eta^5-CpRh(CO)_2]$ | | 1 | [3) $[Ir(PPh_3)_2(CO)C\ell]$ (4) $[\eta^5 - Cp_2Ti(Me)C\ell]$ | | | | (1) | Question
No. | Questions | |-----------------|---| | 5. | C ₆₀ has | | | (1) 14 pentagon rings and 18 Hexagon rings | | | (2) 12 pentagon rings and 20 Hexagon rings | | | (3) 12 pentagon rings and 18 Hexagon rings | | | (4) 14 pentagon rings and 20 Hexagon rings | | 6. . | In 'carbon-dating' application of radioisotopes, 14C emits | | | (1) Positron (2) y particle | | | (3) β particle (4) α particle | | 7. | The product of the reaction of propene, CO and H ₂ in the presence of Co ₂ (CO) ₈ as catalyst is | | | (1) butanoic acid (2) butanal | | - | (3) 2-butanone (4) methylpropanoate | | 8. | Reductive elimination step in hydrogenation of alkenes by Wilkinson catalyst results in (neglecting solvent in coordination sphere of Rh) | | | (1) T-shaped [Rh(PPh ₃) ₂ CI] (2) Trigonal-planar [Rh(PPh ₃) ₂ Cℓ] | | 4 | (3) T-shaped [Rh(H)(PPh ₃) ₂] (4) Trigonal-planar [Rh(H)(PPh ₃) ₂] | | 9. | The correct statement with respect to the bonding of the ligands, Mc ₃ N and Mc ₃ P with the metal ions Be ²⁺ and Pd ²⁺ is, | | | the ligands bind equally strong with both the metal ions as they are
dicationic | | | (2) the ligands bind equally strong with both the metal ions as both th ligands are pyramidal | | Ø | (3) the binding is stronger for Me ₃ N with Be ²⁺ and Me ₃ P with Pd ²⁺ | | 8 | (4) the binding is stronger for Me ₃ N with Pd ²⁺ and Me ₃ P with Be ²⁺ | (2) | | _==- | 1 | | | | |------|-----------------|---|--|--|--| | • | Question
No. | Questions | | | | | | 10. | In the iodometric titration of sodium thiosulfate $(Na_2S_2O_3)$ with acidic dichromate solution, 25 mL of 0.1 M dichromate requires 50 mL of 'x' M thiosulfate. The value of 'x' is | | | | | - 23 | | (1) 0.6 (2) 0.3 | | | | | | | (3) 0.1 (4) 0.4 | | | | | | 11. | What is meant by a reaction going in 94% enantiomeric excess? (1) The product contains 94% of one enantiomer and 6% of other enantiomer (2) The product contains an enantiomer which is 94% pure (3) The product contains 94% of one enantiomer and 6% of the products | | | | | | | (4) The product contains 97% of one enantiomer and 3% of other enantiomer | | | | | | 12. | Which of the following functional group is not reduced by sodium borohydride (NaBH ₄) (1) C=0 (2) -C-Cl | | | | | | | (3) -C-H
 (4) -C-OH
 0 | | | | | Ī | 13. | The given reaction is the example of: | | | | | | 8 | $/\!\!/ \mathbb{N} + = \rightarrow \bigcirc \bigcirc$ (1) $2 + 4$ cycloaddition (2) $2 + 2$ cycloaddition (3) $2 + 2 + 2$ cycloaddition (4) $2S + 2S$ cycloaddition | | | | | | 14. | A photo chemical reaction is: | | | | | | | (1) catalysed by light (2) Initiated by light (3) accompanied with the emission of light (4) used to convert heat energy into light | | | | | _ | | | | | | (8) | Question | | | VM. And Andrews | |----------|--|--|---| | No. | | Ques | tions | | 15. | . Which of the following column | 1.1 | | | | Which of the following solven (1) Dimethoxy ethane | | | | | (3) Diethyl ether | (2) | Xylene | | 16. | | (4) | Heptane | | 10, | For the reaction given below, | which | reaction condition are not suitable? | | | II . | - | W . | | | $\bigcap \longrightarrow \bigcap$ | | | | | (1) LiAlH ₄ /et ₂ O | (9) | II NI NIII / NI OTT | | 5 | (3) Zn (Hg) / HCl | (2)
(4) | H ₂ N NH ₂ / NaOH | | 17. | Which of the following statem | | HSCH ₂ CH ₂ CH ₂ SH 'H ⁺ , H ₂ /Ni | | 1000.000 | (1) The molecule to be synth | cents is | not correct? | | İ | C C C C C C C C C C C C C C C C C C C | esised | is a target molecule | | 20. | disconnection | a rear | chemical compound resulting from | | | (3) Regioselective reaction | does n | ot produce one of several possible | | ** | structural isomers | | | | MES | (4) Synthon is an idealised fifteen a disconnection. | ragme | nt (usually cation or anion) resulting | | 18. | | | | | | How many oxygen atoms lined | min in | 1170 | | 10. | space? | up III. | a row would fit in a one nanomaterial | | 10. | space : | **** | | | 10. | (1) Seventy | (2) | One | | | (1) Seventy (3) Seven | (2)
(4) | One
None | | 19. | (1) Seventy (3) Seven The role of catalyst in chemica | (2)
(4)
al reac | One
None | | | (1) Seventy (3) Seven The role of catalyst in chemical (1) Lowers the activation energy | (2)
(4)
al reactergy | One
None | | | (1) Seventy (3) Seven The role of catalyst in chemical (1) Lowers the activation end (2) Alters the amount of productions | (2)
(4)
al reactergy
ducts | One
None
tion is | | | (1) Seventy (3) Seven The role of catalyst in chemical (1) Lowers the activation ene (2) Alters the amount of process (3) Increases ΔH of Forward | (2)
(4)
al reaction
ergy
ducts
reaction | One None tion is | | 19. | (1) Seventy (3) Seven The role of catalyst in chemical (1) Lowers the activation energy (2) Alters the amount of process (3) Increases ΔH of Forward (4) Decreases of ΔH of Forward | (2)
(4)
al reaction
ergy
ducts
reaction | One None tion is | | | (1) Seventy (3) Seven The role of catalyst in chemical (1) Lowers the activation ene (2) Alters the amount of process (3) Increases ΔH of Forward (4) Decreases of ΔH of Forward Secondary pollutant is | (2)
(4)
al reaction
ergy
ducts
reaction | One None tion is | | 19. | (1) Seventy (3) Seven The role of catalyst in chemical (1) Lowers the activation energy (2) Alters the amount of process (3) Increases ΔH of Forward (4) Decreases of ΔH of Forward | (2)
(4)
al reaction
ergy
ducts
reaction | One None tion is | (4) | Question
No. | Questions | |-----------------|--| | 21. | Which of the following is a correct name for the following compound? | | / | $\frac{C\ell}{H_3C}C = C < \frac{CH_2CH_3}{I}$ | | | (I) cis-2-chloro-3-iodo-2-pentene | | | (2) trans-2-chloro-3-ido-2-pentene | | | (3) trans-3-iodo-4chloro-3-pentene | | | (4) cis-3-iodo-4-chloro-3-pentene | | 22. | Keto-enol tautomerism is observed in : | | o . | O O O O O (1) $C_6H_5-C-CH_2-C-CH_3$ (2) $C_6H_5-C-C_6H_5$ | | | O O O II (3) CH,CH,C-OH (4) C,H,-C-H | | 23. | Which of the following gases is mainly responsible for acid rain? | | | (1) NO ₂ and CO ₂ (2) CO ₂ and SO ₂ | | | (3) SO ₂ and NO ₂ (4) None of these | | 24. | Which of the following compound displays two singlets at $\delta_{2.3}$ and 7.1 ppm. | | | (1) 1, 2-dimethylbenzene (2) 1, 3-dimethyl benzene | | | (3) 1, 4-dimethyl benzene (4) methyl benzene | | | A single strong and sharp absorption near 1650 cm ⁻¹ in IR spectra indicates
the presence of | | | (1) Acid chlorides (2) Amides | | | (3) Anhydrides (4) Aldehydes | | Question
No. | | | Ques | tions | |------------------|-----------|--|--------|--------------------------------------| | 26. | The
as | proteins in which pros | thetic | group is carbohydrate are known | | | (1) | Lipo-protein | (2) | Mucoprotein | | | (3) | Chromoprotein | (4) | Nucleoprotein | | 27. | 1000 | tch the List I and List II
en below: | and se | elect the correct answer using codes | | | | List I | Lis | t II | | | 1 | Nerol | Α | Lemon grass oil | | 20 | 2 | Citral | В | Geraniol | | | 3 | Pinol | C | Amyrin | | nd. | 4 | Lupeol | D | α-pinene | | | Ċor | rect answer is : | | 20 | | | (1) | 1-C, 2-B, 3-A, 4-D | (2) | 1-B, 2-A, 3-D, 4-C | | | (3) | 1–D, 2–C, 3–A, 4–D | (4) | 1-A, 2-D, 3-B, 4-D | | 28. | Hyd | rolysis product of sucrose | is: | | | 100 | | Fructose | (2) | Glucose + Galactose | | 15 ²⁶ | (3) | Glucose | (4) | Glucose + Fructose | | 29. | | mass spectrum of primar an Intense peak at $m/z = 0$ | | des shows a moderate molecular ion | | 20,00 | | Loss of an alkyl radical | | Loss of HCN | | | (3) | Loss of CO | (4) | Loss of methyl radical | | 30. | Whi | ch one of the following is b | acteri | ostatic drug? | | / | (1) | Chloramphenicol | | ± 1.25 | | | (2) | Penicillin | | | | | (3) | Streptomycin | 200/07 | 0 | | | (4) | Phenacetin | 92 | | | Question
No. | Questions | |-----------------|--| | 31. | The number of the lines in the ESR spectrum of CD_3 is (the spin of D is 1) | | / | (1) 1 (2) 3 | | 1 | | | | (3) 4 (4) 7 | | 32. | Colligative properties are used for the determination of | | | (1) molar mass | | | (2) equivalent weight | | 100 | (3) arrangement of molecules | | | (4) melting and boiling point | | 33. | Which of the following does not contain a C, axis? | | | (1) POCl ₃ (2) NH ₄ ⁺ | | | (3) H ₃ O ⁺ (4) ClF ₃ | | 34. | Franck Condon principle is related to | | | (1) time required for electronic transition to occur | | | (2) absorption of light | | | (3) time of electronic transition and change in internuclear distance | | | (4) symmetry of molecules | | 35. | Which pairing of molecule and point group is correct? | | | (1) $\mathrm{BC}\ell_3$, C_{3v} (2) $\mathrm{SiC}\ell_4$, D_{4h} | | 23 | (3) H_2S , C_{2v} (4) SF_4 , C_{4v} | | 36. | The symmetric stretching mode of the SiF, molecule: | | | (1) IR active | | | (2) IR inactive | | | (3) generates a change in molecular dipole moment | | 5 | (4) gives rise to a strong absorption in IR spectrum | Scanned by CamScanner | Question
No. | Questions | | | | | | | | |-----------------|--|--|--|--|---|---|------------------------------------|--------------------------| | 37. | Ma | tch the fo | llowin | g colum | ns: | - 15 0 M/S | | | | | LIS | ST-1 | | | | LIST-2 | 6 | | | | 1. | Sol | | | Α, | Liquid disp | ersed in solid | £ ²⁰ | | | 2. | Gel | | 87 | В. | gas disperse | ed in liquid | # | | * • | 3. | Emulsio | on | 2 | C. | • | sed in liquid | *. | | * | 4. | Foam | | | D. | 8930 | rsed in liquid | | | 3 | Coc | les · | | | | | | | | FIT 20 | (1) | 1-A | 2-B | 3-C | 4-D · | 15 | 20 | | | | (2) | 1-B | 2-C | 3-D | 4-A | | 20 | | | | (3) | 1-C | 2-A | 3-D | 4–B | × 17 | * | | | | (4) | 1-B | 2-D | 3-A | 4-C | | D 8 | • 4 | | 38. | Ab | eat engi | ne ope | rates b | etween t | ne boiling poi | nt of water a | nd a room | | 38. | tem | eat enginerature wed to be | of 25° | C. The | efficienc | y of the engir | nt of water as
ne is largest, i | nd a room
if water is | | 38. | tem
allo | perature
wed to be | of 25°
oil at a | C. The | efficience
re of
(2) | y of the engir | ie is largest, i | nd a room
if water is | | 38. | tem
allo
(1)
(3) | perature
wed to be
1 atm. | of 25° | °C. The
pressu | efficience
re of
(2) | y of the engir | ie is largest, i | nd a room
if water is | | | tem
allo
(1)
(3) | perature
wed to be
1 atm.
25 atms | of 25°
oil at a
Orlon | C. The
pressu | efficience
re of
(2) | y of the engir
10 atms
1.01 * 10 ⁶ N | ie is largest, i | nd a room
if water is | | | tem
allo
(1)
(3)
Mor | perature
wed to be
1 atm.
25 atms
iomer of | of 25°
oil at a
Orlon
H–OC | C. The pressuis | efficience
re of
(2)
(4) | y of the enging 10 atms $1.01 * 10^6 \text{ N}$ $\text{CF}_2 = \text{CF}_2$ | ie is largest, i | nd a room
if water is | | | (1) (3) Mor (1) (3) | perature
wed to be
1 atm.
25 atms
iomer of
$CH_2 = C$
$CH_2 = C$ | of 25°
oil at a
Orlon
H–OC | C. The
pressu
is
H ₃ | efficience
re of
(2)
(4)
(4) | y of the enging 10 atms $1.01 * 10^6 \text{ N}$ $\text{CF}_2 = \text{CF}_2$ | ie is largest, i | nd a room
if water is | | 39. | (1) (3) Mor (1) (3) | perature
wed to be
1 atm.
25 atms
iomer of
$CH_2 = C$
$CH_2 = C$ | of 25°
oil at a
Orlon
H–OC
is obta | C. The
pressu
is
H ₃ | efficience
re of
(2)
(4)
(4) | y of the enging $10 \mathrm{atms}$ $1.01 * 10^6 \mathrm{N}$ $\mathrm{CF_2} = \mathrm{CF_2}$ $\mathrm{CH_2} = \mathrm{CH}$ ition of $\mathrm{HC}\ell$ to | ie is largest, i | nd a room
if water is | | 39. | tem
allo
(1)
(3)
Mor
(1)
(3) | perature wed to be 1 atm. 25 atms $CH_2 = C$ $CH_2 = C$ oroprene | of 25° oil at a Orlon H-OC is obta | is H ₃ | efficience
re of
(2)
(4)
(2)
y the add | y of the enging 10 atms $1.01*10^6$ N $CF_2 = CF_2$ $CH_2 = CH$ ition of $HC\ell$ to acetylene | ie is largest, i | nd a room
if water is | (8) PHY SHAP | Question
No. | Questions | |-----------------|--| | 41. | The complex $[Fe(Phen)_2(NCS)_2](Phen-1, 10$ -phnanthroline) shows spin crossover behaviour. CFSE and μ_{eff} at 250 and 150 K, respectively will be: | | | (1) $0.4 \Delta_0$, 4.90 BM and $2.4 \Delta_0$, 0.00 BM | | | (2) $2.4 \Delta_0$, 2.90BM and $0.4 \Delta_0$, 1.77BM | | ¥ e | (3) $2.4 \Delta_0$, 0.00 BM and $0.4 \Delta_0$, 4.90 BM | | •) | (4) $1-2 \Delta_0$, 4.90 BM and $2.4 \Delta_0$, 0.00 BM | | 42. | [Ni ^{II} L_6] ^{n+or n-} show absorption bands at 8500, 15400 and 26000 cm ⁻¹ whereas [Ni ^{II} L_6] ^{n+or n-} at 10750, 17500 and 28200 cm ⁻¹ , L and L' are respectively | | | (1) OH^- and N_3^- (2) $C\ell^-$ and I^- | | | (3) NCS- and RCOO- (4) H ₂ O and NH ₃ | | 43. | The rate of exchange of $\mathrm{OH_2}$ present in the coordination sphere by $^{18}\mathrm{OH_2}$ of | | ħ | i. $[Cu(H_2O)_6]^{2+}$; ii) $[Mn(H_2O)_6]^{2+}$; iii) $[Fe(H_2O)_6]^{2+}$; iv) $[Ni(H_2O)_6]^{2+}$, follows the order | | • | (1) $i(x) > i(x) > i(i) i(i$ | | | (3) $ii) > iii) > iv) > i) (4) iii) > iv) > ii)$ | | 44. | On addition of an inert gas at constant volume to the reaction | | | $N_2 + 3H_2 \rightleftharpoons 2NH_3$ at equilibrium | | | (1) The reaction remains unaffected | | | (2) Forward reaction is favoured | | ľ | (3) The reaction halts | | | (4) Backward reaction is favoured | (9) | Question
No. | Questions | | | | |-----------------|---|--|--|--| | 45. | The transition zone for Raman spectra is | | | | | 3. | (1) Between vibrational and rotational levels | | | | | | (2) Between electronic levels | | | | | | (3) Between magnetic levels of nuclei | | | | | 421 | (4) Between magnetic levels of unpaired electrons | | | | | 46. | Polarisation of the electron cloud by the cation forms | | | | | | (1) Ionic bond (2) Covalent bond | | | | | 8 . .0 | (3) Coordinate bond (4) Metallic bond | | | | | 47. | Activation energy of a chemical reaction can be determined by | | | | | | (1) determining the rate constant at standard temperature | | | | | (31.5) | (2) determining the rate constants at two temperatures | | | | | | (3) determining probability of collision | | | | | , | (4) using catalyst | | | | | 48. | Due to Frenkel defect, the density of the ionic solids | | | | | | (1) increases (2) decreases | | | | | | (3) does not change (4) none of the above | | | | | 49. | What is the simplest formula of a solid whose cubic unit cell has the atom A at each corner, the atom B at each face centre and a C atom at the body centre | | | | | 1 | (1) AB ₂ C (2) A ₂ BC | | | | | | (3) AB ₃ C (4) ABC ₃ | | | | (10) collegedunia India's largest Student Review Platford | Question
No. | Questions | |-----------------|---| | 50. | Which of the following thermodynamic function is called as the arrow of "time" | | ٠ | (1) Enthalpy (2) Gibbs free energy | | | (3) Entropy (4) Helmholtz free energy | | 51. | The room temperature magnetic moment (μ_{eff} in BM) for a monomeric Cu(II) complex is greater than 1.73. This may be explained using the expression | | * | (1) $\mu_{\text{eff}} = \mu_s (1 - \alpha \lambda / \Delta)$ (2) $\mu_{\text{eff}} = [n (n+2)]^{\nu_s}$ | | • | (3) $\mu_{\text{eff}} = [4s (s+1) + L (L+1)]^{1/2}$ (4) $\mu_{\text{eff}} = g [J (J+1)]^{1/2}$ | | 52. | The numbers of P-S and P-P bonds in the compound P_4S_3 are, respectively, | | | (1) 3 and 6 (2) 4 and 3 | | 100 | (3) 6 and 3 (4) 6 and 2 | | 53. | In the absence of bound globin chain, heme group on exposure to O_2 gives the iron-oxgen species | | | (1) Fe(III) -O-Fe(III) (2) Fe(III) -O-O- | | | (3) Fe(III) –O–O–Fe(III) (4) Fe(IV) –O– | | 54. | The complex [Cr(bipyridyl) ₃] ²⁺ , shows a red phosphorescence due to transition | | 200 | (1) ${}^{4}\mathbf{T}_{1g} \leftarrow {}^{4}\mathbf{A}_{2g}$ (2) ${}^{2}\mathbf{E}_{g} \leftarrow {}^{4}\mathbf{A}_{2g}$ (3) ${}^{4}\mathbf{T}_{2g} \leftarrow {}^{4}\mathbf{A}_{2g}$ (4) ${}^{4}\mathbf{A}_{2g} \leftarrow {}^{2}\mathbf{E}_{g}$ | | | (1) ${}^{4}T_{1g} \leftarrow {}^{4}A_{2g}$ (2) ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$ (3) ${}^{4}T_{2g} \leftarrow {}^{4}A_{2g}$ (4) ${}^{4}A_{2g} \leftarrow {}^{2}E_{g}$ | | | | (11) | Question
No. | Que | stions | |-----------------|--|---| | 140, | | an a a a | | 55. | Consider the following reactions in | N_2O_4 | | | i. NOC ℓ +Sn ii. | NOCl+AgNO ₃ | | | iii. NOCℓ + BrF ₃ iv. | NOCℓ+SbCℓ ₅ | | 1 | Reactions which will give [NO]+ as | a major product are : | | | (1) i and ii (2) | iii and iv | | | (3) i and iv (4) | ii and iv | | 56. | The number of 3c=2e bonds present | in $A\ell(BH_4)_3$ is | | • | (1) four (2) | three | | | (3) six (4) | zero | | 57. | The role of copper salt as co-catalys | st in Wacker process is | | × . | (1) Oxidation of Pd(0) by Cu(II) | (2) Oxidation of Pd(0) by Cu(I) | | | (3) Oxidation of Pd(II) by Cu(I) | (4) Oxidation of Pd(II) by Cu(II | | 58. | For the oxidation state/s of sulphur | atoms in S ₂ O, consider the following | | . | i) -2 and $+4$ ii) | 0 and $+2$ | | 9 8 | iii) + 4 and 0 iv) | + 2 and + 2 | | | The correct answer is/are | 12 Table | | | (1) i and ii (2) | i and iii | | | (3) ii and iv (4) | iii and iv | | 9. | The geometries of [ClF ₄]* and [IF ₄]- | respectively are | | | (1) Tetrahedral and tetrahedral | | | | (2) Tetrahedral and trigonal bipyra | midal | | | (3) Tetrahedral and Square planar | | | | | * = = | | | (4) Tetrahedral and Octahedral | | (12) | Question
No. | Questions | | | | | |-----------------|---|--|--|--|--| | 60. | Among the complexes (i) $K_4[(Cr(CN)_6], (ii) K_4[(Fe(CN)_6], (iii) K_5[(Co(CN)_6], and (iv) K_4[(Mn(CN)_6], Jahn Teller distortion is expected in$ | | | | | | | (1) i, ii and iii (2) ii, iii and iv | | | | | | 3723 | (3) i and iii | | | | | | 61. | For a potentiometric titration in the curve of emf (E) v/s volume (V) of
the titrant added, the equivalence point is indicated by | | | | | | . | (1) $ dE/dV = 0$, $ d^2E/dV^2 = 0$ (2) $ dE/dV = 0$, $ d^2E/dV^2 > 0$ | | | | | | | (3) $ dE/dV > 0$, $ d^2E/dV^2 = 0$ (4) $ dE/dV > 0$, $ d^2E/dV^2 > 0$ | | | | | | 62. | If the concentration (c) is increased to 4 times its original value (c), the change in molar conductivity for strong electrolytes is (where b is kohlrausch's constant) | | | | | | 603 | (1) 0 (2) b√c | | | | | | | $(3) 2b\sqrt{c} \qquad \qquad (4) 4b\sqrt{c}$ | | | | | | 33 | The energy levels of the harmonic oscillator (neglecting zero point energy) are $\varepsilon_v = nhv$ for $n = 0, 1, 2 \dots$ Assuming $hv = k_B T/3$; the partition function is | | | | | | | (1) e (2) $e^{1/3} (e^{1/3} - 1)$ | | | | | | | (3) $1/3e$ (4) $3e/(3e^3-1)$ | | | | | | 64. | The ground state of hydrogen atom is -13.598 eV. The exception values of kinetic energy $\langle T \rangle$ and potential energy, $\langle V \rangle$, in units of eV, are | | | | | | | (1) $<$ T>= 13.598, $<$ V>= -27.196
(2) $<$ T>= -27.196, $<$ V>= 13.598 | | | | | | | | | | | | | | (3) $=-6.799, =-6.799$ | | | | | collegedunia | Question
No. | · Questions | | | |-----------------|--|--|--| | 65. | The correct expression for the product $((M_n).(M_w))$ [where M_n and M_w are the number average and weight average molar masses, respectively, of a polymer] is | | | | • | (1) $N^{-1} \sum_{i} N_{i} M_{i}$ (2) $N^{-1} \sum_{i} N_{i} M_{i}^{2}$ | | | | | (3) $N/\sum_{i} N_{i} M_{i}$ (4) $N/\sum_{i} N_{i} M_{i}^{2}$ | | | | 66. | Match the following columns: | | | | | Column-1 Column-2 | | | | | A. Energy of the ground state of He+ 1. -6.04 eV | | | | | B. Potential energy of 1st orbit of H- atom 2. -27.2 eV | | | | : | C. Kinetic energy of II excited state of He+ 3. $8.68 * 10^{-18} J$ | | | | | D. Ionisation potential of He+ 4. -54.4 ev | | | | | Codes. | | | | | A B C D | | | | | (1) 1 2 3 4 | | | | | (2) 4 3 2 1 | | | | | (3) 4 2 1 3 | | | | , S | (4) 2 8 1 4 | | | | 67. | The protecting power of lyophilic colloidal sol is expressed in terms of | | | | | (1) Critical miscelle concentration (2) Oxidation number | | | | | (3) Coagulation value (4) Gold number | | | | 68. | Which one of the following is an example for homogenous catalysis? | | | | TE . | (1) Hydrogenation of oil | | | | | (2) Manufacture of ammonia by Haber's process | | | | | (3) Manufacture of sulphuric acid by Contact process | | | | | (4) Hydrolysis of sucrose in presence of dilute hydrochloric acid | | | (14) | Question
No. | Questions | | | | |-----------------|---|--|--|--| | 69. | The energy of a hydrogen atom in a state is ($-hcR_H/25$), where $R_H = Rydberg$ Constant). The degeneracy of the state will be - | | | | | | (1) 25^1 (2) 25^2 | | | | | | (3) 25^3 (4) 25^4 | | | | | 70. | The value of the commutator $[x, p_x^2]$ is | | | | | | (1) 2i (2) 2 i h p _x | | | | | | (3) $2ixp_x$ (4) hip_x/π | | | | | 71. | The normality of 2.3 M H ₂ SO ₄ solution is | | | | | | (1) 2.3 N (2) 4.6 N | | | | | * | (3) 6.9 N (4) 7.9 N | | | | | 72. | Crystal cannot posses | | | | | | (1) 1 fold axis of symmetry (2) 3 fold axis of symmetry | | | | | | (3) 5 fold axis of symmetry (4) 6 fold axis of symmetry | | | | | 73. | Number of sigma bonds in P ₄ O ₁₀ is | | | | | 1. | (1) 6 (2) 7 | | | | | | (3) 17 (4) 16 | | | | | 4. 2 | 2 mol of an ideal gas at 27° C is expanded reversibly from 2 lit. To 20 lit Find entropy change (R = 2 cal / mol K) | | | | | (| 1) 92.1 (2) 0 | | | | | | 3) 4 (4) 9.2 | | | | | | | | | | | Question | e 1 | Questions | | |----------|-------------------------------|----------------------|----------------------| | No. | | driesmona | | | 75. | An adiabatic process is | | | | | (1) isoenthalpic | (2) isoentropic | * | | | (3) isochoric | (4) isobaric | | | 76. | At a certain temperature, the | following observatio | ns were made for the | | 9 3 | reaction | * | E 19 19 1912 - 19 | | | A> Products | 2 | | | | Time | ra1 | e ne | | | Time | [A] | | | | (From the start) | 1 | | | | 2 minutes | 5*10-3 | H 12 | | 53 | 5 minutes | 4*10-3 | | | | 8 minutes | 3*10-3 | | | | 11 minutes | 2*10-3 | ###
12 | | | The order of the reaction is | | | | | (1) 1 | (2) 2 | | | | (3) 3 | (4) Zero | | | 77. | How many stereoisomers does | have 2, 3-dichlorop | entane? | | | (1) 2 | (2) 4 | | | | (3) 3 | (4) 5 | | PHD/URS-EE-2019 Chemistry-Code-D (16) Scanned by CamScanner | Ci | | | | | |-----------------|---|--|--|--| | Question
No. | Questions | | | | | 7 0 | Which statement about benzene is incorrect? | | | | | 78. | | | | | | 12 | (1) The C ₆ ring is planar | | | | | 12.0 | (2) The C-Cπ-bonding is delocalised. | | | | | to the | (3) The reactivity of the benzene reflects the presence of carbon-carbon double bond. | | | | | 1 88 | (4) Each C atom is sp ² hybridized. | | | | | · 79. | Which of the following is not a Huckel (4n + 2) aromatic system? | | | | | | (1) [18]-Annulene (C ₁₈ H ₁₈) (2) Cyclooctatetraene (C ₈ H ₈) | | | | | 39 | (3) Benzene (C_5H_6) (4) Cyclopentadienyl anion (C_5H_5) | | | | | | Çl | | | | | 80. | The IUPAC name of Br is: | | | | | | (1) 1-bromo-3-chlorocyclohexene | | | | | | (2) 2-bromo-6-chlorocyclohex-1-ene | | | | | 1000 | (3) 6-bromo-2-chlorocyclohexene | | | | | | (4) 3-bromo-1-chlorocyclohexene | | | | | 81. | Which one of the following high spin complexes has the largest CSF Crystal field stabilization energy | | | | | | (1) $[Cr(H_2O)_6]^{2+}$ (2) $[Mn(H_2O)_6]^{2+}$ | | | | | 11) | (3) $[Fe(H_2O)_6]^{2+}$ (4) $[Co(H_2O)_6]^{2+}$ | | | | | 82. | The number of 3c, 2e BHB and B-B bonds present in B ₄ H ₁₀ respectively | | | | | <i>92.</i> , | are | | | | | e) 2 | (1) 2, 4 (2) 3, 2 | | | | | | (3) 4, 1 (4) 4, 0 | | | | | Question
No. | Questions | | | | | |-----------------|---|--|--|--|--| | 83, | The most unstable species among the following is | | | | | | | (1) $\operatorname{Ti}(C_2H_5)_4$ (2) $\operatorname{Ti}(\operatorname{CH}_2\operatorname{Ph})_4$ | | | | | | ii
ii | (3) Pb(CH ₃) ₄ (4) Pb(C ₂ H ₅) ₄ | | | | | | 84. | The acid catalyzed hydrolysis of trans-[Co(en) ₂ AX) ⁿ⁺ can give cis-product also due to the formation of | | | | | | | (1) Square pyramidal intermediate | | | | | | -
-
- | (2) Trigonal bipyramidal intermediate | | | | | | 28 | (3) Pentagonal bipyramidal intermediate | | | | | | | (4) Face capped octahedral intermediate | | | | | | 85. | Total number of lines expected in ^{31}P NMR spectrum of HPF ₂ is (I = $1/2$ for both ^{19}F and ^{31}P) | | | | | | 293 | (1) Six (2) Four | | | | | | | (3) Five (4) Three | | | | | | 86. | The number of faces, vertices and edges in IF, polyhedron are, respectively | | | | | | 9 X | (1) 15, 7 and 15 (2) 10, 7 and 15 | | | | | | e e | (3) 10, 8 and 12 (4) 12, 6 and 9 | | | | | | 87. | The light pink colour of $[Co(H_2O)_6]^{2+}$ and the deep blue colour of $[CoC\ell_4]^{-2}$ are due to | | | | | | w
| (1) MLCT transition in the first and d-d transition in the second | | | | | | | (2) LMCT transitions in both | | | | | | | (3) d-d transitions in both | | | | | | | (4) d-d transition in the first and MLCT transition in the second | | | | | (18) | Question
No. | | Questions | | | | |-----------------|--|--|---------------------|--|--| | 88. | In $[Mo_2(S_2)_6]^{2-}$ cluster the nur
number of Mo respectively, as | aber of bridging S atoms and coording | ation | | | | | (1) 2 and 8 | (2) 2 and 6 | 337 | | | | | (3) 1 and 8 | (4) 1 and 6 | | | | | 89. | The number of possil (acac = acetylacetonate) is | ole isomers of [Ru(PPh ₃) ₂ (ac | eac) ₂] | | | | | (1) 2 | (2) 5 | | | | | | (3) 4 | (4) 3 | | | | | 90. | Which ones among CO ₃ ² -, X structure? | eO ₃ , SO ₃ , PO ₃ and NO ₃ have p | lanar | | | | | (1) CO_3^{2-} , PO_3^{3-} and XeO_3 | (2) CO_3^{2-} , XeO_3 and NO_3^{-} | | | | | į | (3) SO ₃ , PO ₃ and NO ₃ | (4) CO ₃ ²⁻ , SO ₃ and NO ₃ ⁻ | | | | | 91. | Heating 1, 4-dicarbonyl conpentoxide (P ₂ O ₅) gives: | pounds in the presence of phospl | norus | | | | ¥3 | (1) Pyrrole | (2) Furan | 24 8 | | | | | (3) Thiophene | (4) Quinoline | 55
10 (1) | | | | 92. | The Acetylation of thiophene occurs at: | | | | | | | (1) C ₃ -position | (2) C ₄ -position | | | | | | (3) C ₂ -position | (4) both at C2 and C4-positions | 181 | | | | 93. | Pyridine is basic in nature hav | ing | | | | | 52 | (1) $pKa = 5.21$ | (2) $pKa = -0.27$ | | | | | 80 | (3) $pKa = 5.81$ | (4) $pKa = -0.35$ | 34 | | | | 94. | Least stable carbocation among the following is | | | | | | 8 | (1) (CH ₃) ₃ C ⁺ | (2) (CH ₃) ₂ CH ⁺ | r . | | | | | (3) CH ₃ CH ₂ + | (4) CH ₃ ⁺ | | | | (19) | Question
No. | Questions | | | | |-----------------|--|--------------|--|--| | 95. | Due to the presence of an unpaired electron, free radicals are | | | | | | (1) Anions (2) Cations | | | | | * : | (3) Chemically reactive (4) Chemically inreactive | × | | | | 96. | Benzoyl peroxide undergoes hamolytic cleavage to produce | | | | | á: | (1) Phenyl radical (2) Methyl radical | x : | | | | | (3) Phenyl chloride (4) Methyl chloride | e. | | | | 97. | SN ¹ mechanism for the hydrolysis of an alkyl halide involves the form
of intermediate | mation | | | | 36 | (1) Free radical (2) Carbanion | | | | | * | (3) Carbocation (4) None of these | es. | | | | 98. | Which of the following is NOT polar protic solvent? | | | | | | (1) H ₂ O (2) C ₂ H ₂ OH | | | | | | (3) Fumaric acid (4) Acetone | | | | | 99. | A new carbon-carbon bond formation is possible in | | | | | | (1) Clemmensen reduction (2) Wurtz reduction | | | | | | (3) Friedel-Craft alkylation (4) Oppenauer oxidation | . | | | | 100. | Give the name of reaction given below: | | | | | | o o | | | | | 11 (8)
(8) | | | | | | | (1) Perkin reaction (2) Pechman- | (54)
(34) | | | | 12
12 | (1) Perkin reaction (2) Pechmann condensation (3) Benzoin condensation (4) Claisen-Schmidt reaction | | | | | | E-2019-Chemistry-Code-D (20) | , | | | Scanned by CamScanner