MARKING SCHEME SET 55/1/B

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
Set1,Q1	It is a measure of the sharpness of resonance.	1/2	
		/ 2	
Set2,Q5 Set3,Q2	Alternatively, $Q = \frac{1}{w_o CR} / \frac{W_0 L}{R}$	1/2	
5005, 22	No unit	/ 2	1
Set1,Q2	To convert one form of energy into another.	1	
Set2,Q4	(Alternatively, To convert other forms of energy into electrical energy)		
Set3,Q5			1
Set1,Q3			
Set2,Q2 Set3,Q4	+Q	1	
Set1,Q4	Conducting surface Medium A	Late or m	1
Set2,Q3	niculari.		
Set3,Q1	Jant Re.		1
Set1,Q5	Line A represents parallel combination,	1/2 + 1/2	
Set2,Q1	Its slope is more(or It corresponds to a lower value of resistance)		
Set3,Q3	dia's la		1
	Section B		% :
Set1,Q6			
Set2,Q7 Set3,Q10	Finding the angle of incidence 2		
	It is the case of minimum deviation	1/2	
	sin <i>i</i> sin <i>i</i>	1/2	
	$\mu = \frac{1}{\sin r} = \frac{1}{\sin \left(\frac{A}{2}\right)}$		
	$\Leftrightarrow \frac{\sqrt{3}}{2} = \sin i$	1/2	
	$\Leftrightarrow i = 60^o$	1/2	
	Alternatively, Deviation produced by prism here is minimum.	1/2	
	$\sin\left(\frac{A+\delta_m}{2}\right)$		
	$\therefore \mu = \frac{1}{\sin \frac{A}{2}}$		
	$\therefore \frac{\sqrt{3}}{2} = \sin\left(\frac{60 + \delta_m}{2}\right)$		
	$\Rightarrow 60^{o} \times 2 = 60^{o} + \delta_{m}$		
	$\delta_m = 60^o$	1/2	

Page 1 of 17 Final Draft 18/03/15 01:00 p.m

		1	
	$A + \delta_m = i + e = 2i$	1/2	
	$\Rightarrow i = 60^{o}$	1/2	
	OR		$ _{2} $
	Finding the focal length Value of refractive index 1 ½ 1/2		
	Lens maker's formula		
	$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2	
	$\therefore \frac{1}{20} = (1.5-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$		
	$\therefore \frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{10}$	1/2	
	$\therefore \frac{1}{f'} = \left(\frac{1.5}{1.65} - 1\right) \left(\frac{1}{10}\right)$	aso.	
	f = -110 cm Refractive index of the medium should be 1.5 (i.e. same as that of	1/2 1/2 0 r m	
	material of lens)		2
Set1,Q7 Set2,Q10 Set3,Q8	Determination of K.E Wave length for ground state Nature of change In Ground state In Ground state		
	$K.E = E_1 = 13.6eV = 2.18 \times 10^{-18}J$	1/2	
	$\lambda_1 = \frac{h}{\sqrt{2mK}} = 0.33 \text{nm}$	1	
	[Note: Award $1\frac{1}{2}$ marks if student evaluates λ_1 directly without calculating E_1] Alternatively,		
	$2\pi r_n = n\lambda_n$ $\therefore \lambda_{ground\ state} = 2\pi r_1 = 2\pi \times 0.53A^o$ $\cong 3.33\ A^o \cong 0.33\ nm$		
	In first excited state, the de Broglie wavelength will increase.	1/2	2
Set1,Q8 Set2,Q6 Set3,Q9	i) Finding the K.E & P.E in Ground state ii) Finding the K.E & P.E in Second excited state $\frac{1}{2} + \frac{1}{2}$		
Doo	e 2 of 17 Final Draft 18/03/	15 01·00 i	

Page 2 of 17 Final Draft 18/03/15 01:00 p.m

For Ground state, K.E = 13.6 eV (: K.E = - T.E) P.E = - 27.2 eV (: P.E = 2 T.E) For second Excited state (n=3) K.E = - (-\frac{13.6}{9}) eV = 1.51 eV P.E = -3.02 eV [Award ½ mark if the student does the calculations by taking n=2] Set1,Q9 Set2,Q8 Set3,Q7 Distinguishing between sky wave and space wave mode 1 Reason 1 Space Wave In space wave mode, the waves travel in straight line directly from transmitter to receiver	
K.E = 13.6 eV (: K.E = - T.E)	
P.E = - 27.2 eV (: P.E = 2 T.E) For second Excited state (n=3) $K.E = -\left(-\frac{13.6}{9}\right) \text{ eV} = 1.51 \text{ eV}$ P.E = -3.02 eV [Award ½ mark if the student does the calculations by taking n=2] Set1,Q9 Set2,Q8 Set3,Q7 Distinguishing between sky wave and space wave mode 1 Reason 1 Space Wave In space wave mode, the waves travel in straight line directly from 1 1 1/2 1/2 2	
For second Excited state (n=3) $K.E = -\left(-\frac{13.6}{9}\right) \text{ eV} = 1.51 \text{ eV}$ $P.E = -3.02 \text{ eV}$ [Award ½ mark if the student does the calculations by taking n=2] Set1,Q9 Set2,Q8 Set3,Q7 Distinguishing between sky wave and space wave mode 1 Reason 1 Space Wave In space wave mode, the waves travel in straight line directly from Reflected by Ionosphere	
$K.E = -\left(-\frac{13.6}{9}\right) \text{ eV} = 1.51 \text{ eV}$ $P.E = -3.02 \text{ eV}$ $[Award \frac{1}{2} \text{ mark if the student does the calculations by taking n=2}]$ $Set1,Q9$ $Set2,Q8$ $Set3,Q7$ $Distinguishing between sky wave and space wave mode 1 Reason 1 Space Wave Sky Wave In space wave mode, the waves Reflected by Ionosphere travel in straight line directly from 1$	
P.E = -3.02 eV [Award ½ mark if the student does the calculations by taking n=2] Set1,Q9 Set2,Q8 Set3,Q7 Distinguishing between sky wave and space wave mode 1 Reason 1 Space Wave In space wave mode, the waves travel in straight line directly from Note that the student does the calculations by taking n=2] 2	
P.E = -3.02 eV [Award ½ mark if the student does the calculations by taking n=2] 2	
Set1,Q9 Set2,Q8 Set3,Q7 Distinguishing between sky wave and space wave mode 1 Reason 1 Space Wave In space wave mode, the waves travel in straight line directly from 1	2
Set2,Q8 Set3,Q7 Distinguishing between sky wave and space wave mode Reason Space Wave In space wave mode, the waves travel in straight line directly from Reflected by Ionosphere 1	
In space wave mode, the waves travel in straight line directly from	
In space wave mode, the waves travel in straight line directly from	
travel in straight line directly from	
transmitter to receiver	
: OW !	
Because frequencies is greater than 40 MHz penetrate the ionosphere.	
(<u>Alternatively</u> : There frequencies (greater than 40 MHz) are not reflected by	
Set1,Q10 2	<u>'</u>
Set1,Q10 Set2,Q9 Set3,Q6 Shift in balance point for part 'a' and 'b' 1 Reason 1	
a) Balance Point will be shifted towards B.	
The potential gradient will decrease and hence the balancing length will ½ increase.	
b) No effect on balance point.	
At balance point no current flows through resistor S. 1/2 1/2 2	2
Section C	
Set1,Q11 Set2,Q20 Effect of dialogtric on	
Set2,Q20 Effect of dielectric on Set3,Q15 a) Electric field energy 1/2 +1/2	
b) Charge $\frac{1}{2} + \frac{1}{2}$	
c) Potential difference	
The capacitance of both the capacitors increases by a factor K. a) New Electric field energy values are:	
$= \frac{1}{2} K (C_1 V_1^2) \text{ and } \frac{1}{2} K (C_2 V_2^2)$	
b) New charges are:	
$= \frac{1}{2} KC_1 V_1 \text{ and } \frac{1}{2} KC_2 V_2$ $ \frac{1}{2} + \frac{1}{2} $	
Page 3 of 17 Final Draft 18/03/15 01:00 p.m	m

collegedunia India's largest Student Review Platform

	c) New P.Dvalues are: $V_1 \text{ and } V_2$ (The battery remains connected to the capacitors) $\frac{\text{Alternatively:}}{\text{Alternatively:}} \text{ The student may assumes that the battery has been removed.}$ a) New Electric field energy values are: $= \frac{1}{2} \frac{Q^2}{\text{KC}_1} \text{ and } \frac{1}{2} \frac{Q^2}{\text{KC}_2}$ b) New charges are:	$\frac{1}{2} + \frac{1}{2}$	
	Q and Q as before c) New P.D values are: 0 0	1/2 + 1/2	
	$\frac{\mathcal{C}}{KC_1}$ and $\frac{\mathcal{C}}{KC_2}$	1/2 + 1/2	3
Set1,Q12 Set2,Q21 Set3,Q16	Definition of activity and SI unit Calculation of half life +Activity 1 1/2+1/2		
	The rate at which the nuclei of the radioactive sample disintegrate.	1/2	
	[Alternatively, $R = \frac{-dN}{dt}$]	as.	
	SI Unit – becquerel (Bq) / disintegration per second/	1/2	
	Half Life = 10 hrs. (Given : Activity becomes half after 10 hrs)	1/2	
	Activity after 20 hrs $(= 2 \times \text{ half life})$ $= \frac{1}{2^2} = \frac{1}{4} \text{ of intial activity}$	1/2	
	∴ Intial activity	1/2	
	$= 100000 \times 4 \text{ dps}$		
	= 40000dps Alternatively:	1/2	
	$R = R_0 e^{-\lambda t}$		
	$10,000 = R_0 e^{-\lambda \times 20}$		
	$5000 = R_0 e^{-\lambda \times 30}$ By dividing		
	$2 = e^{\lambda \times 10}$		
Doo	e 4 of 17 Final Draft 18/03/	15 01·00 ı	

Page 4 of 17 Final Draft 18/03/15 01:00 p.m

	$\log 2 = 10\lambda$		
	$= \frac{\log 2}{T_{\frac{1}{2}}} \times 10$		
	$T_{\frac{1}{2}} = 10 \ hour$		
	Initial activity = $10000 \times (2)^2 = 40000$ dps	1/2	2
			3
Set1,Q13 Set2,Q22 Set3,Q17	Answers of part (a), (b), (c) 1+1+1		
Sci5,Q17	(a) The intensity of inteferance fringes in double slit arrangement is modulated by the diffraction pattern of each slit.	1	
	Alternatively, In double slit experiment the interference pattern on the screen		
	is actually superposition of single slit diffraction for each slit.		
	(b) Waves diffracted from the edges of the circular obstacle interfere	1 =	
	constructively at the centre of the shadow producing a bright spot.	8.	
	(c) Resolving power = $\frac{2\mu Sin\theta}{1.22\lambda}$	1/2	
	1.22λ • Posolving power is inversely propotional to wewlength and directly	COLL	
	: Resolving power is inversely propotional to wavelength and directly proportional to the refractive index.	1/2	
	proportional to the left active mucx.		
	Alternatively:		
	(i) $R.P \propto \frac{1}{\lambda}$		
	(ii) R.P $\propto \mu$		3
Set1,Q14	Definition of Intensity of radiation 1		
Set2,Q16	Calculation of work function 1½		
Set3,Q18	Response to red light		
	Response to rea right		
	Definition: It is defined as the number of photons (of given frequency)incident per unit area per unit time.	1	
	[Alternatively, $I = nhv$)		
	$\frac{hC}{\lambda} = \varphi_o + eV_o$	1/2	
	$ \varphi_o = \left(\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{2270 \times 10^{-10} \times 1.6 \times 10^{-19}} - 1.3\right) \text{eV} $	1/2	
	= 4.2 eV (also accept the answer in joules)	1/2	
	For red light incident photon energy will be less than the work function, hence no emission of electrons.(Also accept: There would be no photoemission)	1/2	3
Pag	e 5 of 17 Final Draft 18/03/	15 01:00 ı	n m

Page 5 of 17 Final Draft 18/03/15 01:00 p.m

	OR		
	Photo electric equation Explanation of observations (any two) 1+1		
	Incident photon energy(hv) is used up in two ways: (1) A part of this energy is used to remove the electrons. (2) Remaining part of the energy imparts KE to the emitted electrons	1/2	
	$h\nu = \phi_o + (K.E)$		
	$hv - \phi_o = \frac{1}{2}mv^2 = eV_o$	1/2	
	Explanation: (i) Maximum KE depends on frequency and not on intensity. (ii) There exists a threashold frequency v_0 (for which $hv_0 = \phi_0$) below which no photoemission takes place. (iii) Basic elementary process involved is absorption of photon by e^- . This	S	
	process is instantaneous. (Any Two)	1+1E	3
Set1,Q15 Set2,Q17 Set3,Q11	Answers of parts (a), (b) & (c) 1+1+1 a) Microwaves	Latform 1	
	b) Electric charges can acquire energy and momentum from e.m. waves		
	c) $U = U_E + U_B = \frac{1}{2} \epsilon_0 E^2 + \frac{B^2}{2\mu_0}$	1/2 + 1/2	3
Set1,Q16 Set2,Q18 Set3,Q12	Drawing of magnetic field lines Explanation 1+1 ½ + ½		
		1 + 1	
	Explanation: For diamagnetic material resultant magnetic moment in an atom is zero. In presence of external magnetic field, they acquire a net magnetic moment in a direction opposite to applied field. (or get repellled)	1/2	
	In paramagnetic material there is a permanent magnetic dipole moment of atoms. The external magnetic field tends to align these along its own direction. (or attracts them).	1/2	3
Set1,Q17 Set2,Q19 Set3,Q13	Explanation of two processes with diagram 1+1 Definition of depletion region & barrier potential 1/2 + 1/2		

Page 6 of 17 Final Draft 18/03/15 01:00 p.m

	Two important processes involved during the formation of p-n jumction are (i) Diffusion (ii) Drift	1/2 + 1/2	
	<u>Diffusion</u> is the movement of the majority charge carriers across the junction. <u>Alternatively</u> , Diffusion results in the formation of negative and positive space charge regions around the junction	1/2	
	Drift is the movement of the minority charge carriers across the junction. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	Depletion Region: The depletion layer is the negative and positive space charge region formed around the junction. Alternatively: Depletion region: Space Charge region on either side of the junction together is known as depletion region. Barrier Potential: The loss of electron from n region and gain of electron by p region causes a difference of potential across the junction. This is known as barrier potential.		
	Alternatively: The potential developed across the junction, that opposes the flow of (majority) charge carriers.		3
Set1,Q18 Set2,Q11 Set3,Q14	i) Fabrication ½ ii) Working 1½ iii) Advantage ½ +½ LED is fabricated by:		
	 (i) Heavy doping of both th p and n regions. (ii) providing a transparent cover so that light can come out. (Any one point) 	1/2	
	Working: When the diode is forward biased electrons are sent from $n \to p$ and holes from $p \to n$. At the junction boundary, the excess minority carriers on either side of junction recombine with majority carriers.	+	
	- 7 of 17 Final Dueft 19/02/	15 01.00	

Page 7 of 17 Final Draft 18/03/15 01:00 p.m

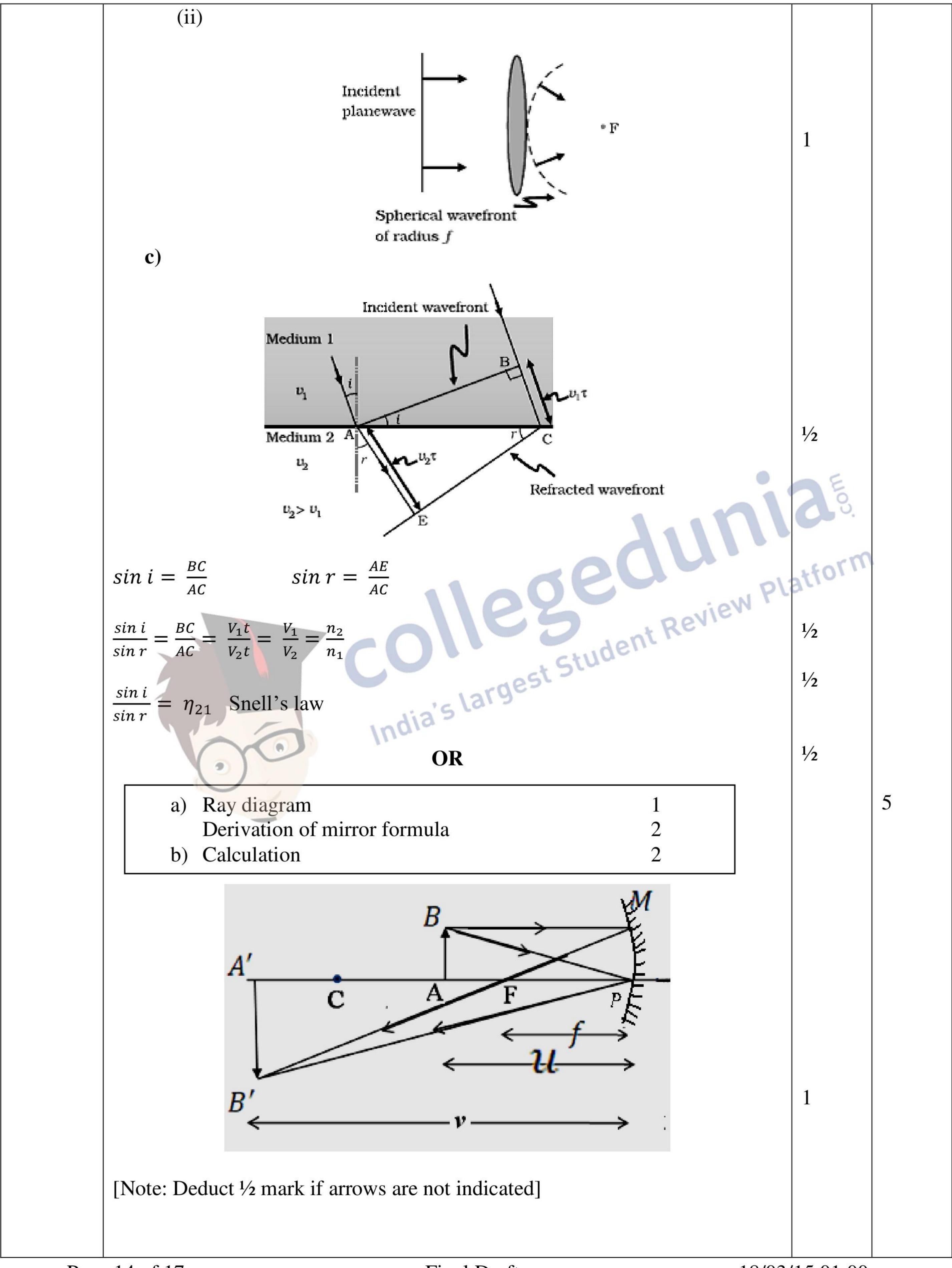
	This releases energy in the form of photon $hv = Eg$.	1/2	
	Advantages (any two) Low operational voltage Long life	1/2 + 1/2	
	Fast on /off switching capability No warm up time required		3
Set1,Q19 Set2,Q12 Set3,Q21	Block diagram2Calculation of A_m 1		
	[Full credit for this part maybe given to the student.]		
	$A_c = 12V$	2	
	$\mu = \frac{A_m}{A_c} = \frac{75}{100} = 0.75$	1/2	
	$A_m = 0.75 \times 12 = 9 \text{ V}$	1/2	3
Set1,Q20 Set2,Q13 Set3,Q22	a) Explanation of the phenomenon using diagram b) Explanation of polarisation of Reflected light. Derivation of Brewster's Law 1½	as.	
	Incident Sunlight (Unpolarised) Scattered Light (Polarised) To Observer	1/2	
	The basic phenomenon / process which occurs is polarisation.	1/2	
	The incident unpolarised sun ligh encounte the molecules of earth's atmosphere. Under the influence of electric field of incident wave the e^- in the molecule acquires component of motion in both these direction. If an observer is looking 90^0 to the direction of the Sun ,charge accelarating parallel to double arrow do not radiate energy towards the observer.[Their accelaration has no transverse component.] This explain polarisation of scattered light from sky.	1/2	
	Incident Reflected AIR Refracted MEDIUM	1/2	

Page 8 of 17 Final Draft 18/03/15 01:00 p.m

	When unpolarised light is incident at polarising angle, at the interface of a refracting medium, the reflected ray being perpendicular to the refracted ray is completely polarised.		
	Now $\mu = \frac{\sin i}{\sin r}$ $\therefore \mu = \frac{\sin i_p}{\sin (90 - i_p)} (\because i_p + r = 90^o)$	1/2	
	$\therefore \mu = \tan i_p$		
	This is Brewter's Law	1/2	3
Set1,Q21 Set2,Q14 Set3,Q19	i) Derivation of the Average power in inductor $1\frac{1}{2}$ ii) Ratio of Power factors P_1 and P_2 $1\frac{1}{2}$		
	For an ideal inductor connected to ac source	aso.	
	$V = V_o \sin \omega t$ $I = I_o \sin \left(\omega t - \frac{\pi}{2}\right)$	1/2 orm	
	$P_{avg} = \frac{1}{T} \int_{0}^{T} V_{0} I_{0} \sin \omega t \cos \omega t dt$ $= \frac{1}{T} \frac{V_{0}I_{0}}{2} \int_{0}^{T} \sin 2\omega t dt$ $= \frac{1}{T} \frac{V_{0}I_{0}}{2} \left[\cos 2\omega t \right]^{T} - 0$	1/2	
	$= \frac{1}{T} \left[\frac{V_0 I_0}{2\omega} \right]_0^{T_0} = 0$	1/2	
	(Also accept any other correct method) Power factor $\cos \emptyset = R/Z$	1/2	
	For LR circuit, at $X_L = R$		
	$Z = \sqrt{R^2 + R^2}$		
	$Z = R\sqrt{2}$		
	$P_1 = \cos\phi = \frac{R}{R\sqrt{2}} = \frac{1}{\sqrt{2}}$	1/2	
	For LCR circuit $X_L = X_c$		
	$Z = \sqrt{R^2} = R$		
Pag	e 9 of 17 Final Draft 18/03/	15 01:00 ₁	o.m

		1	
	Power factor $P_2 = \frac{R}{R} = 1$		
	$=>\frac{P_1}{P_2}=1:\sqrt{2}$	1/2	
	[Award 1½mark if the student writes directly : $P_1 = \frac{1}{\sqrt{2}}$ and $P_2 = 1$	/ 2	
	$\therefore \frac{P_1}{P} = \frac{1}{\sqrt{2}}$		3
Set1,Q22	$P_2 = \sqrt{2}$		
Set2,Q15 Set3,Q20	Definition of resistivity Graphs Explanation 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Resistivity of a conductor is defined as the resistance of a material (of a Conductor) of unit length and unit area of cross section. (Alternatively, $\rho = \frac{RA}{l}$)	1	
	Temperature $T(K)$ Conductor In conductor with increase in temperatures relaxtion time decreases, but number density of charge carriers is not dependent on temperature. Hence, ρ increases. In semiconductors number density of charge carriers increases with temperature, it dominates the decrease in relaxtion time. Hence, ρ decreases.		
			3
	Section D		
Set1,Q23 Set2,Q23 Set3,Q23	Values displayed Answer of part (b) Maximum & Minimum force 2 1/2 1+1/2		
	a) Asha and her family helpful, concern for others, caring nature (any two) Doctor was generous, helping nature, caring (any two) (Any other alternative correct value should be accepted)	1	
	b) High magnetic field required. / (Expensive set up needed) Any other correct answer [Note: Full credit of ½ mark may be given [for this part to all students]	1/2	
Dag		15 01:00	n m

Page 10 of 17 Final Draft 18/03/15 01:00 p.m


		1	
	$\vec{F} = q \vec{V} \times \vec{B} $ $F_{max} = qvB = 1.6 \times 10^{-19} \times 10^{4} \times 0.1 N$ $= 1.6 \times 10^{-16} N$ $F_{min} = 0$	1/2	4
	Section E		
Set1,Q24 Set2,Q26 Set3,Q25	Section E a) Derivation of potential energy of dipole Angle for stable and unstable equilibrium $y_2 + y_2$ b) Dependence of potential on r 2 a) Torque experienced by an electric dipole $\tau = pE \sin \theta$ Work done by external torque $w = \int_{\theta_1}^{\theta_2} PE \sin \theta d\theta$ $= PE[-\cos \theta]_{\theta_1}^{\theta_2}$ $U = PE[\cos \theta_1 - \cos \theta_2]$ When $\theta_1 = 90^0$, and $\theta_2 = \theta$ $=> U = -\vec{P} \cdot \vec{E}$ For stable equillibrium $\theta = 0^0$ Unstable equillibrium $\theta = 180^0$	1/2 1/2 1/2 1/2	

Page 11 of 17 Final Draft 18/03/15 01:00 p.m

(b) $V_{p} = V_{q} + V_{q} + V_{-2q}$ $= \frac{kq}{r-a} + \frac{kq}{r+a} - \frac{2kq}{r}$ $= kq \left(\frac{r+a+r-a}{r^{2}-a^{2}}\right) - \frac{2kq}{r}$	1/2	
$= \frac{2kqr}{r^2 - a^2} - \frac{2kq}{r}$ $= 2kq \left[\frac{r}{r^2 - a^2} - \frac{1}{r} \right]$	1/2	
$= 2kq \left[\frac{r^2 - r^2 + a^2}{r(r^2 - a^2)} \right] = \frac{2kqa^2}{r(r^2 - a^2)}$ For r>> a	1/2	
$V_p = \frac{2kqa^2}{r^3}$ $V_p \propto \frac{1}{r^3}$ ORgest Student Review Plants of the content of the con	1/2	5
a) Electric flux and its SI unit b) Calculation of Electric flux c) Derivation of electric field due to infinite plane sheet 2 ½ Electric flux equals the surface integral of electric field over the given		
 a) Electric flux equals the surface integral of electric field over the given surface. (Alternatively, φ_E = ∫ Ē. d̄s) S.I Unit Nm²/C (Alternatively: V-m) 	1/2	
b) By Gauss's Law $\oint \vec{E} \cdot \overrightarrow{ds} = \frac{q}{\epsilon_0} (q = charge enclosed)$		
Here the charge enclosed in the cube = q $ \therefore \phi_E = \oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0} $	1/2	
	15 01·00	

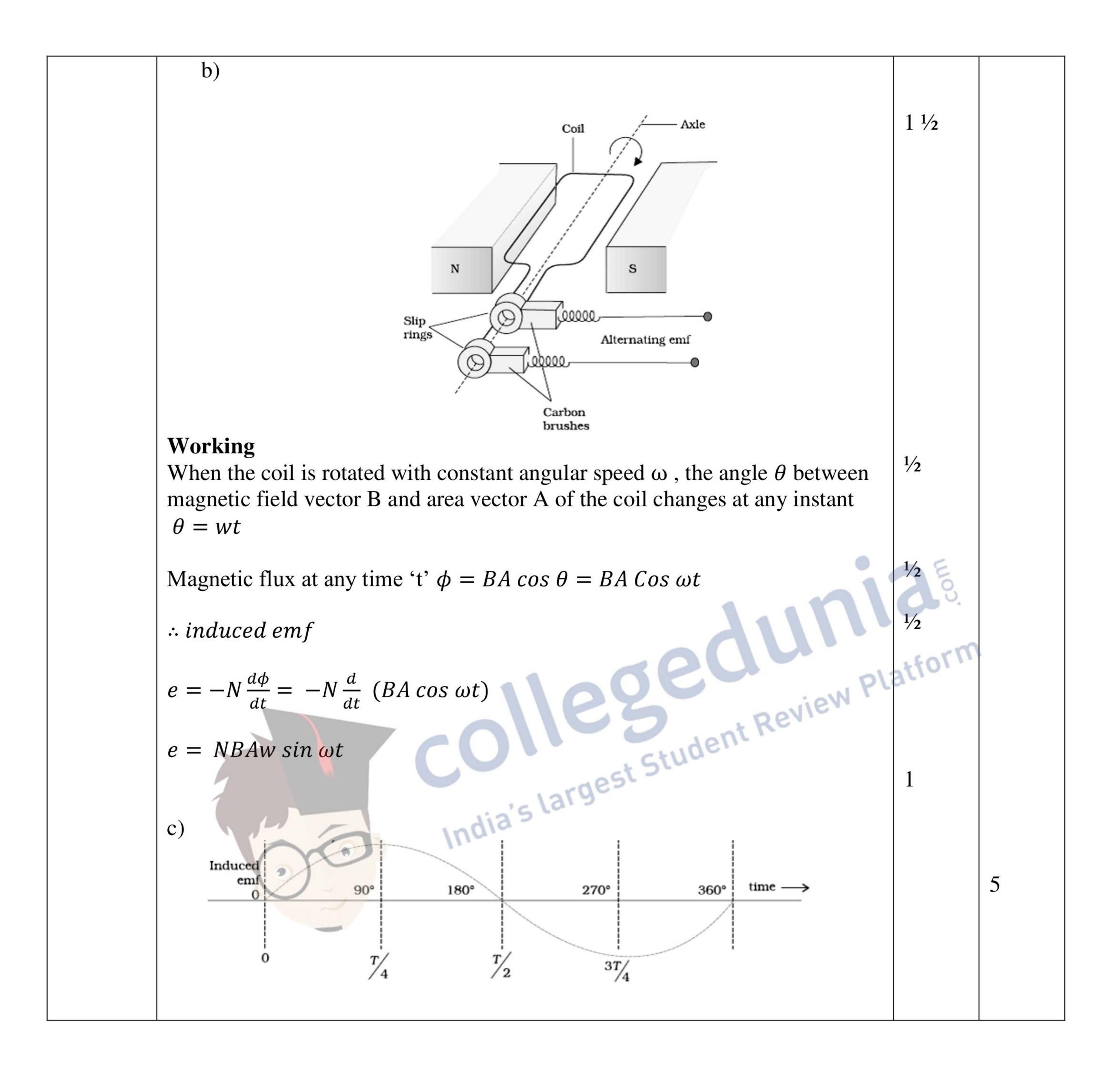
Page 12 of 17 Final Draft 18/03/15 01:00 p.m

	c		
	Surface charge density σ $x \rightarrow y$ $y \rightarrow y$	1/2	
	$\phi = \oint \vec{E} \cdot \vec{ds} = \int_{S1} \vec{E} \cdot \vec{ds} + \int_{S2} \vec{E} \cdot \vec{ds} + \int_{S3} \vec{E} \cdot \vec{ds}$	1/2	
	= EA + EA + 0 = 2EA	1	
	By Gauss Law,		
	$2 E A = \frac{q}{\epsilon_0}$ $\therefore E = \frac{q}{2\epsilon_0} = \frac{\sigma A}{2\epsilon_0 A} = \frac{\sigma}{2\epsilon_0}$	1/2	
	∴ E is independent of x	atform	5
Set1,Q25 Set2,Q24 Set3,Q26	a) Definition of wave front b) Diagram of wave fronts for (i) Reflection of plane wave by concave mirror (ii) Refraction of plane wave by convex lens c) Verification of Snell's Law/ 2		
	 a) Locus of all the points which are in same phase / surface of constant phase b) (i) Concave mirror of radius R 		
	Incident planewave Spherical wavefront of radius R/2	1	
Page	e 13 of 17 Final Draft 18/03/	15 01:00	p.m

Page 14 of 17 Final Draft 18/03/15 01:00 p.m

	In $\triangle ABP$ and $\triangle A'B'P$		
	$\frac{AB}{A\prime B\prime} = \frac{AP}{A\prime P}$	1/2	
	In ΔMPF and $\Delta B'A'F$		
	$\frac{MP}{A\prime B\prime} = \frac{FP}{A\prime F}$		
	But $AB = MP$		
	$\therefore \frac{AP}{A'P} = \frac{FP}{A'P} = \frac{FP}{A'P-FP}$	1/2	
	$\frac{-u}{-v} = \frac{-f}{-(v-f)}$		
	uv - uf = vf	1/2	
	Dividing by uvf		
	$\frac{1}{f} - \frac{1}{v} = \frac{1}{u}$	a's.	
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	atform 1/2	
	b) Here the object is virtual and image is real $u = +12$ cm		
	(i) Largest Students		
	1 1 1 1 1 mdia's la		
	$\frac{-}{v} - \frac{-}{u} = \frac{-}{f} + \frac{-}{v} + \frac{-}{12} = \frac{-}{20}$	1/2	
	=>v=7.5 cm from the lens	1/2	
	(ii)		
	$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$		
	$=>\frac{1}{v}-\frac{1}{12}=\frac{1}{-16}$		
		1/2	
	=>v=48 cm from the lens	1/2	5
Set1,Q26 Set2,Q25 Set3,Q24	a) Description with diagram 1+1		
Set2,Q25 Set3.O24	Statement of Faraday's law		
	b) Answers and their justification		
	parts (i) & (ii) 1+1		

Page 15 of 17 Final Draft 18/03/15 01:00 p.m


(Also accept any other correct figure)	1	
When the bar magnet moves towards the coil, connected to a Galvanometer. The Galvanometer shows a deflection. This is due to change in the magnetic field/flux, linked with the coil. This shows that an emf is induced.	1	
The magnitude of emf induce is directly proportional to the rate of change of magnetic flux in the circuit.	1	
$e = -\frac{a\phi}{dt}$ b) (i) the emf induced $e = -B\ell v$	1/2	
Emf will be more in case of square loop as the side perpendicular to the velocity is longer as compared to the rectangular loop. (ii) Current will be less in rectangular loop, as it has more resistance and less induced emf. [Note: also accept if the student says (i) emf induced will be zero in both cases as long as the coils stay in the field.	$\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$	
(ii) current will be zero in both the cases as long as the coils stays in the field.	1/2 + 1/2	
 a. Principle of a.c. generator b. Explanation of working with labeled diagram and obtaining the expression of emf c. Schematic diagram a) Principle: Electromagnetic induction; effective area of the loop (= A cos θ), exposed to the magnetic field, keeps on changing as the coil rotates. [Alternatively: Whenever magnetic flux linked with a coil changes, an emf is setup in the coil] 	1	5
2 16 of 17 Einel Dueft 19/02	(15.01.00	

18/03/15 01:00 p.m

Final Draft

Page 16 of 17

*These answers are meant to be used by evaluators

