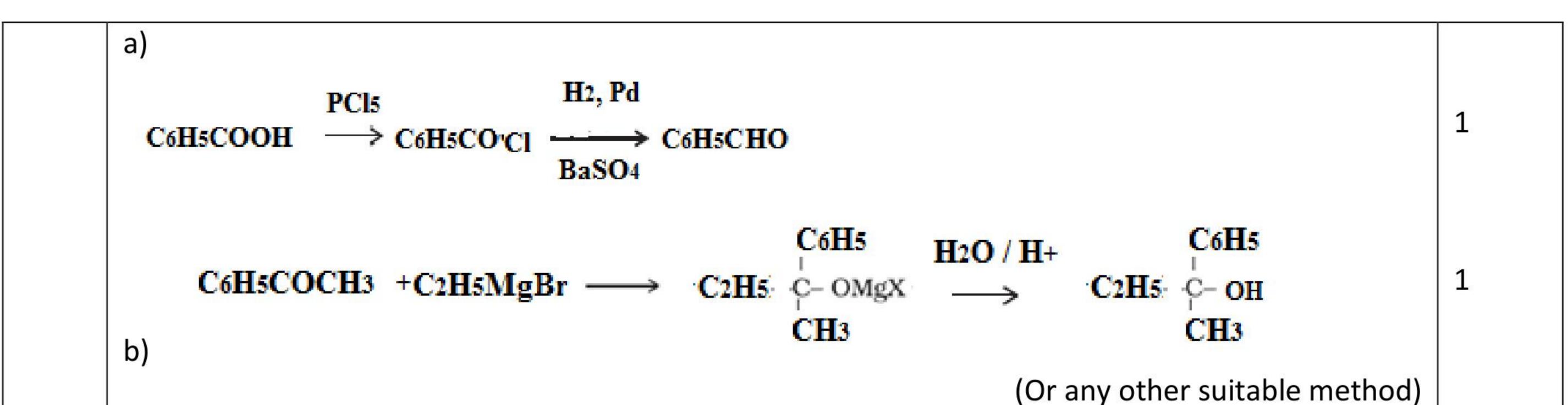
CBSE Class 12 Chemistry (For Blind) Compartment Answer Key 2019 (July 2, Set 4 - 56(B))

Marking scheme Compartment – 2019

CHEMISTRY (043)/ CLASS XII

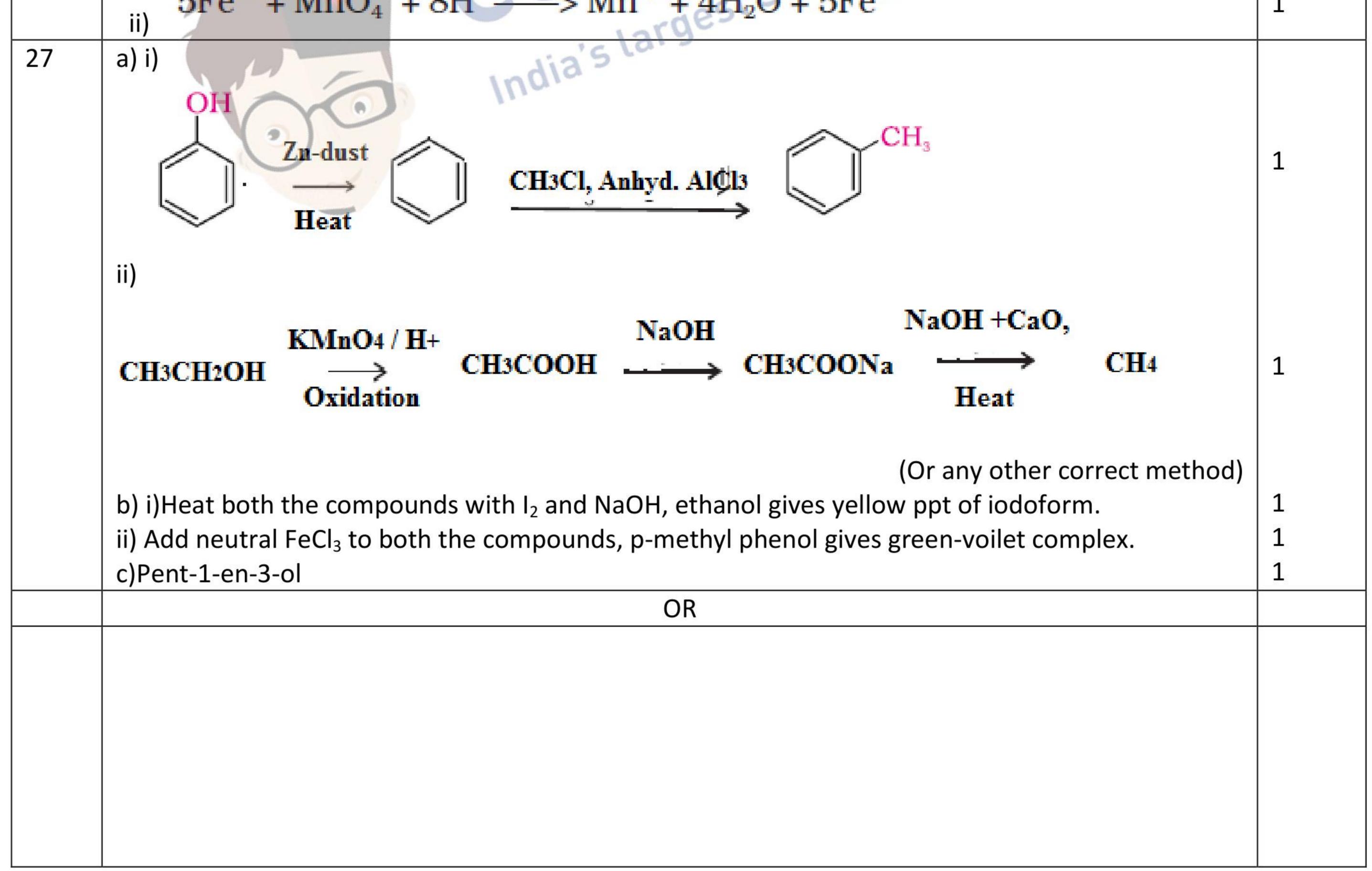

56(B)

Q.No	Value Points	Marks
	SECTION A	
1	XY ₃	1

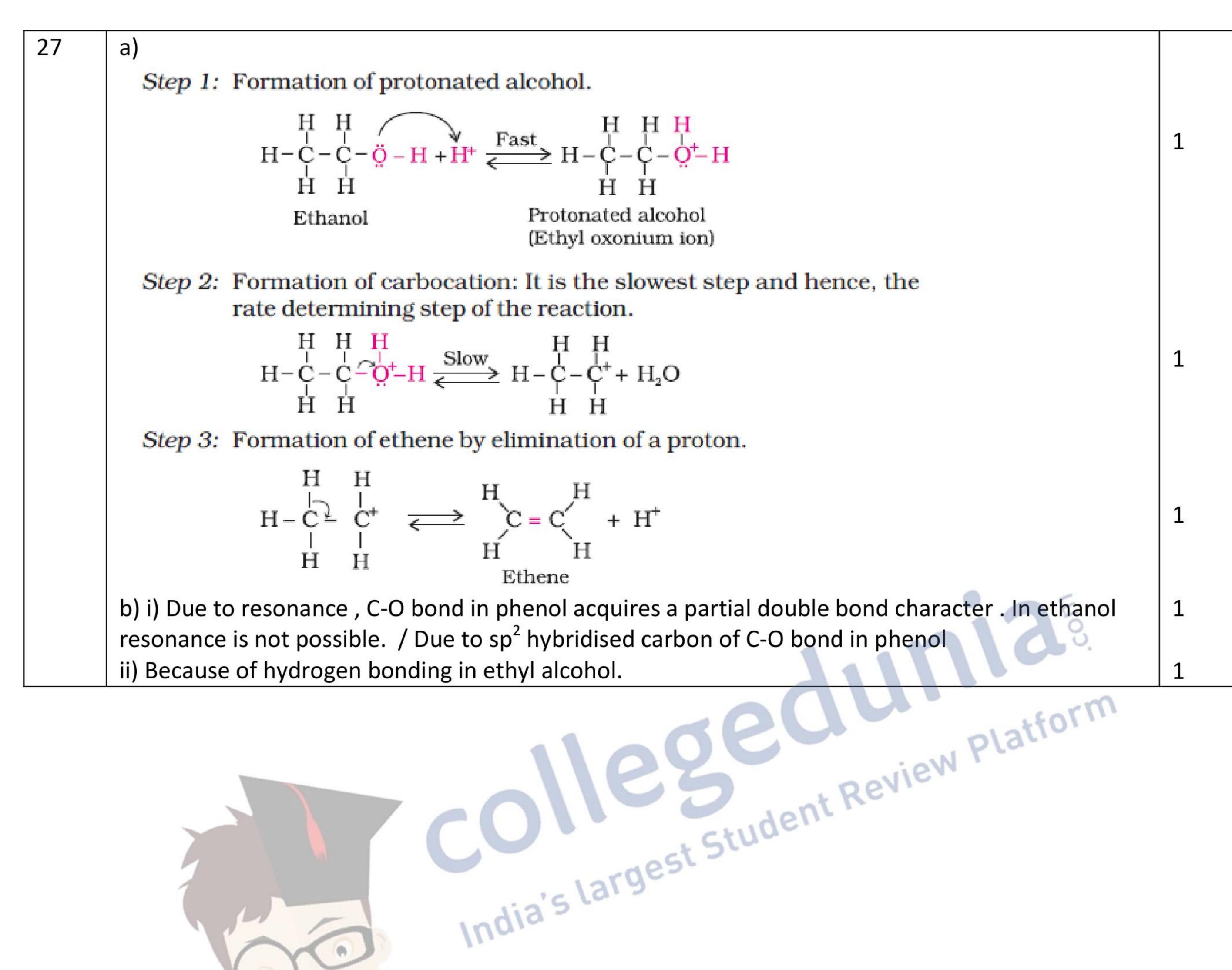
	OR	
1	X_4Y_3	
2	2	1
	OR	
2	Square planar	
3	Because of difference in number of unpaired electron	1
4	Because the carboxyl group gets bonded to the catalyst anhy.AlCl ₃	1
5	Ascorbic acid , Scurvy (bleeding of gums)	1/2,1/2
	SECTION B	
6	i) It has high vapour pressure in the bottle, so it is cooled to lower the vapour pressure otherwise it will escape rapidly.	1
	ii) Solubility of O ₂ in water decreases by increasing temperature .	1
7	$t = \frac{2.303}{k} \log \frac{[A]o}{[A]} \qquad t_{3/4} = \frac{2.303}{k} \log \frac{[A]o}{3/4[A]}$	1/2
	$t_{3/4} = \frac{2.303}{2.54 \times 10^{-3}} \log 4 = \frac{2.303}{2.54 \times 10^{-3}} 2 \times 0.3010$	1

	2.54×10^{-3} 2.54	× 10 ⁻³ 2.00.0010		I
	$t_{3/4} = 5.46 \times 10^2 s$	undia's lary		1/2
		OR		
7	$t = \frac{2.303}{k} \log \frac{[A]o}{[A]}$			1/2
	$t_{1/2} = \frac{0.693}{k}$, k = 0.693/30	$0 = 0.0231 \text{ min}^{-1}$		1/2
	$t_{90\%} = \frac{2.303}{0.0231} \log \frac{100}{100-90} = 9$	9.7 min		1
8				A 6.2
		Dispersed Phase	Dispersion Medium	
	i)Cheese	Liquid	Solid	11
	ii)Paints	Solid	Liquid	11
9	AICI ₃			1
	As_2S_3 is a -ve sol, hence Al^{3+}	ions will be more effective / D	Oue to higher charge of Al ³⁺	1
		OR		
9	i) Due to continuous unbala	nced bombardment / Zig-zag r	notion of particles by the molecules of	1
	dispersion medium, it does not allow the particles to settle down.			
	ii) Coagulation of +ve charge	ed colloidal particles in animal	hides takes place by -vely charged	1
	colloidal particles in tannin	which results in hardening of l	eather / Due to mutual coagulation of	
	oppositely charged ions			
10.				

	(Or any other suitable method)	
11	i) $C_6H_5OH + HCHO$, phenol and formaldehyde	1/2 , 1/2
	CN	
	$CH_2 = CH - CH = CH_2 + CH_2 = CH_2$	
	$v_{1_2} - v_{1_1} - v_{1_2} + v_{1_2} - v_{1_1}$	1/2,1/2
	ii)	/2,/2
12	i)Fibre ii)Elastomer iii)Thermoplastic polymer iv)Thermosetting polymer	1⁄2 ×4
	SECTION C	,
13	E	
	2.5 × 10 ²⁴ atoms weigh = 250 g	
	6.022×10^{23} atoms weigh - $\frac{250 \times 6.022 \times 10^{23}}{250 \times 6.022 \times 10^{23}}$	1
	$d = \frac{zM}{a^3 N_A} = 2 \times \frac{250 \times 6.022 \times 10^{23}}{2.5 \times 10^{24}} / [(400 \times 10^{-10})^3 \times 6.022 \times 10^{23}]$	$\frac{1}{2} + \frac{1}{2}$
	d=3.125 g cm ⁻³	L
	OR	
13	$a^{3} = (400 \times 10^{-10} \text{ cm})^{3} = 64 \times 10^{-24} \text{ cm}^{3}$	1/2
	$d = \frac{zm}{2}$	1/2
	$a^3 N$ 4×280	
	$N = \frac{1}{64 \times 10^{-24} \times 7}$	1
	$= 2.5 \times 10^{24}$ atoms	
14	$\Delta T_f = i K_f m$; i=3 for CaCl ₂	1/2 , 1/2
	$\Delta T_f = i K_f \times \frac{w_B \times 1000}{M}$	
	$M_B \times W_A$	
	$2=3 \times 1.86 \times \frac{w_B \times 1000}{111 \times 500}$	1
	$W_B = \frac{2 \times 111 \times 500}{2 \times 1000}$	
	$w_B^{-3} \times 1.86 \times 1000$ $w_B = 19.89 \text{ g}$	1
15	i) The activation energy for the combustion of fuel is generally very high which is not available at	1
10	room temperature.	
	ii) Because of larger surface area of powdered wood in comparison to a log of wood.	1
	iii) The pressure inside the pressure cooker is independent of atmospheric pressure	1
16	a) Impure metal when heated with iodine forms a volatile iodide complex which is further heated	1, ½
	at higher temperature to give pure metal. eg: Zr/Ti	
	b)The ore particles are wetted by oil whereas the impurities are wetted by water. eg: sulphide	1, ½
	OR	
16	a) Zinc is more electropositive than copper, therefore zinc displaces silver from its solution	1
10	easily.	
	b) The melting point of alumina is very high, so it is dissolved which lowers the m.p and brings	1



	conductivity.	
	c) reduction of ZnO by carbon is spontaneous because ΔG is –ve whereas with CO , ΔG is +ve	1
	hence the process is non spontaneous.	
17	A= white phosphorous	1
L /	B= Red phosphorous	1/2
		1.77
	$C = PH_3$	1/2 1/
	$D = PCI_5$ $E = H_3PO_4$	1/2 1/
10		1/2
18	a) X-X' bond in interhalogen is weaker than X-X bond in pure halogens	
	b) High bond dissociation energy / Due to the presence of triple covalent bond	
	c) Because bond dissociation enthalpy decreases from NH_3 to BiH_3	
19.	a) i)K ₂ [NiCl ₄]	1
	ii) [Co(NH ₃) ₅] ₂ (SO ₄) ₃ b) The orbital colitting operator are not sufficiently large for foreing pairing	1
	b) The orbital splitting energies are not sufficiently large for forcing pairing	1
20.	a)Due to stability of benzyl carbocation / resonance stabilisation of carbocation	1
	b) Rotation due to one enantiomer is cancelled by another enantiomer.	1
	c) Nitro group acts as electron withdrawing group / -I effect	1
	OR	
20	a) Due to dominance of resonance effect over inductive effect	1
	b) Due to polar nature of alkyl halides	1
	c) They are highly reactive and reacts with water / moisture to form hydrocarbon	1
21	$A = (CH_3CO)_2O$	1
	$B = CH_3COOH C = CH_3COOC_2H_5 \qquad D = C_2H_5OH \qquad E = CH_3COCH_3$	- ½ ×4
22	$A = C_6 H_5 CON H_2$	1
	$B = C_6 H_5 N_2^+ C I^ C = C_6 H_6$ $D = C_6 H_5 N C$ $E = C_6 H_5 I$	1⁄2 ×4
12	a) The two cyclic hemiacetal forms of glucose that differ only in the configuration of the hydroxyl	
23	group at C1	L
	b) When a protein in its native form, is subjected to physical change like change in temperature	1
	or chemical change like change in pH ² , protein loses its biological activity.	
	c) Base + Sugar + Phosphoric acid	
~ .		
24	a) Bithional (b)Broad spectrum antibiotics c)Sodium benzoate	1,1,1
	OR	
24	a) Chemical compounds which stop overproduction of acid in stomach.	1
	b) Antiseptics – chemicals applied on living tissues to prevent the growth of	
	microorganisms	1
	c) It is needed by diabetic persons as it is excreated from the body in urine unchanged. /	
	Reduces calories intake	1
	SECTION D	
25		
20	$n F^0$	1/
	$\log Kc = \frac{n E_{cell}^0}{0.059}$	/2
	$=\frac{2 \times 0.236}{= 8.0}$ = 8.0	1
	0.059	1
		1/
	$\Delta_r G^0 = - n F E_{cell}^0$	/2
	$= 2 \times 96500 C mol^{-1} \times 0.2364$	
	$\Delta_r G^0 = -45548 J mol^{-1} = -45.548 KJ mol^{-1}$	1
	b) Fuel cell - Galvanic cells that are designed to convert the energy of combustion of fuels like	
	hydrogen, methane, methanol, etc. directly into electrical energy	1
	Advantages : High efficiency and eco-friendly / pollution free	1/2,1/2



25 a) Cell constant (G*) = conductivity × Resistance = 1.29 S m⁻¹ × 100 ohm = 129 m⁻¹ = 1.29 cm⁻¹ Conductivity of 0.02 mol L⁻¹ KCl = G* / Resistance = 129 m⁻¹ / 520 ohm = 0.248 S m⁻¹ = 0.248 × 10⁻² S m⁻¹ $\Lambda_m = \frac{k}{cmc} = \frac{0.248 \times 10^{-2} S m^{-1}}{0.02 mol L^{-1}} \times 1000 cm^3 L^{-1}$ = 124 S cm² mol⁻¹ b) Anode: Zn(Hg) + 2OH⁻ → ZnO(s) + H₂O + 2e⁻

	Lin(16) + Lori / Lin(0) + 120 + Lc	1
	Cathode: HgO + H_2O + $2e^- \longrightarrow Hg(l) + 2OH^-$	1
26	a) Because in Fe ²⁺ the electronic force of attraction between its nucleus and outer electrons cloud is stronger than Mn ²⁺ due to increase in number of protons.	1
	b) The chromium metal–metal interactions are strong due to presence of 6 unpaired electrons whereas in mercury there are no unpaired electrons.	1
	c) Because Co(III) in octahedral field has extremely stable t ₂ g ⁶ e _g ⁰ configuration after pairing of 6 electrons.	1
	d) Because KMnO ₄ oxidises HCl to Cl_2	1
	e) H_2S is oxidised by $K_2Cr_2O_7$ to colloidal sulphur which appears milky white or pale yellow.	1
	OR	
26	a) Ti ³⁺ (3d ¹) , V ³⁺ (3d ²) , Mn ²⁺ (3d ⁵) , Fe ³⁺ (3d ⁵) , Co ²⁺ (3d ⁷)	1⁄2 ×6
	Because they all have incompletely filled d-orbitals	
	b) i) $5S^{2-} + 2MnO_{4} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_2O + 5S^{-}$	1
	$5Fe^{2+} + MnO_{+} + 8H^{+} \longrightarrow Mn^{2+} + 4H_{-}O + 5Fe^{3+}$	1

