Mathematics

- 101. The value of $\sin(2\sin^{-1}0.8)$ is
- (a) 0.96
- (b) 0.80
- (c) 0.64
- (d) 0.18

Correct: a

102. Let P = $\{P = \theta; \sin \theta - \cos \theta = \sqrt{2} \cos \theta\}$ denotes the greatest integer function is

(a)
$$P \subset Q$$
 and $Q - P = \phi$

(b) Q ⊄ P

(c) P $\not\subset$ Q

(d) P = Q

Correct: d

103. The function f(x) = x - [x] where I] denotes the greatest integer function is

- (a) continuous everywhere
- (b) continuous at integer points only
- (c) continuous at non-integer points only
- (d) nowhere continuous

Correct: c

104. The value of the integral $\int_{-2}^{0} \frac{dx}{\sqrt{12-x^2-4x}}$ is

- (a) $\frac{\pi}{2}$
- (b) $\frac{\pi}{6}$
- (c) $\frac{\pi}{3}$
- (d) $-\frac{\pi}{6}$

Correct: b

105. The range of the function $f(x) = \frac{2+x}{2-x}$, $x \neq 2$ is

- (a) R
- (b) R { 1}
- (c) $R \{1\}$
- (d) R { 2 }

Correct: b

106. Let R and S be any two equivalence relations on a set X. Then which of the following is incorrect statement

- (a) R U S is an equivalence relation on X
- (b) R^{-1} is an equivalence relation prix
- (c) $R^{-1}\cap S^{-1}$ is an equivalence relation on X
- (d) Δ is an equivalence relation on X, where Δ is the diagonal relation on X.

Correct: a

107. Using the information from the figure, $\cos^{-1} x$ is equal to

- (a) $\frac{\pi}{2} + \cos x$
- (b) $\frac{\pi}{2} + \sin x$
- (c) $\frac{\pi}{2} \sin^{-1} x$
- (d) $\frac{\pi}{2} + \sin^{-1} x$

Correct: c

108. Let f (x) be a function defined by $f(x) = \begin{cases} 4x-5, & ext{if } x \leq 2 \\ x-\lambda, & ext{if } x>2 \end{cases}$ if $\lim_{x \to 2} f(x)$ exists

- (a) -2
- (b) -1
- (c) 0
- (d) 1

Correct: b

109. The graph $y^2 + 2xy + 50|x| = 625$ divides the plane into regions. Then, the area of bounded regions is

- (a) 500 sq units
- (b) 1250 sq units
- (c) 2500 sq units
- (d) 800 sq units

Correct: b

110. The equation of the circle whose radius is 5 and which touches the circle

$$x^2 + y^2 - 2x - 4y - 20 = 0$$
 externally at the point (5,5) is

(a)
$$(x-9)^2 + (y-8)^2 = 5^2$$

(b)
$$(x-5)^2 + (y-5)^2 = 5^2$$

(c)
$$(x-0)^2 + (y-0)^2 = 5^2$$

(d) None of the above

Correct: a

111. The variance of 20 observations in 5. If each observation is multiplied by 2, then the variance of the resulting observation is

- (a) 10
- (b) 20
- (c) 30
- (d) 40

Correct: b

112. The only integral root of the equation

$$egin{bmatrix} 2-y & 2 & 3 \ 2 & 5-y & 6 \ 3 & 4 & 10-y \end{bmatrix}$$

- (a) y = 3
- (b) y = 2
- (c) y = 1
- (d) None of these

Correct: c

113. A man repays a loan of \mathbb{P} 3250 by paying \mathbb{P} 20 in the first month and then increases the payment by 15 every month. How long will it take him to clear the loan?

- (a) 20 months
- (b) 25 months
- (c) 30 months
- (d) 35 months

Correct: a

114. If the two positive numbers whose difference is 12 and whose AM exceeds the GM by 2, then the numbers are

- (a) 18,6
- (b) 16,4
- (c) 14,2
- (d) None of these

Correct: b

115. The coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:7:42 then the value of n is

- (a) 55
- (b) 54
- (c) 56
- (d) 66

Correct: a

116. The number of words with or without meaning which can be made using all the letters of the word AGAIN. If these words are written as in a dictionary, then the 50th word 124. If X follows a binomial distribution with will be

- (a) NAAGI
- (b) NAAIG
- (C) NAIAG
- (d) NAIGA

Correct: b

117. Let
$$a_1, a_2, a_3, \ldots a_n$$
 be in AP. If $\frac{1}{a_1 a_n} + \frac{1}{a_2 a_{n-1}} + \ldots + \frac{1}{a_n a_1}$ $= \frac{K}{a_1 + a_n} \left[\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} \right]$

then K is equal to

- (a) 1
- (b) 2
- (c) 3
- (d) 5

Correct: b

118. If both roots of the equation $x^2 - 2(a-1)x + (2a+1) = 0$ are positive, where a is a real number, then

- (a) $a \in (4, \infty)$
- (b) $a \in (-\infty, 0] \cup [4, \infty]$
- (c) $a\in(1,\infty)$
- (d) $a \in [4, \infty)$

Correct: d

119. The length 'x' of a rectangle is decreasing at the rate of 6 cm/min and the width y is increasing at the rate of 4 cm/min. When x=8 cm and y=4 cm, the rate of change of the area of the rectangle is

- (a) 8
- (b) 16
- (c) 24
- (d) 32

Correct: a

120. If p and q are the order and degree of the differential equation $y rac{dy}{dx} + x^3 \left(rac{d^2y}{dx^2}
ight)^2 + xy = \cos x$

- (a) p < 9
- (b) p = 9
- (c) p > 9
- (d) None of these

Correct: a

121. The solution of the differential equation

$$\frac{dy}{dx} = \frac{2xy - y^2}{2xy - x^2},$$

- (a) xy(x+y) = C
- (b) xy(x-y) = C
- (c) $x^2y(x y) = C$ (d) $x^3y(x y) = C$

Correct: b

122. Let g(x) be the inverse of an invertible function f(x) which is differentiable at x = c, then g'(f(c)) equals

- (a) f'(C)
- (b) $\frac{1}{f'(c)}$
- (c) f(c) (d) $\frac{1}{f(c)}$

Correct: b

123. A five-digit number divisible by 3 is to be formed using the numbers 0, 1, 3, 4 and 5 without repetition. The total number of ways this can be done is

- (a) 216
- (b) 600
- (c) 240
- (d) 3125

Correct: a

124. If X follows a binomial distribution with parameters n = 100, p = ½, then P(X=r) is maximum, when r is equal to

- (a) 32
- (b) 34
- (c) 33
- (d) 31

Correct: c

125. y = acos(log x) + bsin(log x) is a solution of the differential equation

(a)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$$

(b)
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

(c)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

(a)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$$

(b) $x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$
(c) $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$
(d) $x \frac{d^2y}{dx^2} + x^2 \frac{dy}{dx} + y = 0$

Correct: a

126. The shortest distance between the lines $\vec{r}=(4\hat{i}-\hat{j})+\lambda(\hat{i}+2\hat{j}-3\hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+2\hat{k})+\mu(2\hat{i}+4\hat{j}-5\hat{k})$ is

Correct: c

127. The solution set of the in equality

$$\log_{ an(x/3)}ig(x^2-3x+2ig)\geq 2$$
 is

- (a) $\left(\frac{1}{2}, 2\right)$
- (b) $\left[\frac{1}{2}, 2\right]$)
- (c) $\left[\frac{1}{2},1\right] \cup \left(2,\frac{5}{2}\right]$
- (d) $\left(\frac{1}{2}, \frac{5}{2}\right)$

Correct: c

128. The minimum value of $9^x + 9^{1-x}$, $x \in R$ is

- (a) 2
- (b) 3
- (c) 6
- (d) 9

Correct: c

129. Area of one loop formed by $|y| = |\sin x|$ is

- (a) 0
- (b) 2
- (c) 4
- (d) 2π

Correct: c

130. The function $y = c_1 \cos x + c_2 \sin x$ is a solution

of the DE, where c_1 and c_2 are real numbers

(a)
$$\frac{d^2y}{dx^2} = y$$

(b)
$$rac{d^2y}{dx^2} + y = 0$$
 (c) $rac{d^2y}{dx^2} + xy = 0$ (d) $rac{d^2y}{dx^2} - xy = 0$

(c)
$$\frac{d^2y}{dx^2} + xy = 0$$

(d)
$$\frac{d^2y}{dx^2} - xy = 0$$

Correct: b

131. If $\int_0^\infty \left[3e^{-x}\right]dx=l$ where [.] denotes the greatest integer function, then the value of l is

- (b) In3
- (c) e^3
- (d) $3e^{-1}$

Correct: b

132.
$$\int_1^{\sqrt{3}} \frac{dx}{1+x^2}$$
 equals

- (a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{12}$

Correct: d

133.
$$\int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} dx$$
 is equal to

- (b) $\tan x + \cot x + C$
- (c) $\tan x + \csc x + C$
- (d) $e^x \cos x + C$

Correct: b

134. The integral $\int e^x (1 + \tan x) \sec x \, dx$ equals

- (a) $e^x \cot x + c$
- (b) $e^x \tan x + c$
- (c) $e^x \sec x + c$
- (d) $e^x \cos x + c$

Correct: c

135. The area of the region bounded by the two parabolas $y=x^2$ and y=x is

- (a) 1/3
- (b) 2/3
- (c) 1
- (d) 1/6

Correct: d

136. Differentiate $y=\sin^{-1}\Bigl(rac{1-x^2}{1+x^2}\Bigr)$, $0 < {
m x} < 1$ with respect to

- (a) $\frac{-2}{1+x^2}$ (b) $\frac{2}{1-x^2}$ (c) $\frac{1}{1+x^2}$ (d) $\frac{1}{1-x^2}$

Correct: a

137. The angle between the line x-2y+z=0=x+2y-2z and the plane 5x-2y-2+17=0 is

- (a) 30°
- (b) 60°
- (c) 90°
- (d) 0°

Correct: d

138. If $y=e^{x+e^{x+e^{x+\cdots}}}$, then $\frac{dy}{dx}$ is equal to (a) $\frac{y}{1-y}$

Correct: a

139. If $\lim_{x \to 0} |x|^{|\cos x|} = 1$ where [.] denotes the greatest integer function, then the value of l is

(b) -1

(c) 0

(d) does not exist

Correct: a

140. A polygon has 44 diagonals. The number of its sides are

(a) 9

(b) 8

(c) 11

(d) 7

Correct: c

141. If $\cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x$ then $\sin x$ is equal to

(a) $\tan^2(\alpha/2)$

(b) $\cot^2(\alpha/2)$

(c) $\tan \alpha$

(d) $\cot(\alpha/2)$

Correct: a

142. If a, b, c are roots of the equation $x^3+px+q=0$, then the value of $\begin{vmatrix} b & c & a \end{vmatrix}$ is

(a) 1

(b) 2

(c) 0

(d) 3

Correct: c

143. If $y = \sin mx$, then the value of the

determinant
$$\begin{vmatrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \end{vmatrix}$$
 , where $y_n = rac{d^n y}{dx^n}$ is

(a) m^9

(b) m^2

(c) m^{3}

(d) None of these

Correct: d

144. If $A=\begin{bmatrix}2&3\\5&-2\end{bmatrix}$ be such that $A^{-1}=\lambda A.$ Then, the value of λ is

(a) 1/17

(b) 1/18

(c) 1/19

(d) 1/21

Correct: c

145. If A = $\begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ and $A^2=B$, then the value of α is

- (b) $\alpha = 4$
- (c) not possible
- (d) Both (a) and (b)

Correct: c

146. Let $0 < \alpha < \pi, 0 < \beta < \pi$ and $\cos \alpha + \cos \beta - \cos(\alpha + \beta) = \frac{3}{2}$. Then the relation between α and β will be

- (a) $\alpha = \beta$
- (b) $\alpha > \beta$
- (c) $\alpha < \beta$
- (d) $\alpha = \frac{\beta}{3}$

Correct: a

147. If $\sin^{-1}x - \cos^{-1}x = \frac{\pi}{6}$, then the value of x is

- (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) $-\frac{\sqrt{3}}{2}$

Correct: a

148. If R is the set of real numbers and f:R \rightarrow R is a function defined by f(x) = sin x, then $f^{-1}([-1,1])$ is

- (a) $\{x\{x = nt, n \text{ is an integer}\}$
- (b) $\{x \mid x = 1/2 + 2nt, n \text{ is an integer}\}$
- (c) R
- (d) null set ϕ

Correct: c

149. The function $f(x) = \cos x$ is strictly decreasing on

- (a) $[0, \pi]$
- (b) $[0, \pi)$
- (c) $(0, \pi]$
- (d) $(0, \pi)$

Correct: d

150. Let R be a reflexive relation on a finite set A having n elements and let there be m ordered pairs in R, then

- (a) $m \ge n$
- (b) $m \leq n$
- (c) m = n
- (d) None of these

Correct: a

