SET:55/1

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total
	SECTION A		Marks
Q1		1	
	+Q		1
Q2	Ratio of amplitude of modulating signal A_m to amplitude of carrier wave A_C Alternatively: A_m	1/2	
	$\mu = \frac{\lambda m}{\Delta_{\alpha}}$, 2	
	It is kept less than one to avoid distortion	1/2	1
Q3	Accept both the answers: A: +ve; B: -ve or A: -ve; B: +ve		JES. 1
Q4	Resolving power is same (it does not depend on focal length of the objective.) Alternatively: Ratio of resolving power = 1:1	ew Plat	iorm 1
Q5	Definition $\frac{1}{2}$ SI Unit $\frac{1}{2}$ Conductivity is reciprocal of resistivity $\sigma = \frac{1}{2}$	1/2	
	SI unit : S(siemen)	1/2	1
	SECTION B		
Q6	Definition 1 Calculation of Speed 1		
	i. Refractive index of a medium is the ratio of speed of light (c) in free space to the speed of light (v) in that medium. $\mu = \frac{c}{v}$ ii.	1	
	$\mu = \frac{c}{v} = \frac{1}{\sin i_c}$ $= \frac{3 \times 10^8}{v} = \frac{1}{30/50}$	1/2	
	$v = \frac{30}{50} \times 3 \times 10^8 = 1.8 \times 10^8 m/s$	1/2	2

Page 1 of 14

Final Draft

(Outside Delhi)

Q8	Two characteristics Plot of PE 1 i. Nuclear force is much stronger than coulomb or gravitational force. ii. It is a very short range force therefore leads to saturation of forces. iii. Nuclear force is independent of charge [Any two]	1/2	
	$\therefore mv_n r_n = \frac{nh}{2\pi}$	1/2	2
	$\therefore 2\pi r_n = \frac{nh}{mv_n}$	1/2	
	By de Broglie's hypothesis $2\pi r_n = n\lambda$ $n = 1,2,3$	1/2	
	de Broglie formula $\frac{1}{2}$ de Broglie hypothesis $\frac{1}{2}$ Bohr's quantization condition $\frac{1}{2}$ We have $\lambda = \frac{h}{p} = \frac{h}{m v_n}$	SAA	
	OR	plat	form
	$= \sqrt{\frac{h\lambda}{2mc}}$	1/2	ES.
	$\therefore \lambda_{dB} = \frac{h}{m} \sqrt{\frac{m\lambda}{2hc}}$		
	$\lambda_{de} = \frac{h}{mv}$	1/2	
	$\therefore v = \sqrt{\frac{2hc}{m\lambda}}$	1/2	
	When work function is negligible, we have, from Einstein's equation $\frac{1}{2}mv^2 = \frac{hc}{\lambda}$	1/2	
	de Broglie relation de Broglie wavelength 1/2		
Q7	Einstein's equation $\frac{1}{2}$ Expression for \boldsymbol{v} $\frac{1}{2}$		

Page 2 of 14 Final Draft (Outside Delhi) 20th JULY 17, 2017

		·	SET:5
	b)		
	Totential energy (MeV)	1	2
Q9	Two points of Distinction 1+1		
	 i. Sky wave propagation uses reflection from ionosphere whereas space waves propagation uses line of sight of propagation. ii. Sky wave propagation is for waves of frequency between 3 to 30 MHz whereas space waves propagation is preferred for waves of frequency more than 40 MHz [Also accept or any other correct distinction] 	1	lorm 2
Q10	Emf of cell Internal resistance 1 a) $E = V$ for $I = 0$ $\therefore E = 6 V$ b) $E = V + i r$ $\therefore 6 = 4 + r$ $r = 2 \Omega$	1/2 1/2 1/2 1/2	2
	SECTION C		
Q11	Effect on capacitance 1 Effect on charge 1 Effect on energy 1		
	i. $C = \frac{\epsilon_o A}{d}$ $C' = \frac{K \epsilon_o A}{d'} = \frac{10}{3} \frac{\epsilon_o A}{d} = \frac{10}{3} C$	1/2	
	ii. V remains same since battery is not disconnected	1/2	
	$\therefore Q' = C'V$ $= \frac{10}{3}CV = \frac{10}{3}Q$	1/2	

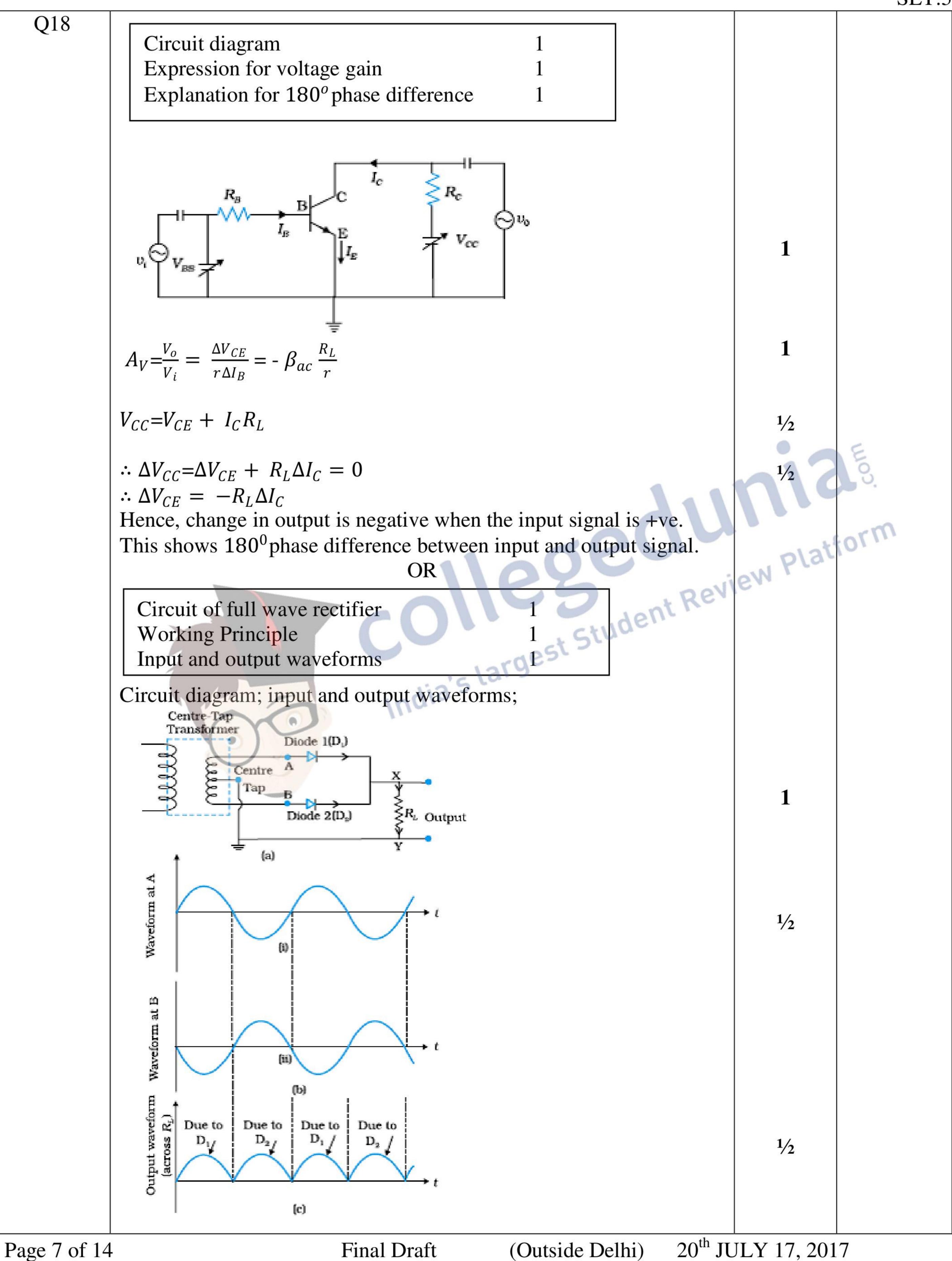
Page 3 of 14

Final Draft

(Outside Delhi)

		•
iii. Energy density, $u_d = \frac{1}{2} \in_o E^2$		
V		
$E = \frac{r}{J}$		
1 1 2		
$u_d' = \frac{1}{2}K \in_o E'^2$	1/2	
$\frac{1}{10}$ $(V)^2$		
$=\frac{10}{2}\in_{o}\left(\frac{r}{d}\right)$		
10 /1		
$=\frac{10}{9}\left(\frac{1}{9}\in_{o}E^{2}\right)$		
$\frac{9}{10}$	1/2	3
$= - u_d$		
Q12		
Graph of BE		
Calculation of energy released 2		
Carcaration of chergy released		
a)		
22c 166740		0
8		
2 6		form
	bla Mar	
5 4	Denien	
a der	15 L	
-t Stud		
20 50 100 150 170 c argest		
Mass number (A)		
b) Energy released	1	
$= [(110+130) \times 8.5 - 240 \times 7.6] \text{ MeV}$		
= 240(8.5 - 7.6) MeV	1	2
= 216 MeV		3
012		
Q13 Evalenction / research		
Explanation / reason		
Finding intensities 1+1		
a) Interference pattern will not be observed as two independent	ent 1	
lamps are not coherent sources.		
b) $I_1 = 4I_0^2 \cos^2\left(\frac{\phi_1}{2}\right) = 4I_0^2$ $\phi_1 = 0$	1	
\ - /		
$I_2 = 4I_0^2 \cos^2\left(\frac{\pi}{2}\right) = 0$ $\phi_1 = \pi$	1	
\/		
[Note: Give full two marks if the student just writes: Ratio \rightarrow		
$[as I_2 = 0]$		3

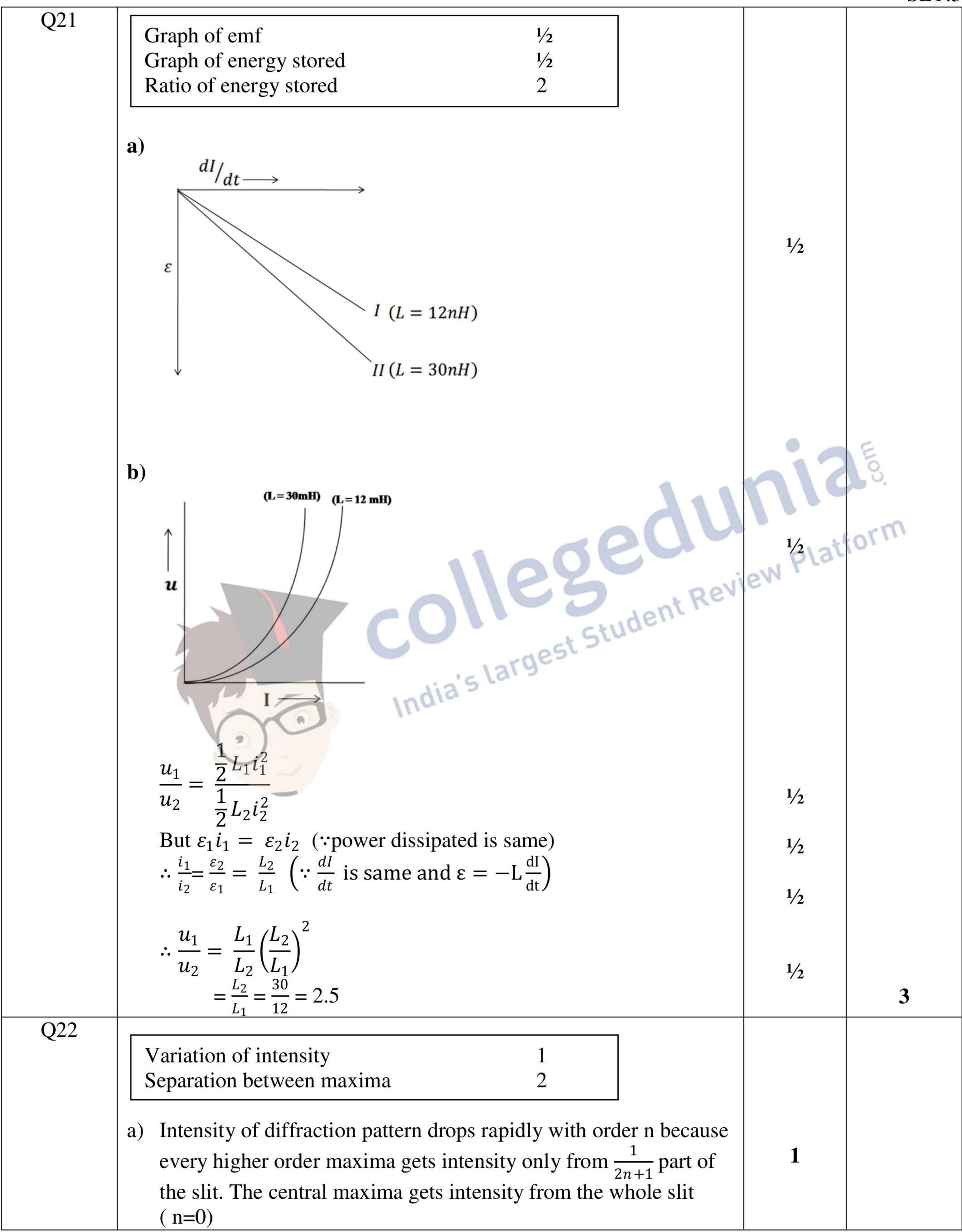
Page 4 of 14 Final Draft (Outside Delhi) 20th JULY 17, 2017


			SET.J.
Q14			
	Derivation of total energy expression 2		
	Wavelength of H_{α} line		
	$\frac{1}{2}$ 1 2	1/2	
	$\left \frac{m v_n^2}{m} - \frac{1}{m} \frac{e^2}{m^2} \right $	/ 2	
	$r_n \qquad 4\pi\epsilon_o r_n^2$		
	$\therefore mv_n^2r_n = \frac{1}{4\pi\epsilon_o}e^2$		
	Also mv_n $r_n = \frac{nh}{2\pi}$ (Bohr Postulate)	1/2	
	$\frac{n}{2}$ 2π		
	$\therefore v_n = \frac{e^2}{2c_n h}$	1/2	
	$-\frac{1}{2\epsilon_o nh}$		
	Now total energy $E=-KE$		
	1		
	$\therefore E = -\frac{1}{2}mv_n^2$		E
	$-me^{4}$		J. O.
	$= \frac{1}{8\epsilon_o n^2 h^2}$	1/2	
		2.5	orm
		IN Plan	
	For H_{α} line $n_i = 3$, $n_f = 2$	1/2	
	$\begin{vmatrix} \cdot \cdot \cdot \cdot - \cdot \cdot \cdot - \cdot \cdot \cdot \cdot \end{vmatrix} = R \begin{vmatrix} \cdot \cdot - \cdot - \cdot \cdot \cdot \cdot \cdot - \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	0.400	
	$=1.1 \times 10^7 \left[\frac{3}{36} \right]$		
	$\lambda = \frac{36}{5.5} \times 10^{-7} / m = 655 \text{nm}$		
	5.5	1/2	3
015			
Q15	Nome of am vyovac		
	Name of em waves		
	Two uses $\frac{1}{1/2} + \frac{1}{2}$		
		1	
	X- rays		
	Produced by bombarding a metal target with high energy electrons.	1	
	Uses:		
	i. Used in diagnosis of bone fractures/	1/2	
	ii. Treatment of some forms of cancer	1/2	3
	[or any other use]		

Page 5 of 14 Final Draft (Outside Delhi) 20th JULY 17, 2017

			SET:55
Q16	a) Diagram of magnetic field line pattern 1 b) Calculation of Magnetic field 1½ Direction ½		
	a)	1	
	b) $B_x = B_y = \frac{\mu_o i R^2}{2(R^2 + x^2)^{\frac{3}{2}}}$	1	
1	$B = \sqrt{2} B_x$ $= \frac{\sqrt{2} \mu_0 i R^2}{2(R^2 + x^2)^{\frac{r}{2}}};$ $\text{making } 45^0 \text{ with either } B_x \text{ or } B_y$	1/2	3
Q17	Reason for use in reverse bias Working Principle Whether it can detect	ew Plat	
	The fractional change, due to photo effects, on the minority charge carrier dominated reverse bias current, is much more than the fractional change in the forward bias current. Hence, photodiode is used in reverse bias. Working principle of photodiode:	1	
	i. Generation of e –h pairs due to light close to junction.	1/2	
	ii. Separation of electrons and holes due to electric field of the	1/2	
	depletion region. Detection is possible if $E_p > E_g$ $E_p = \frac{hc}{\lambda} J$	1/2	
	$= \frac{hc}{e\lambda} eV$ $= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 400 \times 10^{-9}} = 3.1 \text{ eV}(>Eg)$ $\therefore \text{ It can detect this light}$	1/2	3

Page 6 of 14 Final Draft (Outside Delhi) 20th JULY 17, 2017



collegedunia India's largest Student Review Platform

			SE1.3.
	Working Principle:		
	When A is +ve, B is negative Only D_1 conducts because it is forward biased Current in R_L flows	1/2	
	from X to Y	72	
	When B is positive and A is negative, only D_2 conducts and Current	1/2	3
	in R_L is once again from X to Y.		
Q19	Three factors justifying the Need for modulation 1+1+1		
	i. <u>Size of antenna</u> – The antenna should have a size comparable	1	
	to the wavelength of signal (at least $^{\lambda}/_{4}$). For low frequency (unmodulated) signal λ may be a few km. It is not possible to have such a long antenna. Hence low frequency transmission is not possible directly.		
	ii. Power radiated by antenna – Power radiated by an antenna of length ℓ is proportional to $\left(\ell/\lambda\right)^2$. Therefore, for same ℓ ,	1	
	power radiated increases with decreasing λ i.e. increasing frequency. Hence, for low frequency signal, power radiated by antenna is very small and good transmission of signal is not possible.		LEO.
	iii. Mixing up of signals: All the low frequency (baseband) signals from various transmitters, can get mixed up because they have the same frequency range. They can be separated	ew Plat	OLIV
	only if communication is done at high frequency and different band of frequencies are allotted to different transmitters.		3
Q20	Definition of current sensitivity 1		
	Ratio R_1/R_2		
	Current sensitivity of a galvanometer is deflection per unit current $\left[\text{Alternatively}: I_s = \frac{\phi}{I} = \frac{NAB}{K}\right]$	1	
	In circuit (i) $\frac{4}{6} = \frac{R_1}{4} = R_1 = \frac{8}{3} \Omega$	1/2	
	In circuit (ii) $\frac{6}{R_2} = \frac{12}{8} = R_2 = 4 \Omega$	1/2	
	$\therefore \frac{R_1}{R_2} = \frac{2}{3}$	1	3

Page 8 of 14 Final Draft (Outside Delhi) 20th JULY 17, 2017

Page 9 of 14 Final Draft (Outside Delhi) 20th JULY 17, 2017

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$x_1 = \frac{3}{2} \frac{\lambda_1}{a} D \; ; \lambda_1 = 590 nm$ $x_2 = \frac{3}{2} \frac{\lambda_2}{a} D \; ; \lambda_2 = 596 nm$ $Separation \Delta x = x_2 - x_1$ $= \frac{3}{2} \frac{D}{a} (\lambda_2 - \lambda_1)$ $= \frac{3}{2} \left(\frac{2}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$ $= 4.5 \times 10^{-6} \text{m}$ 223 $Two values of Mr. Hiorki $	
$x_1 = \frac{3}{2} \frac{\lambda_1}{a} D \; ; \lambda_1 = 590 nm$ $x_2 = \frac{3}{2} \frac{\lambda_2}{a} D \; ; \lambda_2 = 596 nm$ $Separation \Delta x = x_2 - x_1$ $= \frac{3}{2} \frac{D}{a} (\lambda_2 - \lambda_1)$ $= \frac{3}{2} \left(\frac{2}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$ $= 4.5 \times 10^{-6} \text{m}$ 223 $Two values of Mr. Hiorki $	
$x_2 = \frac{\frac{3}{2} \frac{\lambda_2}{a} D \; ; \lambda_2 = 596nm$ Separation $\Delta x = x_2 - x_1$ $= \frac{\frac{3}{2} \frac{D}{a} (\lambda_2 - \lambda_1)$ $= \frac{\frac{3}{2} \left(\frac{2}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$ $= 4.5 \times 10^{-6} \text{m}$ $\frac{\text{SECTION D}}{1/2}$ Q23 $\frac{\text{Two values of Mr. Hiorki}}{\text{Two values of Mr. Kamath}} \frac{1}{1}$ Meissner effect $\text{Value of } \mu_r$ 1 a) Eager to share ideas and knowledge; Professionalism; $\text{Environment friendly nature. (any two)}$ b) Eager to learn (open minded); observant; appreciating good	
Separation $\Delta x = x_2 - x_1$ $= \frac{3D}{2a} (\lambda_2 - \lambda_1)$ $= \frac{3}{2} \left(\frac{2}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$ $= 4.5 \times 10^{-6} \text{m}$ SECTION D Q23 Two values of Mr. Hiorki 1 Two values of Mr. Kamath 1 Meissner effect 1 Value of μ_r 1 a) Eager to share ideas and knowledge; Professionalism; Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good $\frac{1}{2} + \frac{1}{2}$	
$= \frac{3}{2} \left(\frac{2}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$ $= 4.5 \times 10^{-6} \text{m}$ $\frac{\text{SECTION D}}{\text{SECTION D}}$ Q23 $\begin{bmatrix} \text{Two values of Mr. Hiorki} & 1 \\ \text{Two values of Mr. Kamath} & 1 \\ \text{Meissner effect} & 1 \\ \text{Value of } \mu_r & 1 \end{bmatrix}$ a) Eager to share ideas and knowledge; Professionalism; Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good	
$= \frac{3}{2} \left(\frac{2}{4 \times 10^{-3}}\right) \times 6 \times 10^{-9} \text{m}$ $= 4.5 \times 10^{-6} \text{m}$ $\frac{\text{SECTION D}}{\text{SECTION D}}$ Q23 $\begin{bmatrix} \text{Two values of Mr. Hiorki} & 1 \\ \text{Two values of Mr. Kamath} & 1 \\ \text{Meissner effect} & 1 \\ \text{Value of } \mu_r & 1 \end{bmatrix}$ a) Eager to share ideas and knowledge; Professionalism; Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good	
Q23 Two values of Mr. Hiorki Two values of Mr. Kamath Meissner effect Value of μ_r a) Eager to share ideas and knowledge; Professionalism; Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good 1/2 + 1/2	3
Two values of Mr. Kamath Two values of Mr. Kamath Meissner effect Value of μ_r 1 a) Eager to share ideas and knowledge; Professionalism; Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good 1/2 + 1/2	
Environment friendly nature. (any two) b) Eager to learn (open minded); observant; appreciating good 1/2 + 1/2	
Phenomenon of perfect diamagnetism in super conductors $\mu_r = 0$	4
SECTION E	
Q24 a) Statement of Guass's law Derivation	
P P T T T T T T T T T T T T T T T T T T	
$\phi = \oint \vec{E} \cdot \vec{ds} = \frac{Q_{enclosed}}{\epsilon_o}$ Final Dark (Octoida Dark) 20th HH V 17, 2017	

Page 10 of 14

Final Draft

(Outside Delhi)

•			SE1:3.
$\therefore \text{E.} 2\pi r l = \frac{\lambda l}{\epsilon_o}$		1/2	
$: E = \frac{\lambda}{2\pi \epsilon_o r}$		1	
b) $dq = \lambda dx = kx dx$	4	1/2	
$Q = \int_{0}^{\infty} dq = \int_{0}^{\infty} kx dx =$	$\frac{1}{2}kl^2$	1/2	
$\therefore \phi = \frac{Q}{\epsilon_o} = \frac{kl^2}{2 \epsilon_o}$	OR	1	
a) Derivation of expression b) Numerical Problem	for electric potential 3		
a)	P		ES.
r_1 q r_2 r_2	Olle Student Rev	ew Plat	orm
$V = \frac{1}{4\pi \in_o} \left[\frac{q}{r_1} - \frac{q}{r_2} \right]$	India's large	1/2	
$r_1^2 = r^2 + a^2 - 2ar\cos\theta \approx$	$\approx r^2 \left(1 - \frac{2a\cos\theta}{r}\right)$	1/2	
$r_2^2 = r^2 + a^2 + 2ar\cos\theta \approx$ If $r > a$		1/2	
$\left \frac{1}{r_1} = \frac{1}{r} \left[1 - \frac{2a\cos\theta}{r}\right]^{-\frac{1}{2}} \simeq \frac{1}{r}$	$\left[1 + \frac{a}{r}\cos\theta\right]$	1/2	
and $\frac{1}{r_2} \simeq \frac{1}{r} \left[1 - \frac{a}{r} \cos \theta \right]$ $\therefore V = \frac{q}{4\pi \epsilon} \cdot \frac{2a \cos \theta}{r^2}$		1/2	
$= \frac{4\pi \in_{o} r^{2}}{4\pi \in_{o}} \frac{r^{2}}{r^{2}}$		1/2	
b) $\frac{1}{4\pi\epsilon_o} \frac{4\mu C}{x^2} = \frac{1}{4\pi\epsilon_o} \frac{1\mu C}{(2-x)^2}$		1	

Page 11 of 14

Final Draft

(Outside Delhi)

Q25			561.5
a) Average Power dissipation is zero $\frac{2}{3}$ a) Instantaneous Power = $vi=V_0$ sinwt I_0 coswt Average power, $P = \frac{1}{\tau} \int_0^T v dt$ $= \frac{v_0 t_0}{v_0 t_0} \int_0^T 2 \sin w t \cos w t dt$ $= \frac{v_0 t_0}{v_0 t_0} \int_0^T 2 \sin w t \cos w t dt$ $= \frac{v_0 t_0}{v_0 t_0} \int_0^T \sin 2w t dt$ $= 0$ b) i. $\omega_0 = \frac{1}{\sqrt{16}}$ $= \frac{1}{(200 \times 10^{-3} \times 400 \times 10^{-6})^{\frac{1}{2}}}$ $= \frac{1}{(200 \times 10^{-3} \times 400 \times 10^{-6})^{\frac{1}{2}}}$ $= \frac{1}{v_0 \times 10^{-5}} = \frac{10^3}{\sqrt{80}} = \frac{1}{\sqrt{80}} = \frac{10^3}{\sqrt{80}} = \frac{1}{\sqrt{80}} =$		1/2	5
$\begin{vmatrix} x & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x \end{vmatrix} = \frac{-d\phi_B}{dt}$ $= -Bl \frac{dx}{dt}$ $= Blv$ $b) \omega = 360 \times \frac{2\pi}{60} = 12 \pi$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x \\ x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x & x \\ x & x & x & x & x \end{vmatrix}$ $\begin{vmatrix} x & x & x & x & x & x & x & x & x & x &$	a) Average Power dissipation is zero $\frac{2}{3}$ a) Instantaneous Power = $vi = V_0 sinwt \ I_0 coswt$ Average power, $P = \frac{1}{T} \int_0^T vidt$ $= \frac{V_0 I_0}{2T} \int_0^T 2 sinwt coswt \ dt$ $= \frac{V_0 I_0}{2T} \int_0^T sin2wt \ dt$ $= 0$ b) i. $\omega_0 = \frac{1}{\sqrt{LC}}$ $= \frac{1}{(200 \times 10^{-3} \times 400 \times 10^{-6})^{\frac{1}{2}}}$ $= \frac{1}{\sqrt{8 \times 10^{-5}}} s^{-1} = \frac{10^3}{\sqrt{80}} s^{-1} \simeq 111s^{-1}$ $I = \frac{V}{R} = \frac{50}{10} = 5 A$ ii. $Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{10} \sqrt{\frac{200 \times 10^{-3}}{400 \times 10^{-6}}} = \sqrt{5}$ OR a) Derivation of induced emf $\frac{2 \frac{1}{2}}{2 \frac{1}{2}}$ b) Numerical $\frac{2 \frac{1}{2}}{2 \frac{1}{2}}$	1/ ₂ 1/ ₂	Les.
$\varepsilon = \frac{-d\phi_B}{dt}$ $= -Bl \frac{dx}{dt}$ $= Blv$ $b) \omega = 360 \times \frac{2\pi}{60} = 12 \pi$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	
b) $\omega = 360 \times \frac{2\pi}{60} = 12 \pi$	$\varepsilon = \frac{-d\phi_B}{dt}$ $= -Bl\frac{dx}{dt}$ $= Rlv$	1 /	
Page 12 of 14 Final Draft (Outside Delhi) 20 th IIII Y 17 2017	b) $\omega = 360 \times \frac{2\pi}{60} = 12 \pi$		

Page 12 of 14

Final Draft

(Outside Delhi)

			SET:55
S =	$=\frac{1}{2}B_Hl^2\omega$	1/2	
·. 4	$2^{B_H t \cdot \omega}$ $400 \times 10^{-3} = \frac{1}{2} \cdot B_H \times (60 \times 10^{-2})^2 \times 12\pi$	1/2	
F	$B_H = \frac{5}{27\pi} = 0.06T$	1/	
	change in emf if no. of spokes is increased.	1/ ₂ 1/ ₂	5
Q26			
	Calculation of separations 2 ½		
(a)	$P = \frac{1}{n} = \left(\frac{n_2 - n_1}{n_2}\right) \left(\frac{1}{n_1} - \frac{1}{n_2}\right)$	1/2	
	$P = \frac{1}{f} = \left(\frac{1}{n_2}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $= \left(\frac{n_2 - n_1}{n_2}\right) \left(\frac{2}{R_1}\right) \text{ for diverging lens}$		
	$-\left(\frac{1}{n_2}\right)\left(\frac{1}{R}\right)$ for diverging lens	1/2	
	$= negative$ i. If $n_1 > n_2$	/ 2	
	$\frac{n_2 - n_1}{n_1}$ becomes negative		
	1	1/2	E
	$\therefore P = \frac{1}{f} \text{ becomes positive}$	1/2	3 0.
	or lens become converging		orm.
	ii. $(n_2)_{violet} > (n_2)_{red}$	plati	COLL
	ii. $(n_2)_{violet} > (n_2)_{red}$ ∴Power increases on changing to violet light	ew 1/2	
(b)	Rays on L_3 be incident parallel to the principal axis	1/2	
	image from L_1 is formed at focus of L_2 and focus of L_2 is $2f_1$ from 'O' of L_1	1/2	
	dia's la.	1/2	
	$L_1L_2 = 2f_1 + f_2 = (3 \times 30)$ cm = 90cm	1/2	
	L_2L_3 can be any distance	1/2	5
	OR :		
a	Derivation of expression for refractive index 2		
1	Graph Numerical 2		
) Indifficat		
a)			
	M ₁₈ O T ₁ T ₁ R		
	P C S	1/2	
$ r_1 $	$\begin{aligned} + \angle QNR &= 180^{\circ} \\ + r_2 + \angle QNR &= 180^{\circ} \\ r_1 + r_2 &= \angle A \end{aligned}$	1/2	
Page 13 of 14		JLY 17, 201	7

		SET:5:
$\delta = (i - r_1) + (e - r_2)$ $\delta = i + e - A$ For minimum derivation, $\delta = D_m, i = e \text{ and } r_1 = r_2$ $\therefore 2r = A \Rightarrow r = \frac{A}{2}$ $D_m = 2i - A \Rightarrow i = \frac{A + D_m}{2}$	1/2	
$\therefore n = \frac{n_2}{n_1} = \frac{\sin i}{\sin r}$ $= \frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\frac{A}{2}}$	1/2	
b) Solution Solut	1 Plati	les.
Sin $c = \frac{1}{n} = \frac{1}{\sqrt{2}}$	1/2	
$\sin c = \frac{1}{n} = \frac{1}{\sqrt{2}}$ $\Rightarrow c = 45^{\circ}$	1/2	
$r + c = 60^{\circ} = r = 15^{\circ}$		
$n = \frac{\sin i}{\sin r}$ $\Rightarrow \sqrt{2} = \frac{\sin i}{\sin 15^{0}}$ $\Rightarrow i = \sin^{-1}[\sqrt{2} \sin 15^{0}]$	1/2	
$\Rightarrow i = \sin^{-1}[\sqrt{2}\sin 15^{0}]$	1/2	5

Page 14 of 14

Final Draft

(Outside Delhi)

