

CHEMISTRY

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. Caprolactam when heated at high temperature, gives
 - (1) Nylon 6, 6
 - (2) Dacron
 - (3) Teflon
 - (4) Nylon 6

Answer (4)

- **Sol.** Caprolactam on heating at high temperature gives Nylon-6 polymer.
- Molarity of CO₂ in soft drink is 0.01 M. The volume of soft drink is 300 mL. Mass of CO₂ in soft drink is
 - (1) 0.132 g
 - (2) 0.481 g
 - (3) 0.312 g
 - (4) 0.190 g

Answer (1)

Sol. Moles = 0.01 × 0.3 = 0.003

Mass = 0.003 × 44 = 0.132 gm

- 3. During the qualitative analysis of SO_3^{-2} using dilute H_2SO_4 , SO_2 gas evolved which turns $K_2Cr_2O_7$ solution (acidified H_2SO_4)
 - (1) Green (2) Black
 - (3) Blue (4) Red

Answer (1)

Sol. Orange colour of dichromate solution (K₂Cr₂O₇) converts to green (Cr³⁺).

4. Number of lone pair of electrons on central atom?

	Column-I		Column-II
(A)	IF ₇	(P)	0
(B)	ICl₄ [–]	(Q)	1
(C)	XeF ₂	(R)	2
(D)	XeF ₆	(S)	3

Match the following

- (1) (A) \rightarrow (P); (B) \rightarrow (Q); (C) \rightarrow (R); (D) \rightarrow (S)
- (2) (A) \rightarrow (P); (B) \rightarrow (R); (C) \rightarrow (S); (D) \rightarrow (Q)
- (3) (A) \rightarrow (R); (B) \rightarrow (S); (C) \rightarrow (P); (D) \rightarrow (Q)
- (4) (A) \rightarrow (S); (B) \rightarrow (R); (C) \rightarrow (Q); (D) \rightarrow (P)

Answer (2)

Sol. Molecule/species No. of lone pair

IF7	$\rightarrow 0$
ICl4	$\rightarrow 2$
XeF ₂	\rightarrow 3
XeF ₆	\rightarrow 1

5. Which one of the following is water soluble?

- (a) BeSO₄
- (b) MgSO₄
- (c) CaSO₄
- (d) SrSO₄
- (e) BaSO₄
- (1) Only a and b (2) Only a, b, c
- (3) Only d and e (4) Only a and e

Answer (1)

- **Sol.** Solubility of sulphates of group-2 elements decreases down the group. BeSO₄ and MgSO₄ are appreciably soluble in water. CaSO₄, SrSO₄ and BaSO₄ are practically insoluble in water.
- 6. Shape of OF₂ molecule is?
 - (1) Bent (2) Linear
 - (3) Tetrahedral (4) T-shaped

Answer (1)

It is sp^3 hybridised therefore its shape will be bent or V-shaped.

JEE (Main)-2023 : Phase-1 (30-01-2023)-Morning

- Inhibitor of cancer growth 7.
 - (1) Cisplatin
 - (2) EDTA
 - (3) Cobalt
 - (4) Ethane 1, 2 diamine

Answer (1)

- Sol. Cisplatin acts as an anticancer agent.
- Speed of e^- in 7th orbit is 3.6 × 10⁶ m/s then find the 8. speed in 3rd orbit
 - (1) 3.6 × 10⁶ m/s
 - (2) 8.4 × 10⁶ m/s
 - (3) 7.5 × 10⁶ m/s
 - (4) 1.8 × 10⁶ m/s

Answer (2)

Sol. Speed of electron in nth orbit of a Bohr atom is given

by

$$v_n = (v_1)_H \frac{Z}{n}$$

If $n = 7$
 $v_7 = (v_1)_H \frac{Z}{7} = 3.6 \times 10^6 \text{ m/s}$
If $n = 3$
 $v_3 = (v_1)_H \frac{Z}{3}$
 $= \frac{7 \times 3.6 \times 10^6}{3}$

- $= 8.4 \times 10^{6} \text{ m/s}$
- Match the following : 9.

Atomic Number

(i)	52	(p)	s-block		
(ii)	37	(q)	p-block		
(iii)	65	(r)	d-block		
(iv)	74	(s)	f-block		
(1)	$(i) \rightarrow (q); (ii) \rightarrow (p)$; (iii) —	\rightarrow (r); (iv) \rightarrow (s)		
(2)	(i) \rightarrow (q); (ii) \rightarrow (p)	; (iii) —	\rightarrow (s); (iv) \rightarrow (r)		
(3)	$(i) \rightarrow (s); (ii) \rightarrow (r);$	(iii) \rightarrow	(p); (iv) \rightarrow (q)		
(4)	(i) \rightarrow (r); (ii) \rightarrow (p);	; (iii) →	(q); (iv) \rightarrow (s)		
Answer (2)					

- Sol. 37 is Rubidium belonging to 1st group of s-block.
- 10. Consider the following reactions

$$NO_{2} \xrightarrow{UV} A + B$$

$$A + O_{2} \longrightarrow C$$

$$B + C \longrightarrow NO_{2} + O_{2}$$

$$A, B \text{ and } C \text{ are respectively}$$

$$(1) O, NO, O_{3} \qquad (2) NO, O, O_{3}$$

$$(3) NO, O_{3}, O \qquad (4) O_{3}, O, NO$$

Answer (1)

Sol.
$$NO_2 \xrightarrow{UV} NO + O_{(B)} (A)$$

 $O + O_2 \longrightarrow O_3 (C)$
 $NO + O_3 \longrightarrow NO_2 + O_2$

11. Which of the following option contains the correct match:

	(Lis	st-I) (Reactions)	(List-II) (Products)		
	(A)	Wurtz	(P) (O)-(O)		
	(B)	Fittig	(Q) R – R		
	(C)	Wurtz Fittig			
\mathbf{Y}	(D)	Sandmeyer	(S) () CI		
	(1)	$A\toQ;B\toP;C\to$	$R; D \to S$		
	(2)	$A\toP;B\toQ;C\to$	$R;D\toS$		
	(3)	$A \to S; B \to R; C \to$	$Q; D \rightarrow P$		
\mathbf{b}	(4)	$A \to R; B \to S; C \to$	$P;D\toQ$		
Answer (1)					
Sol.	. The correct matches are				
	(A)	Wurtz \rightarrow R – R			
	(B)	$Fittig \to \bigcirc \frown \bigcirc \land \bigcirc \land \land$			
	(C)	Wurtz fittig $\rightarrow \bigcirc$	R		
	(D)	Sandmeyer \rightarrow	CI		
12.	lf v	olume of ideal gas i	s increased isothermally		

- (1) Increased
- (2) Remains constant

then its internal energy

- (3) Is decreased
- (4) Can be increased or decreased

Answer (2)

- **Sol.** Internal energy of ideal gas depends only upon temperature.
- 13. Arrange the following ligands according to their increasing order of field strength

(1) $S^{2-} < CO < NH_3 < en < C_2O_4^{2-}$

(2)
$$S^{2-} < NH_3 < en < CO < C_2O_4^{2-}$$

(3)
$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO$$

(4) $CO < en < NH_3 < C_2O_4^{2-} < S^{2-}$

Answer (3)

Sol. The correct order of field strength is

$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO$$

14. Consider the following molecule

Select the correct order of acidic strength

(1)
$$H_A > H_D > H_B > H_C$$
 (2) $H_B > H_A > H_D > H_C$

(3) $H_A > H_B > H_C > H_D$ (4) $H_C > H_B > H_D > H_A$

Answer (1)

Sol. The correct order of acidic strength is

 $H_A > H_D > H_B > H_C$

- 15. Which of the following compound is used as the antacid?
 - (1) Ranitidine
 - (2) Prontosil
 - (3) Norethindrone
 - (4) Codeine

Answer (1)

Sol. Ranitidine is used as the antacid.

- 16. The role of SiO₂ in Cu extraction is
 - (1) Converts FeO to FeSiO₃
 - (2) Converts CaO to CaSiO₃
 - (3) Reduces Cu_2S to Cu
 - (4) None of these

Answer (1)

- JEE (Main)-2023 : Phase-1 (30-01-2023)-Morning
- Sol. It converts FeO to FeSiO₃
- 17. Assertion: Ketoses gives seliwanoff test.
 - Reason : Ketoses undergo β- elimination to form furfural.
 - (1) Assertion and reason both are correct and reason is the correct explanation of assertion
 - (2) Assertion and reason both are correct but reason is not the correct explanation of assertion.
 - (3) Assertion is correct and reason is incorrect
 - (4) Assertion is incorrect but reason is correct.

Answer (1)

- **Sol.** Assertion and reason both are correct and reason is the correct explanation of assertion.
- 18. Consider the following reactions:

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. For given cell, at T K

$$E_{cell} = .712 V$$

$$E_{cell}^{\circ} = .770 V$$

if
$$\frac{\left[Fe^{2+}\right]}{\left[Fe^{3+}\right]}$$
 is t $\left(\frac{2.303 \text{ RT}}{F} = .058\right)$
then find $\left(\frac{t}{5}\right)$

Answer (2)

Sol.
$$.712 = .770 - \frac{.058}{2} \log \left[\frac{Fe^{2+}}{Fe^{3+}} -.058 = -.058 \log \frac{\left[Fe^{2+} \right]}{\left[Fe^{3+} \right]} \frac{Fe^{2+}}{Fe^{3+}} = 10 = t$$

 $\frac{t}{5} = 2$

 How many moles of electrons are required to reduce 1 mole of permanganate ions into manganese dioxide

Answer (3)
Sol.
$$MnO_4^- \longrightarrow MnO_2$$

3 mole of e- are required

23. 600 mL of 0.04 M HCl is mixed with 400 mL of 0.02 M H_2SO_4 . Find out the pH of resulting solution (Nearest integer).

Answer (01.00)

Sol. m moles of H⁺ from HCI = 0.04×600

m moles of H⁺ from $H_2SO_4 = 0.02 \times 2 \times 400$

= 24

Total m moles of $H^+ = 24 + 16 = 40$ Final volume of solution = 1000 mL

$$[H^+] = \frac{40}{1000} = 0.04 \text{ M}$$

$$pH = -\log 0.04 = 1.4$$

24. A solution of 2 g of a solute and 20 g water has boiling point 373.52 K. Then find the molar mass of solute in grams? [Given : $K_b = 0.52$ K kg/mole and solute is non-electrolyte].

Answer (100)

Sol.
$$\Delta T_{b} = K_{b}.m$$

$$0.52 = 0.52 \times \frac{2/M}{.02}$$

⊙ M = 100 g

25. When first order kinetic, rate constant is 2.011×10^{-3} sec⁻¹, the time taken in decomposition of substance from 7 g to 2 g will be. [Use log7 = 0.845 and log2 = 0.301]

Answer (623)

Sol. A \rightarrow Products

Initial moles of
$$A = \frac{7}{M}$$
 (M is molar mass of A)

2 M

Rate constant K = 2.011 × 10^{-3} s⁻¹

$$t = \frac{2.303}{k} \log \frac{7}{2}$$
$$= \frac{2.303}{2.011 \times 10^{-3}} [0.845 - 0.301]$$

- 26.
- 27.
- 28.
- 29. 30.

