CAT 2017 QA Slot 1 Answer Key

QNo:- 67 ,Correct Answer:- 20

Explanation:- Let Barun's age be 10x. Arun's age is $4 x$. The difference of these ages in $6 x$, a constant. When Arun's age is 50% of Barun's age, this difference also would be 50\% ie Barun's age, at that stage would be 12x. It would be increase by 20\%.

QNo:- 68 ,Correct Answer:- 15
Explanation:- Let the number of days required to complete the job be n.
1 person works on day 1,2 on day 2,3 on day $3, \ldots . n$ on day n.
Each person has the same efficiency.
Work $=1\left(\frac{1}{120}\right)+2\left(\frac{1}{120}\right)+3\left(\frac{1}{120}\right) \ldots .+n\left(\frac{1}{120}\right)$.
This is also equal to 1 .
$\frac{1}{120}+\frac{2}{120}+\frac{3}{120}+\ldots \ldots . .+\frac{n}{120}=1$
$\Sigma \mathrm{n}=120$
$\mathrm{n}=15$.

QNo:- 69 ,Correct Answer:- 11

Explanation:- Number of people in the group cannot exceed $\frac{630}{53}$ i.e., 11.8.
Maximum possible number of people in the group $=11$.

QNo:- 70 ,Correct Answer:- 20
Explanation:- The speed in the second case is $5 / 4$ times the speed in the first case. Therefore, the time would be $4 / 5$ times the time, i.e., $1 / 5$ less. This one fifth is 20 min . Therefore, the time taken in the first case is 100 min .
The distance $=(12)\left(\frac{5}{3}\right) \mathrm{km}=20 \mathrm{~km}$

QNo:- 71 ,Correct Answer:- 70000
Explanation:- Let the total monthly savings be S .
Investment in FD $=\frac{50}{100} \mathrm{~S}$.
Investment in stocks $=\frac{30}{100}\left(\mathrm{~S}-\frac{50}{100} \mathrm{~S}\right)=\frac{15}{100} \mathrm{~S}$
Investment in savings bank account $=\frac{35}{100} \mathrm{~S}$
$\frac{35}{100} \mathrm{~S}+\frac{50}{100} \mathrm{~S}=59500$
$S=70000$

QNo:- 72 ,Correct Answer:- D
Explanation:- Let the retail price be 100 .
Discount $=15$
Selling price $=85$
Cost price $=\frac{85}{1.02}=\frac{500}{6}$
In order to make a profit of 20%, the selling price
$=\frac{500}{6}(1.2)=100$
The seller must sell at the retail price

QNo:- 73 ,Correct Answer:- B
Explanation:- Let the speed of the boat in still water and the speed of the river be u and v respectively.

$$
\begin{aligned}
& \frac{d}{2 x+y}+\frac{d}{2 x-y}=\frac{1}{4}\left(\frac{d}{x+y}+\frac{d}{x-y}\right) \\
& \frac{d(4 x)}{4 x^{2}-y^{2}}=\frac{1}{4}\left(\frac{d(2 x)}{x^{2}-y^{2}}\right) \\
& 8\left(x^{2}-y^{2}\right)=4 x^{2}-y^{2} \\
& \frac{x^{2}}{y^{2}}=\frac{7}{4} \\
& \frac{x}{y}=\frac{\sqrt{7}}{2}
\end{aligned}
$$

QNo:- 74 ,Correct Answer:- A
Explanation:- The data is given below

C1	C2	C3	C4	C5
9	10	8		
	18		19	
81	90	72	95	100

C5-C1 = 19. The numbers above are the actual profits (and not just the ratio). The total profit $=438$ crore.

QNo:- 75 ,Correct Answer:- D
Explanation:- Let the number of boys appearing for the admission test be b.
Percentage of candidates who get admission $=$
$\frac{\frac{30}{100}(2 b)+\frac{45}{100} b}{2 b+b}(100) \%=35 \%$
65% of the candidates do not get admission.

QNo:- 76 ,Correct Answer:- A
Explanation:- Let the total number of popcorn packets in stock be T.
Total number of chips packets in stock $=T$
Required ratio $=\frac{16}{40} \mathrm{~T}: \frac{14}{35} \mathrm{~T}=1: 1$

QNo:- 77 ,Correct Answer:- B

Explanation:- Let the price of each good mango be g.
Price of each medium quality mango $=\frac{g}{2}$.
Total cost price $=80 \mathrm{~g}+40\left(\frac{\mathrm{~g}}{2}\right)=100 \mathrm{~g}$
Total selling price $=120(0.9 \mathrm{~g})=108 \mathrm{~g}$
Overall profit $=8 \%$

QNo:- 78 ,Correct Answer:- D

Explanation:- Let the printed price be p.
If 40% discount is given, selling price $=0.6(60 p)=36 p$
In order to make a profit of 20%, the selling price
Total cost price
$=>36 p / 1.2=30 p$
Ten toys are destroyed in the fire.
The remaining toys are sold at a price such that the same amount of profit is made as in the conditional case.
Profit made on remaining toys $=6 p$
Total selling price of remaining toys $=36 p$
Discount that should be given $=50 p-36 p=14 p$
Discount\% = 28\%

QNo:- 79 ,Correct Answer:- D

Explanation:- $\left(\frac{\mathrm{a}+3}{\mathrm{~b}}\right)^{2}=9$ and $\left(\frac{\mathrm{a}-1}{\mathrm{~b}-1}\right)^{2}=4$.
We get 4 cases

$$
\begin{array}{ll}
a+3=3 b & a+3=3 b \\
a-1=2 b-2 & a-1=-2 b+2 \\
& \\
a+3=-3 b & a+3=-3 b \\
a-1=2 b-2 & a-1=-2 b+2
\end{array}
$$

Subtracting the second equation from the first we get,

	I	II	III	IV
4	$b+2$	$5 \mathrm{~b}-2$	$-5 b+2$	-b - 2

$I \Rightarrow b=2, a=3$ Rejected
IIIIII $\Rightarrow b$ is not an integer. Rejected
IV $\Rightarrow b=-6, a=15$
$\therefore \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\left(\frac{15}{6}\right)^{2}=\frac{25}{4}$

QNo:- 80 ,Correct Answer:- A
Explanation:- Let the average score of the boys in the midsemester examination be b.
Average score of the girls $=b+5$
In the final exam, average score of the girls $=b+5-3=b+2$.
Average score of the entire class increased by 2
and is hence $\frac{20 \mathrm{~b}+30(\mathrm{~b}+5)}{50}+2$ i.e. $\mathrm{b}+5$
Average score of the boys
$\frac{50(\mathrm{~b}+5)-30(\mathrm{~b}+2)}{20}=\mathrm{b}+9.5$
Increases in the average of boys is 9.5 .

QNo:- 81 ,Correct Answer:- C

Explanation:

The closed region bounded by $|a x|+|b y|=c$ in the two- dimensional plane has x-intercepts of $\pm \frac{\mathrm{c}}{\mid \mathrm{ab}}$ and y - intercepts of $\pm \frac{\mathrm{c}}{|\mathrm{b}|}$.
This is in general a rhombus. In the given question, we have a square which has each of its diagonals as 4.
Area $=\frac{1}{2}(4)(4)=8$

QNo:- 82 ,Correct Answer:- B
Explanation:- The medians of a triangle divide the triangle into six parts of equal area.
Area of $\mathrm{GBC}=\frac{1}{3}$ (Area of the triangle)
$=\frac{1}{3} \sqrt{5(5-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}=\frac{250}{\sqrt{3}}$
Area of the remaining portion $=2\left(\frac{250}{\sqrt{3}}\right)=\frac{500}{\sqrt{3}}$

QNo:- 83 ,Correct Answer:- B

Explanation:-

Let $A B=a(a=6)$
$C Q B$ is a semicircle of radius $\frac{a}{\sqrt{2}}$
$C P B$ is a quarter circle (quadrant) of radius a
\therefore Area of semicircle $=\frac{\pi a^{2}}{4}$
Area of quadrant $=\frac{\pi a^{2}}{4}$
\therefore Area of region enclosed by $B P C, B Q C=$ Area of $\triangle A B C=18$.

QNo:- 84 ,Correct Answer:- B

Explanation:-

The volumes of the 5 smaller cubes and the original big one are in the ratio $1: 1: 8: 27: 27: 64$. Therefore, the sides are in the ratio $1: 1: 2: 3: 3: 4$ while the areas are in the ratio $1: 1: 4: 9: 9: 16$. The sum of the areas of the 5 smaller cubes is 24 parts while that of the big cube is 16 parts. The sum is 50% greater.

QNo:- $\mathbf{8 5}$,Correct Answer:- 6

Explanation:-

The height of the cylinder $(h)=3$
The volume $=9 \pi$
$\pi r^{2} h=9 \pi \Rightarrow r=\sqrt{ } 3$
The radius of the ball $(R)=2$
The height of O, the centre of the ball, above the line representing the top of the cylinder is say a.
($a=1$)
\therefore The height of the topmost point of the ball from the base of the cylinder is $h+a+R=3+1+2=6$

Explanation:- In a 3, 4, 5 triangle, the length of the altitude to the hypotenuse $=3(4) / 5=2.4$. Therefore, in a $15,20,25$ triangle, it is 12. This is the shortest distance from A to BC. At $60 \mathrm{~km} / \mathrm{hr}$, i.e., $1 \mathrm{~km} / \mathrm{min}$, it would take 24 min to cover 24 km .

QNo:- 87 ,Correct Answer:- D

Explanation:- $\log _{3} x=a \Rightarrow x=3^{a}$
$\log _{12} y=a \Rightarrow y=12^{a}$
$\therefore x y=36^{a}$ and $x y=G=6^{a}$
$\therefore \log _{6} G=a$

QNo:- 88 ,Correct Answer:- D
Explanation:- $x+1=x^{2} \Rightarrow x^{2}-x-1=0 \Rightarrow x=\frac{1+\sqrt{5}}{2}(\because \mathrm{x}>0)$
Also, $x^{2}=x+1 \Rightarrow x^{4}=x^{2}+2 x+1=3 x+2$
$\Rightarrow 2 x^{4}=6 x+4=3+3 \sqrt{5}+4=7+3 \sqrt{5}$

QNo:- 89 ,Correct Answer:- C

Explanation:-
 $$
0.008=\frac{8}{1000}=5^{-3}
$$

$\therefore \log _{0.008 \sqrt{5}}=\frac{1 / 2}{-3}=\frac{-1}{6}$ and $\log _{\sqrt{3}} 81=\frac{4}{1 / 2}=8$
\therefore The given expression is $\frac{5}{6}$

QNo:- 90 ,Correct Answer:- B

Explanation:- $9^{2 x-1}-9^{2 x-2}=9^{2 x-2}(9-1)=1944=8(243)=8\left(9^{2.5}\right)$
$\therefore 2 x-2=2.5 \Rightarrow x=\frac{4.5}{2}=\frac{9}{4}$

QNo:- 91 ,Correct Answer:- B

Explanation:- $x=25+y+z$. The possible values of x, y, z and the corresponding number of values of y, z are tabulated below $(x$,
y, z are positive integers). We see that $27 \leq x \leq 40$
x

The number of solutions is $1+2+\ldots \ldots+12+11+10=78+21=99$

QNo:- 92 ,Correct Answer:- 11

Explanation:- $(n-5)(n-10)-3(n-2) \leq 0$
$\Rightarrow n^{2}-18 n+56 \leq 0$
$\Rightarrow(n-4)(n-14) \leq 0$
As n is an integer, n can be 4,5,614, i.e. it can have 11 values.

QNo:- 93 ,Correct Answer:- 24
Explanation:- $x^{2}+11 x+n=x \Rightarrow x^{2}+10 x+n=0$
$x^{2}+10 x+25=0$ has real and equal roots
$x^{2}+10 x+n=0$ where $n>25$ has complex roots.
The maximum value of n for which the equation has two distinct real roots in 24 .

QNo:- 94 ,Correct Answer:- 2
Explanation:- $a+b+c+d=30, a, b, c, d$ are integers.
$(a-b)^{2}+(a-c)^{2}+(a-d)^{2}$ would have its maximum value when each bracket has the least possible value. Let $(a, b, c, d)=(8,8,7,7)$
The given expression would be 2. It cannot have a smaller value.

QNo:- 95 ,Correct Answer:- 160
Explanation:- There are 5 pairs of diametrically opposite points and the centre 0 .
If O is not selected, the number of triangles $={ }^{10} C_{3}=120$.
If O is selected, the other two points can be selected in 10(8)/2, i.e., 40 ways. The number of triangles is 160.

QNo:- 96 ,Correct Answer:- A

Explanation:-

The graph of $y=|x-1|+|x+1|$ is shown above.
The shortest distance of $\left(\frac{1}{2}, 1\right)$ from the graph is 1 .

QNo:- 97 ,Correct Answer:- A
Explanation:- Let the first term be a and the common difference be d.
$(a+6 d)^{2}=(a+2 d)(a+16 d)$
$\Rightarrow a^{2}+12 a d+36 d^{2}=a^{2}+18 a d+32 d^{2}$
$\Rightarrow 4 d^{2}=6 a d$
$\Rightarrow \frac{a}{d}=\frac{2}{3}$

QNo:- 98 ,Correct Answer:- A
Explanation:- After giving one eraser to each of the 4 kids, there are 3 left.
They can split 2, 1 or 1, 1, 1. (No kid can get 4)
There are ${ }^{4} P_{2}+{ }^{4} C_{3}$, i.e., 16 ways of distributing the erasers.

QNo:- 99 ,Correct Answer:- A
Explanation:- $f(x)=\frac{5 x+2}{3 x-5}, g(x)=x^{2}-2 x-1$
$f(3)=\frac{5(3)+2}{3(3)-5}=\frac{17}{4}$
$f(17)=\frac{5\left(\frac{17}{4}\right)+2}{3\left(\frac{17}{4}\right)-5}=\frac{85+8}{51-20}=\frac{93}{31}=3$
$g(3)=3^{2}-2(3)-1=2$
$g(3)=3^{2}-2(3)-1=2$.

QNo:- 100 ,Correct Answer:- B
Explanation:- $a_{1}=3, a_{2}=7, \ldots . . a_{n}=4 n-1, \ldots . . a_{3 n}=4(3 n)-1$
$\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{3 \mathrm{n}}=\frac{3 \mathrm{n}(12 \mathrm{n}+2)}{2}=1830$
$\Rightarrow n(6 n+1)=610$
$\Rightarrow 6 n^{2}+n-610=0$
$\Rightarrow(6 n+61)(n-10)=0$
$\Rightarrow n=10$ ($\because n$ is an integer)
$\therefore a_{1}, a_{2}+\ldots \ldots+a_{n}=3+7+\ldots+[4(10)-1]$
$=\frac{4(10)(11)}{2}-10=210$
$210 \mathrm{~m}>1830=\mathrm{n}>\frac{1830}{210}=8.7$
The minimum integral value of m is 9

