SET: 55/2

MARKING SCHEME

Q. No.	Expected Answer/ Value Points SECTION A	Marks	Total Marks
Q1	Because waves of frequency greater than 30 MHz penetrate through the ionosphere and do not get reflected by it.	1	1
Q2	Definition ½ SI Unit ½		
	Conductivity is reciprocal of resistivity $\sigma = \frac{1}{\rho}$	1/2	
Q3	SI unit : S(siemen) +Q	1	1 8 1
Q4	Resolving power is same (it does not depend on focal length of the objective.) Alternatively: Ratio of resolving power = 1:1	ew Plat	iorm 1
Q5	Accept both the answers: A: +ve; B: -ve or A: -ve; B: +ve	1	1
Q6	Emf of cell 1 Internal resistance 1 a) $E = V$ for $I = 0$ $ \therefore E = 6 V$ b) $E = V + i r$ $ \therefore 6 = 4 + r$ $ r = 2 \Omega$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2
Q7	 i. Sky wave propagation uses reflection from ionosphere whereas space waves propagation uses line of sight of propagation. ii. Sky wave propagation is for waves of frequency between 3 to 30 MHz whereas space waves propagation is preferred for waves of frequency more than 40 MHz 	1	
	[Also accept or any other correct distinction]		2

Page 1 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET: 5
Q8	Definition 1 Calculation of Speed 1		
	i. Refractive index of a medium is the ratio of speed of light (c) in free space to the speed of light (v) in that medium. $\mu = \frac{c}{v}$	1	
	ii. $\mu = \frac{c}{v} = \frac{1}{\sin i_c}$ $= \frac{3 \times 10^8}{\sin i_c} = \frac{1}{20 \cdot c}$	1/2	
	$v = \frac{30}{50} \times 3 \times 10^8 = 1.8 \times 10^8 m/s$	1/2	2
Q9	Two Characteristics 1/2 + 1/2 Relation 1 i. Nuclear force is much stronger than the Coulomb or	1/2	E .
	gravitational force. ii. It is a very short range force, leads to saturation of forces. iii. Nuclear force is charge independent [Any two]	ew 1/2 lat	OLU
	$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{2 \lambda} = 5$	1	
	Formula 1 Calculation 1		
	$\lambda = \frac{1}{p} = \frac{1}{\sqrt{2mk}}$ $1 \times 10^{-10} = \frac{663 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} K}}$ $K = \frac{(663 \times 10^{-34})^2}{10^{-20} \times 2 \times 9.1 \times 10^{-31}} J$ $= 2.4 \times 10^{-17} J$	1	
	$=1.5 \times 10^{2} \text{eV}$ $=150 \text{eV}$	1	2
Q10	Formula 1 Comparison of the rates of disintegration 1 $\frac{dN}{dt} = -\lambda N; N = N_o e^{-\lambda t}$ Given time = 12 hrs = $4(T_x)_1$	1/2	
	$= 3(T_y)_{\frac{1}{2}}^{\frac{1}{2}}$		

Page 2 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

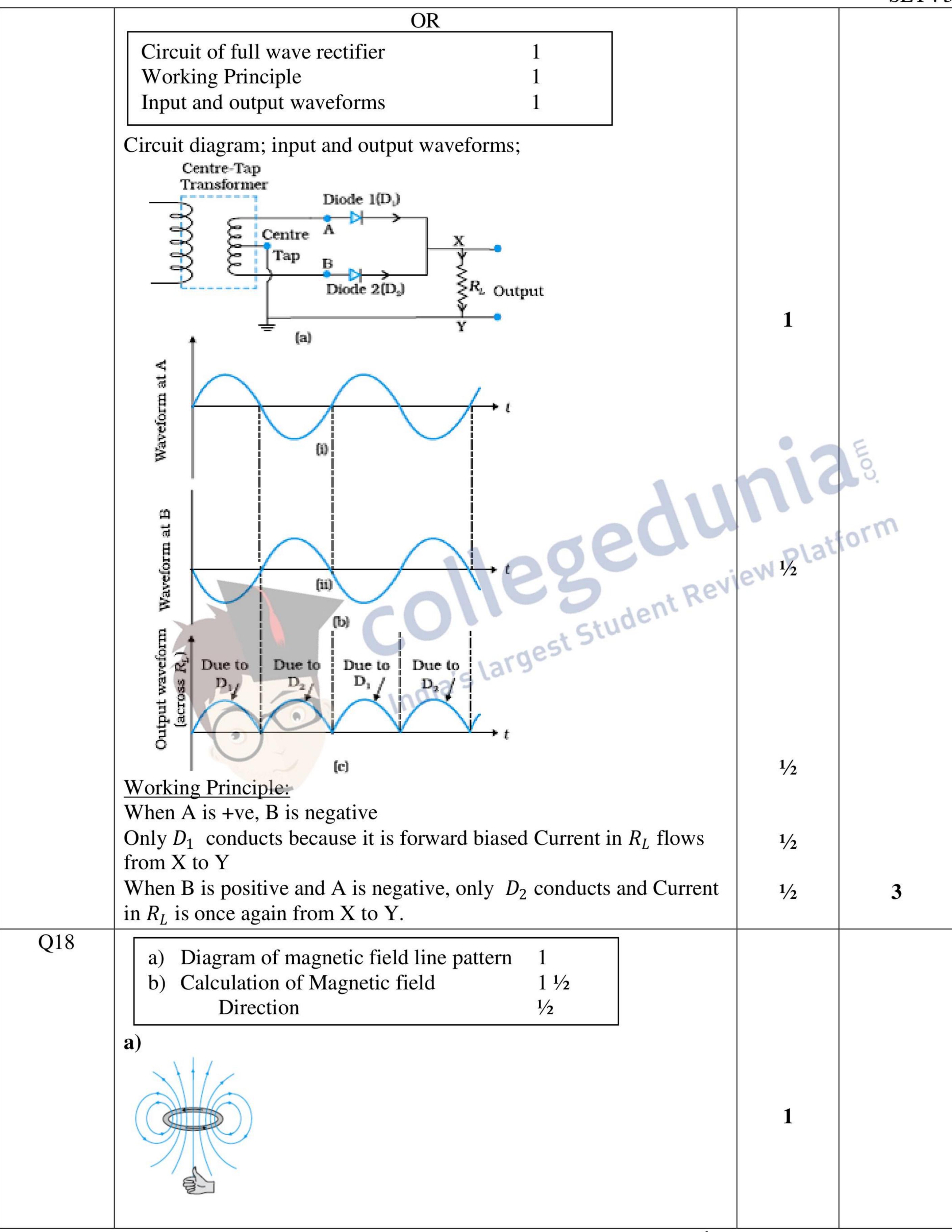
			SET: 55
	$\therefore \frac{N_x}{N_o} = \left(\frac{1}{2}\right)^4 = \frac{1}{16} => N_x = \frac{N_o}{16}$	1/2	
	and $\frac{N_y}{N_o} = \left(\frac{1}{2}\right)^3 = \frac{1}{8} => N_y = \frac{N_o}{8}$ $R_x = \left(\frac{dN}{dt}\right)_x = \frac{.693}{\left(T_{1/2}\right)_x} \cdot \frac{N_o}{16}$	1/2	
	$R_y = \left(\frac{dN}{dt}\right)_y = \frac{.693}{\left(T_{1/2}\right)_y} \cdot \frac{N_o}{8}$		
	$\therefore \frac{R_x}{R_y} = \frac{1}{2} \frac{\left(T_{1/2}\right)_x}{\left(T_{1/2}\right)_y} = \frac{1}{2} \times \frac{4}{3} = \frac{2}{3}$	1/2	2
	SECTION C		E
Set1 Q11	Reason 1 Ratio of Intensity 2		
	If sources are not coherent, the superposition pattern (the intensity pattern) is not stable. It keeps on changing with time	eW 1/2	
	: It is necessary to have coherent sources to observe interference.	1/2	
	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$	1/2	
	$I_{max} = I_1 + I_2 + 2\sqrt{I_1I_2}; \ \phi = 0$	1/ ₂ 1/ ₂	
	$I_{min} = I_1 + I_2 - 2\sqrt{I_1I_2}$; $\phi = \pi$	/ 2	
	$\frac{I_{max}}{I_{min}} = \frac{4x + 9x + 12x}{4x + 9x - 12x} = \frac{25x}{x}$ $= \frac{25}{1}$	1/2	
	Alternatively: $\frac{A_1}{A_2} = \sqrt{\frac{I_1}{I_2}} = \frac{2}{3}$	1/2	
	$A_2 \sqrt{I_2} 3$ $A_2 \frac{I_{max}}{I_{min}} = \left(\frac{A_2 + A_1}{A_2 - A_1}\right)^2 = \left(\frac{3 + 2}{3 - 2}\right)^2 = \frac{25}{1}$	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	3
Q12	Effect on capacitance 1 Effect on charge 1 Effect on energy 1		
	i. $C = \frac{\epsilon_o A}{d}$	1/2	

Page 3 of 13

Final Draft

(Outside Delhi)

20th JULY 17, 2017


			SET: 53
	$C' = \frac{K \in_o A}{d'} = \frac{10}{3} \frac{\in_o A}{d} = \frac{10}{3} C$	1/2	
	ii. V remains same since battery is not disconnected	1/2	
	$\therefore Q' = C'V$ $= \frac{10}{3}CV = \frac{10}{3}Q$ iii. Energy density, $u_d = \frac{1}{2} \in_o E^2$	1/2	
	$E = \frac{v}{d}$ $u'_{d} = \frac{1}{2}K \in_{o} E'^{2}$ $= \frac{10}{2} \in_{o} \left(\frac{v}{d'}\right)^{2}$	1/2	
	$= \frac{10}{9} \left(\frac{1}{2} \in_{o} E^{2}\right)$ $= \frac{10}{9} u_{d}$	1/2	8.3
Q13	Energy of Photon Einstein's Equation Calculation of work function	ew Plat	OLU
	Energy of photon = $[(13.6)-(3.4)]eV$ = $10.2eV$ E = $eV_o + \phi_o$ $\therefore 10.2 = 5 + \phi_o$ $\therefore \phi_o = 5.2 \ eV$	1 1 1/ ₂ 1/ ₂	3
Q14	Graph of BE 1 2 2 a)		
		1	
	0 20 50 100 150 170 Mass number (A) b) Energy released	1	
	$= [(110+130) \times 8.5 - 240 \times 7.6] \text{ MeV}$ $= 240(8.5 - 7.6) \text{ MeV}$ $= 216 \text{ MeV}$	1	3

Page 4 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET: 5:
Q15	Reason for use in reverse bias 1 Working Principle 1 Whether it can detect 1		
	The fractional change, due to photo effects, on the minority charge carrier dominated reverse bias current, is much more than the fractional change in the forward bias current. Hence, photodiode is used in reverse bias.	1	
	Working principle of photodiode:	1/2	
	 i. Generation of e –h pairs due to light close to junction. ii. Separation of electrons and holes due to electric field of the 	1/2 1/2	
	depletion region. Detection is possible if $E_p > E_g$	1/2	
	$E_p = \frac{hc}{\lambda} J$ $= \frac{hc}{e\lambda} eV$		
	$= \frac{\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 400 \times 10^{-9}} = 3.1 \text{ eV}(>Eg)$ $\therefore \text{ It can detect this light}$	1/2	3
Q16	Name of em wave Method of generation Two uses 1 $\frac{1}{1/2 + \frac{1}{2}}$	plat	orm
	Microwaves	ew F	
	Produced by special vacuum tubes - Klystron, magnetron, gunn diodes	1	
	i. In Radar system for aircraft navigation ii. In ovens for heating/ cooking	1/2 + 1/2	3
Q17	Circuit diagram Expression for voltage gain Explanation for 180° phase difference 1		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		1	
	$A_V = \frac{V_o}{V_i} = \frac{\Delta V_{CE}}{r \Delta I_B} = -\beta_{ac} \frac{R_L}{r}$	1	
	$V_{CC}=V_{CE}+I_{C}R_{L}$	1/2	
		1/2	
	Hence, change in output is negative when the input signal is +ve. This shows 180 ⁰ phase difference between input and output signal.		
<u></u>		II X/ 17 201	

Page 5 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

Page 6 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET: 5
	b) $B_x = B_y = \frac{\mu_o i R^2}{2(R^2 + x^2)^{\frac{3}{2}}}$ $B_x = P$	1	
	$B = \sqrt{2} B_x$ $= \frac{\sqrt{2} \mu_0 i R^2}{2(R^2 + x^2)^{\frac{r}{2}}};$ $\text{making } 45^0 \text{ with either } B_x \text{ or } B_y$	1/2 1/2	3
Q19	making 45° with either B_x or B_y Graph of emf Graph of energy stored a) $l (L = 12nH)$ $l (L = 30nH)$ $l (L = 12nH)$ $l (L = 30nH)$	1/2 Plat	Jes. Form

Page 7 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

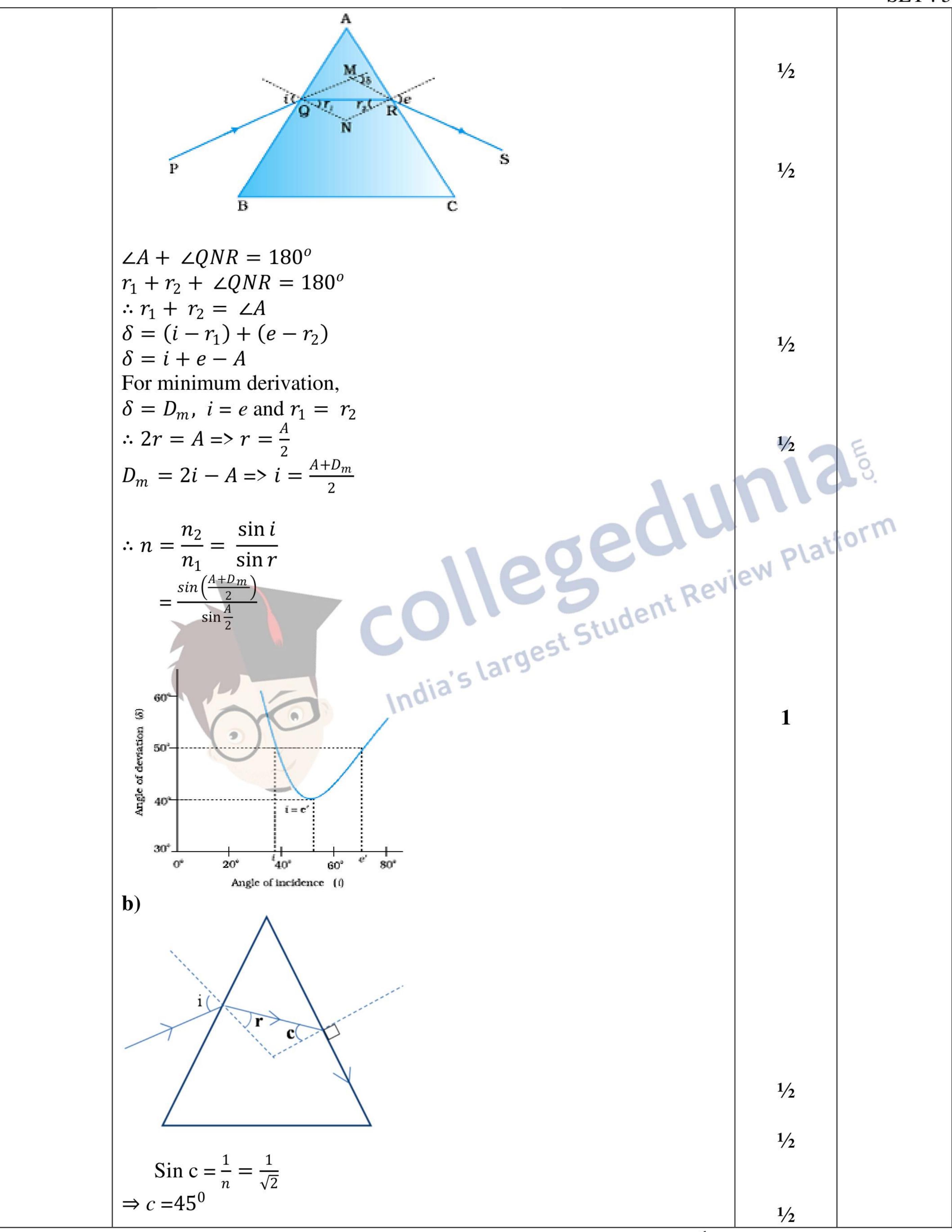
			SET: 53
Q20	Two points of distinction $\frac{1}{2} + \frac{1}{2}$ Calculation of separation between maxima 2		
	 i. All fringes in interference pattern have same width; in diffraction central maxima is twice the width of secondary maxima. ii. Intensity of all maxima is same in interference pattern; in diffraction higher order maxima have lower intensities 	1/2	
	[alternatively maxima do not have same intensity] Separation $\Delta x = x_2 - x_1$ $= \frac{5}{2} \frac{\lambda_2 D}{a} - \frac{5}{2} \frac{\lambda_1 D}{a} = \frac{5}{2} \frac{D}{a} (\lambda_2 - \lambda_1)$ $= \frac{5}{2} \left(\frac{2}{2 \times 10^{-3}}\right) \times 10 \times 10^{-9} \text{m}$ $= 2.5 \times 10^{-5} \text{m}$	1	3
Q21	Three factors justifying the Need for modulation 1+1+1		
	 i. <u>Size of antenna</u> – The antenna should have a size comparable to the wavelength of signal (at least λ/4). For low frequency (unmodulated) signal λ may be a few km. It is not possible to have such a long antenna. Hence low frequency transmission is not possible directly. ii. <u>Power radiated by antenna</u> – Power radiated by an antenna of length ℓ is proportional to (ℓ/λ)². Therefore, for same ℓ, power radiated increases with decreasing λ i.e. increasing frequency. Hence, for low frequency signal, power radiated by antenna is very small and good transmission of signal is 	ew Plati	Les.
	iii. Mixing up of signals: All the low frequency (baseband) signals from various transmitters, can get mixed up because they have the same frequency range. They can be separated only if communication is done at high frequency and different band of frequencies are allotted to different transmitters.	1	3
Q22	Definition of current sensitivity 1		
	Ratio $\frac{R_1}{R_2}$ Current sensitivity of a galvanometer is deflection per unit current (Alternatively $I_s = \frac{\phi}{I} = \frac{NAB}{K}$) In circuit	1	
	i. $\frac{6}{9} = \frac{R_1}{12} = > R_1 = 8\Omega$	1/2	
	ii. $\frac{9}{R_2} = \frac{15}{10} = > R_2 = 6\Omega$	1/2	
	$\therefore \overline{R_2} = \overline{3}$	1	3
Page 8 of 13	Final Draft (Outside Delhi) 20 th II	II V 17 201	7

Page 8 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

SECTION D		SET: 53
Q23Two values of Mr. Hiorki1Two values of Mr. Kamath1Meissner effect1Value of μ_r 1		
 a) Eager to share ideas and knowledge; Professionalism; Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good 	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
ideas.(any two) c) Phenomenon of perfect diamagnetism in super conductors	1	
$\mu_r = 0$	1	4
SECTION E		
Q24 a) Average Power dissipation is zero 2 b) Numerical 3 a) Instantaneous Power = $vi = V_o sinwt \ I_o coswt$ Average power, $P = \frac{1}{T} \int_0^T vidt$ $= \frac{V_o I_o}{2T} \int_0^T 2 sinwt coswt \ dt$ $= \frac{V_o I_o}{2T} \int_0^T sin2wt \ dt$ $= 0$ b) i. $\omega_o = \frac{1}{\sqrt{LC}}$ $= \frac{1}{(200 \times 10^{-3} \times 400 \times 10^{-6})^{\frac{1}{2}}}$ $= \frac{1}{\sqrt{8 \times 10^{-5}}} s^{-1} = \frac{10^3}{\sqrt{80}} s^{-1} \approx 111s^{-1}$ $I = \frac{V}{R} = \frac{50}{10} = 5 A$ ii. $Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{10} \sqrt{\frac{200 \times 10^{-3}}{400 \times 10^{-6}}} = \sqrt{5}$ OR	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1 1	les.
a) Derivation of induced emf b) Numerical 2 ½ 2 ½ a)	1/2	

Page 9 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET: 5:
	$\phi_B = Blx$	1/2	
	$-d\phi_{R}$	1/2	
	$\varepsilon = \frac{-\varepsilon_{FB}}{2L}$	/ -	
	at_{dx}	1/	
	$=-R1\frac{ax}{a}$	1/2	
	$\int_{0}^{\infty} dt$		
	=Blv	1/2	
	b) $\omega = 360 \times \frac{2\pi}{60} = 12 \pi$	1/2	
	$ 0\rangle \omega - 300 \times \frac{12}{60} - 12 \pi$		
	1		
	$\varepsilon = \frac{1}{2} B_H l^2 \omega$	1/2	
	$\therefore 400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$	1/2	
	$\cdot P = \frac{5}{100} = 0.06$ T	1/2	
	$\therefore B_H = \frac{5}{27\pi} = 0.06$ T	1/2	
	No change in emf if no. of spokes is increased.	/2	3
Q25			
	a) Explanation with reason 2½		
	b) Calculation of separations 2½		
			5
	a) $P = \frac{1}{a} = \left(\frac{n_2 - n_1}{a}\right) \left(\frac{1}{a} - \frac{1}{a}\right)$	1/2	J. O.
	$f \in \{n_2 \mid R_1 \mid R_2\}$		
	$=\left(\frac{n_2-n_1}{n_2}\right)\left(-\frac{2}{R}\right)$ for diverging lens		-m
	$-\binom{n_2}{n_2} / \binom{n_1}{R}$ for diverging ichis	14121	1011.
	= negative	1/2/2	
	i. If $n_1 > n_2$	GAA	
	$n_0 - n_d$		
	$\frac{n_2}{n_1}$ becomes negative	1/2	
	$\therefore P = \frac{1}{\epsilon}$ becomes positive	, –	
	f becomes positive	1/	
	or lens become converging	1/2	
	ii. $(n_2)_{violet} > (n_2)_{red}$		
	L'Iloue L'Allen	1/2	
	∴Power increases on changing to violet light		
	b) Rays on L_3 be incident parallel to the principal axis	1./.	
	image from L_1 is formed at focus of L_2	1/2	
	and focus of L_2 is $2f_1$ from 'O' of L_1	1/2	
		1/2	
	$\therefore L_1 L_2 = 2f_1 + f_2 = (3 \times 30) \text{cm} = 90 \text{cm}$	1/2	
	L_2L_3 can be any distance	1/2	_
	OR	72	3
	a) Derivation of expression for refractive index 2		
	Graph 1		
	b) Numerical 2		
	a)		


Page 10 of 13

Final Draft

(Outside Delhi)

20th JULY 17, 2017

Page 11 of 13

Final Draft

(Outside Delhi)

20th JULY 17, 2017

			SET: 53
	$r + c = 60^0$ => $r = 15^0$	1/2	5
	$\frac{n = \overline{\sin r}}{\sin r}$ $\Rightarrow \sqrt{2} = \frac{\sin i}{i}$		
	$\Rightarrow i = \sin^{-1}[\sqrt{2}\sin 15^{0}]$ $\Rightarrow i = \sin^{-1}[\sqrt{2}\sin 15^{0}]$		
Q26	$n = \frac{\sin i}{\sin r}$ $\Rightarrow \sqrt{2} = \frac{\sin i}{\sin 10}$ $\Rightarrow i = \sin^{-1} [\sqrt{2} \sin 15^{0}]$ a) Statement of Guass's law Derivation Derivati	1/2 1/2 1 1/2 1/2 1 1 1/2 1/2 1 1	Jes. Form
	b) Numerical Problem 2		
	a)		

Page 12 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

		SEI.J	
q q q q q q q q q q	1/2		
$V = \frac{1}{4\pi \in_o} \left[\frac{q}{r_1} - \frac{q}{r_2} \right]$	1/2		
$r_1^2 = r^2 + a^2 - 2ar\cos\theta \approx r^2\left(1 - \frac{2a\cos\theta}{r}\right)$	1/2		
$r_2^2 = r^2 + a^2 + 2ar\cos\theta \approx r^2\left(1 + \frac{2a\cos\theta}{r}\right)$	1/2		
If r >> a		E	
$\left \frac{1}{r_1} = \frac{1}{r} \left[1 - \frac{2a\cos\theta}{r} \right]^{-\frac{1}{2}} \simeq \frac{1}{r} \left[1 + \frac{a}{r}\cos\theta \right]$	1/2		
$a = 2a \cos \theta$	ew 1/2 lat	OLUI	
$\therefore V = \frac{1}{4\pi \in_{o}} \cdot r^{2}$ $= \frac{1}{4\pi \in_{o}} \frac{p \cos \theta}{r^{2}}$	1/2		
b) $\frac{1}{4\pi\epsilon_o} \frac{4\mu C}{x^2} = \frac{1}{4\pi\epsilon_o} \frac{1\mu C}{(2-x)^2}$ $\therefore \frac{x}{2} = 2 - x$	1		
$\therefore 3x = 4 => x = \frac{4}{3}m$	1/2	5	

Page 13 of 13 Final Draft (Outside Delhi) 20th JULY 17, 2017

