CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Caprolactam when heated at high temperature, gives
(1) Nylon 6, 6
(2) Dacron
(3) Teflon
(4) Nylon 6

Answer (4)

Sol. Caprolactam on heating at high temperature gives Nylon-6 polymer.
2. Molarity of CO_{2} in soft drink is 0.01 M . The volume of soft drink is 300 mL . Mass of CO_{2} in soft drink is
(1) 0.132 g
(2) 0.481 g
(3) 0.312 g
(4) 0.190 g

Answer (1)

Sol. Moles $=0.01 \times 0.3=0.003$
Mass $=0.003 \times 44=0.132 \mathrm{gm}$
3. During the qualitative analysis of SO_{3}^{-2} using dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution (acidified $\mathrm{H}_{2} \mathrm{SO}_{4}$)
(1) Green
(2) Black
(3) Blue
(4) Red

Answer (1)

Sol. Orange colour of dichromate solution ($\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$) converts to green $\left(\mathrm{Cr}^{3+}\right)$.
4. Number of lone pair of electrons on central atom?

	Column-I		Column-II
(A)	IF_{7}	(P)	0
(B)	$\mathrm{ICl}_{4}-$	(Q)	1
(C)	XeF_{2}	(R)	2
(D)	XeF_{6}	(S)	3

Match the following
(1) (A) \rightarrow (P); (B) $\rightarrow(\mathrm{Q})$; (C) $\rightarrow(\mathrm{R})$; (D) $\rightarrow(\mathrm{S})$
(2) $(\mathrm{A}) \rightarrow(\mathrm{P})$; (B) $\rightarrow(\mathrm{R})$; (C) $\rightarrow(\mathrm{S})$; (D) $\rightarrow(\mathrm{Q})$
(3) $(\mathrm{A}) \rightarrow(\mathrm{R}) ;(\mathrm{B}) \rightarrow(\mathrm{S}) ;(\mathrm{C}) \rightarrow(\mathrm{P}) ;(\mathrm{D}) \rightarrow(\mathrm{Q})$
(4) $(\mathrm{A}) \rightarrow(\mathrm{S})$; $(\mathrm{B}) \rightarrow(\mathrm{R})$; (C) $\rightarrow(\mathrm{Q})$; (D) $\rightarrow(\mathrm{P})$

Answer (2)

Sol. Molecule/species No. of lone pair

IF_{7}	$\rightarrow 0$
ICl_{4}	$\rightarrow 2$
XeF_{2}	$\rightarrow 3$
XeF_{6}	$\rightarrow 1$

5. Which one of the following is water soluble?
(a) BeSO_{4}
(b) MgSO_{4}
(c) CaSO_{4}
(d) SrSO_{4}
(e) BaSO_{4}
(1) Only a and b
(2) Only a, b, c
(3) Only d and e
(4) Only a and e

Answer (1)
Sol. Solubility of sulphates of group-2 elements decreases down the group. BeSO_{4} and MgSO_{4} are appreciably soluble in water. $\mathrm{CaSO}_{4}, \mathrm{SrSO}_{4}$ and BaSO_{4} are practically insoluble in water.
6. Shape of OF_{2} molecule is?
(1) Bent
(2) Linear
(3) Tetrahedral
(4) T-shaped

Answer (1)
Sol.

It is $s p^{3}$ hybridised therefore its shape will be bent or V-shaped.
7. Inhibitor of cancer growth
(1) Cisplatin
(2) EDTA
(3) Cobalt
(4) Ethane 1, 2 - diamine

Answer (1)

Sol. Cisplatin acts as an anticancer agent.
8. Speed of e^{-}in $7^{\text {th }}$ orbit is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ then find the speed in $3^{\text {rd }}$ orbit
(1) $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(2) $8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(3) $7.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(4) $1.8 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer (2)

Sol. Speed of electron in $\mathrm{n}^{\text {th }}$ orbit of a Bohr atom is given by
$\mathrm{v}_{\mathrm{n}}=\left(\mathrm{v}_{1}\right)_{\mathrm{H}} \frac{\mathrm{Z}}{\mathrm{n}}$
If $\mathrm{n}=7$
$\mathrm{v}_{7}=\left(\mathrm{v}_{1}\right)_{\mathrm{H}} \frac{\mathrm{Z}}{7}=3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
If $n=3$
$\mathrm{v}_{3}=\left(\mathrm{v}_{1}\right)_{\mathrm{H}} \frac{\mathrm{Z}}{3}$
$=\frac{7 \times 3.6 \times 10^{6}}{3}$
$=8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
9. Match the following:

Atomic Number

(i) 52
(p) s-block
(ii) 37
(q) p-block
(iii) 65
(r) d-block
(iv) 74
(s) f-block
(1) (i) \rightarrow (q); (ii) \rightarrow (p); (iii) \rightarrow (r); (iv) \rightarrow (s)
(2) (i) \rightarrow (q); (ii) \rightarrow (p); (iii) \rightarrow (s); (iv) \rightarrow (r)
(3) (i) \rightarrow (s); (ii) \rightarrow (r); (iii) \rightarrow (p); (iv) \rightarrow (q)
(4) (i) \rightarrow (r); (ii) \rightarrow (p); (iii) \rightarrow (q); (iv) \rightarrow (s)

Answer (2)

Sol. 37 is Rubidium belonging to $1^{\text {st }}$ group of s-block.
10. Consider the following reactions
$\mathrm{NO}_{2} \xrightarrow{\mathrm{UV}} \mathrm{A}+\mathrm{B}$
$\mathrm{A}+\mathrm{O}_{2} \longrightarrow \mathrm{C}$
$\mathrm{B}+\mathrm{C} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
A, B and C are respectively
(1) $\mathrm{O}, \mathrm{NO}, \mathrm{O}_{3}$
(2) $\mathrm{NO}, \mathrm{O}, \mathrm{O}_{3}$
(3) $\mathrm{NO}, \mathrm{O}_{3}, \mathrm{O}$
(4) $\mathrm{O}_{3}, \mathrm{O}, \mathrm{NO}$

Answer (1)

Sol. $\mathrm{NO}_{2} \xrightarrow{\mathrm{UV}} \underset{(\mathrm{B})}{\mathrm{NO}}+\underset{(\mathrm{A})}{\mathrm{O}}$
$\mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}(\mathrm{C})$
$\mathrm{NO}+\mathrm{O}_{3} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
11. Which of the following option contains the correct match:
(List-I) (Reactions) (List-II) (Products)
(A) Wurtz
(P)

(B) Fittig
(Q) $R-R$
(C) Wurtz Fittig
(R) $O R$
(D) Sandmeyer
(S)

(1) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$
(2) $A \rightarrow P ; B \rightarrow Q ; C \rightarrow R ; D \rightarrow S$
(3) $A \rightarrow S ; B \rightarrow R ; C \rightarrow Q ; D \rightarrow P$
(4) $A \rightarrow R ; B \rightarrow S ; C \rightarrow P ; D \rightarrow Q$

Answer (1)
Sol. The correct matches are
(A) Wurtz $\rightarrow \mathrm{R}-\mathrm{R}$
(B) Fittig \rightarrow O
(C) Wurtz fittig \rightarrow O-R
(D) Sandmeyer \rightarrow Cl
12. If volume of ideal gas is increased isothermally, then its internal energy
(1) Increased
(2) Remains constant
(3) Is decreased
(4) Can be increased or decreased

Answer (2)

Sol. Internal energy of ideal gas depends only upon temperature.
13. Arrange the following ligands according to their increasing order of field strength
$\mathrm{S}^{2-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}, \mathrm{NH}_{3}$, en, CO
(1) $\mathrm{S}^{2-}<\mathrm{CO}<\mathrm{NH}_{3}<$ en $<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(2) $\mathrm{S}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(3) $\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<$ en $<\mathrm{CO}$
(4) $\mathrm{CO}<$ en $<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}^{2-}$

Answer (3)

Sol. The correct order of field strength is

$$
\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}
$$

14. Consider the following molecule

Select the correct order of acidic strength
(1) $H_{A}>H_{D}>H_{B}>H_{C}$
(2) $\mathrm{H}_{B}>\mathrm{H}_{A}>\mathrm{H}_{D}>\mathrm{H}_{C}$
(3) $\mathrm{H}_{A}>\mathrm{H}_{B}>\mathrm{H}_{C}>\mathrm{H}_{D}$
(4) $\mathrm{H}_{C}>\mathrm{H}_{B}>\mathrm{H}_{D}>\mathrm{H}_{A}$

Answer (1)

Sol. The correct order of acidic strength is
$\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{B}>\mathrm{H}_{c}$
15. Which of the following compound is used as the antacid?
(1) Ranitidine
(2) Prontosil
(3) Norethindrone
(4) Codeine

Answer (1)

Sol. Ranitidine is used as the antacid.
16. The role of SiO_{2} in Cu extraction is
(1) Converts FeO to FeSiO_{3}
(2) Converts CaO to CaSiO_{3}
(3) Reduces $\mathrm{Cu}_{2} \mathrm{~S}$ to Cu
(4) None of these

Answer (1)

Sol. It converts FeO to FeSiO_{3}
17. Assertion: Ketoses gives seliwanoff test.

Reason: Ketoses undergo β - elimination to form furfural.
(1) Assertion and reason both are correct and reason is the correct explanation of assertion
(2) Assertion and reason both are correct but reason is not the correct explanation of assertion.
(3) Assertion is correct and reason is incorrect
(4) Assertion is incorrect but reason is correct.

Answer (1)

Sol. Assertion and reason both are correct and reason is the correct explanation of assertion.
18. Consider the following reactions:

The products P and Q respectively are?
(1)

(3)

(4)

Answer (2)
Sol.

19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. For given cell, at T K

$$
\begin{aligned}
& \mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+} \| \mathrm{Fe}^{3+} ; \mathrm{Fe}^{2+} \mid \mathrm{Pt} \\
& \quad(1 \text { bar) (1 M) }
\end{aligned}
$$

$\mathrm{E}_{\text {cell }}=.712 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}^{\circ}=.770 \mathrm{~V}$
if $\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$ is $\mathrm{t}\left(\frac{2.303 \mathrm{RT}}{\mathrm{F}}=.058\right)$
then find $\left(\frac{\mathrm{t}}{5}\right)$
Answer (2)
Sol. $.712=.770-\frac{.058}{2} \log \left[\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}\right]^{2}$
$-.058=-.058 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
$\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}=10=\mathrm{t}$
$\frac{t}{5}=2$
22. How many moles of electrons are required to reduce 1 mole of permanganate ions into manganese dioxide

Answer (3)

Sol.

3 mole of e^{-}are required
23. 600 mL of 0.04 M HCl is mixed with 400 mL of 0.02 $\mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$. Find out the pH of resulting solution (Nearest integer).

Answer (01.00)

Sol. m moles of H^{+}from $\mathrm{HCl}=0.04 \times 600$

$$
=24
$$

m moles of H^{+}from $\mathrm{H}_{2} \mathrm{SO}_{4}=0.02 \times 2 \times 400$

$$
=16
$$

Total m moles of $\mathrm{H}^{+}=24+16=40$
Final volume of solution $=1000 \mathrm{~mL}$

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=\frac{40}{1000}=0.04 \mathrm{M}} \\
\mathrm{pH}=-\log 0.04=1.4
\end{gathered}
$$

24. A solution of 2 g of a solute and 20 g water has boiling point 373.52 K . Then find the molar mass of solute in grams? [Given : $\mathrm{Kb}=0.52 \mathrm{~K} \mathrm{~kg} /$ mole and solute is non-electrolyte].

Answer (100)

Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{m}$
$0.52=0.52 \times \frac{2 / \mathrm{M}}{.02}$
$M=100 \mathrm{~g}$
25. When first order kinetic, rate constant is 2.011×10^{-3} sec^{-1}, the time taken in decomposition of substance from 7 g to 2 g will be. [Use $\log 7=0.845$ and $\log 2$ $=0.301$]
Answer (623)
Sol. A \rightarrow Products
Initial moles of $A=\frac{7}{M}$ (M is molar mass of A)
Final moles of $A=\frac{2}{M}$
Rate constant $\mathrm{K}=2.011 \times 10^{-3} \mathrm{~s}^{-1}$
$\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{7}{2}$
$=\frac{2.303}{2.011 \times 10^{-3}}[0.845-0.301]$
$=623 \mathrm{~s}$
26.
27.
28.
29.
30.

