(Microbiology)

Protective mechanisms used by bacteria to survive in the host may be

1.

	(A)	Capsules
	(B)	M protein
	(C)	various enzymes
	(D)	All of the above
2.	Micu	ebes which are capable of growing over wide range of temperature are called
	W.	
^((A)	Eubacteria
	(B)	Thermophilic
	(C)	Thermotolerant
,	(D)	Eurythermal
		A Y
3.	Carbo	ohydrate binding proteins are called
	(A)	Lectins
	(B)	Defensins
	(C)	L. popoly saccharides
	(D)	Pepidogiycans
4.	Splice	eosomes are bsent in cells of
	(4)	NI (III)
	(A)	Plants
	(B)	Anin. 1s
	(C)	l'ungi
	(5)	Bacteria Bacteria
_	D	41.4
5.		ria that are resistant to penicillin and related antibiotics produce an enzyme that
	break	s in these antibiotics.
	(4)	
	(A)	
	(B)	Side groups (R groups)
	(C)	beta-lactam ring
	(D)	Disulfide bonds
		(S)

6.	An an	ntimicrobial agent that interferes with translation of mRNA into protein is
	(A)	Cephalosporin
	(B)	Chloramphenicol
	(C)	Mitomycin
	(D)	Amphotericin B
	(D)	7 Hilliphoterical B
7.	Meml	orane bound organelles are absent in
	(A)	Chlamydomonas
	(B)	Saccharomyces
	(C)	Strepiococcus
	(D)	Plasmodium
	(D)	damoutum
	(4)	
8.	Endo	eavin in Gram nagative heataria a mad, we of
0.	Endo	toxin in Gram negative bacteria s made up of:
	(A)	Lipoproteins
	` /	
	(B)	Peptidoglycan
	(C)	Lipopolysaccharida
	(D)	Polypeptide
9.	Which	h of the fallening has coiled INA and capsomeres?
	(A)	Paliovirus
	(B)	Fob. sec mosaic virus
	(C)	Measles virus
	(D)	Retrovirus
10.	In the	laboratory, 'acterial cells can be rendered by the use of cold calcium
	chlori	de or e. octroporation.
	(4)	Conjugated
	(B)	ransposable
	(C)	Competent
	(D)	Transducible
	()	
11.	What	bacterial gene transfer process is most sensitive to extracellular nucleases?
	(A)	Generalized transduction
	(B)	Specialized transduction
	(C)	Homologous recombination
	(D)	Transformation
	(D)	Tuibioiniut on

12.	What	is the peculiarity of Pandoravirus?
	(A)	Largest virus
	(B)	Largest viral genome
	(C)	Smallest virus
	(D)	Smallest viral genome
13.	The fi	irst antibody to contact invading micro-organism:
	(4)	InC.
	(A)	IgG
	(B) (C)	IgA
	(C) (D)	IgD igM
	(D)	(givi
	U.S.	
14.	Which	h of the following is a sexual spore of 1 ingi?
V C		
	(A)	Conidiospore
	(B)	Ascospore
	(C)	Sporangiospore
	(D)	Clamydospore
15.	Kojic	acid is o vta: 1 f.om
10.	rrojie	
	(A)	Nocardia
	(B)	Mic. receus
	(C)	Aspergillus
	(D)	Penicillium.
		$\mathcal{L}_{\mathcal{L}}}}}}}}}}$
16.	Whiel	h of the fone ving structure is absent in Gram positive bacteria?
10.	vv iiici	if of the role ving structure is absent in Grain positive busiena:
	(A)	Cell wall
	(5)	Ter hoic acid
	(C)	Turein
	(D)	Outer membrane
17	Thoo	nly bacterial genus with sterols in their cell wall
17.	THE	my bacterial genus with sterois M their cen wan
	(A)	Vibrio
	(B)	Escherichia
	(C)	Mycoplasma
	(D)	Salmonella
	• /	

18.	Magn	etosomes are inclusions ofin certain bacteria
	(4)	
	(A)	Iron oxide
	(B)	Iron phosphate
	(C)	Iron chloride
	(D)	Iron nitrate
19.	Ehrile	ch and Hata discovered that was used to treat
	(A)	salvarsan; syphilis
	(B)	penicillin; surgical wounds
	(C)	salvarsan; malaria
	(D)	prontosil; malaria
•	W.	
20.	Agar-	agar is obtained from
\sim	(4)	
	(A)	Gelidium
	(B)	Polysiphonia
	(C)	Fucus
	(D)	Laminaria
21	XX71.:.1	h - 64h - 1
21.	WILCI	h of the a'or ir responsible for red colour of red sea?
	(A)	C.'·lamya'əmonas brc uii
	(B)	Trici ad smium et ythrium
	(C)	Ulothrix zonata
	(D)	None of the acove
	(D)	
22.	The re	esolving power of an optical microscope is:
	(A)	C 2 μm
		0.2 nm
	(C) (E)	v.2 A°
	(D)	esolving power of an optical microscope is: 2 µm 0.2 1m 0.2 1m 0.2 A° 0.2 nm
	` ′	

- Presence of sodium taurocholate in McConkey agar make it a 23.
 - (A) Differential medium(B) Basal medium

 - Selective medium
 - (D) Enriched medium

- 24. The third amino acid in the peptidoglycan crosslinking chain is either diaminopimelic acid or lysine because this amino acid must
 - (A) Be positively charged for a salt bridge to form.
 - (B) Be hydrophillic.
 - (C) Have a free amino group for peptide bond formation.
 - (D) Have a large R-side chain to fill space in the cell wall.
- 25. Which of the following are most suitable indicators of SO₂ vollution in the environment?
 - (A) Algae
 - (B) Fungi
 - (C) Lichens
 - (D) Conifers
- 26. A dikaryon is formed when
 - (A) Meiosis is arrested
 - (B) The two haploid ce.'s do not fuse immediately
 - (C) Cytoplasm does not fure
 - (D) None of the above
- 27. Genes present on the same locus but having different expressions are
 - (A) Polyganes
 - (E) Multiple alleles
 - (C) Dieiotropic ge. es
 - (D) Co-domin i. + gei. 3s
- 28. Chitir is
 - Sur nur containing polysaccharide
 - (R) simple polysaccharide
 - (C) Nitrogen containing polysaccharide
 - (D) Phosphorous containing polysacchariae
- 29. C4 plants are more efficient in photosynthesis than C3 plants due to the
 - (A) Presence of large number of chloroplasts
 - (B) Higher leaf area
 - (C) Lower rate of photorespiration
 - (D) Presence of thin cuticle

30. Sickle cell anemia shows

- (A) Epistasis
- (B) Incomplete dominance
- (C) Pleiotropy
- (D) Co-dominance

31. The polymer of natural rubber is

- (A) all trans isoprene
- (B) Buna N
- (C) all cis isoprene
- (D) None of the above

32. Main constituent of LPG is

- (A) Methane
- (B) Iso-butane, propane
- (C) H2, CH4, Iso-buta.
- (D) None of the above

33. Which of the fall sing enzymes is used to join two DNA molecules?

- (A) E. donuc'eases
- (B) Resuliction enzyrues
- (C) Lyases
- (D) Ligases

34. The Km value or . 1 enzyme is

- (A) L'e total enzyme concentration
- (?) the substrate concentration at half maximal velocity
- (C) Laif the substrate concentration at maximum velocity
- (D) dissociation constant of enzyme substrate complex

35. The enzymes that break hydrogen bonds and unwind are

- (A) primases
- (B) ligases
- (C) helicases
- (D) polymerases

36. In prokaryotes

- (A) Transcription and translation are coupled
- (B) Transcription and processing are coupled
- (C) Processing and translation are coupled
- (D) Replication and transcription are coupled

37. The 21st aminoacid is

- (A) Hydroxyl proline
- (B) Hydroxyi lysine
- (C) Selenocysteine
- (D) Citrulline

38. Absorbance at 280nm exhibited by proteins is due to

- (A) all amino acids
- (B) aliphatic amino acids
- (C) polar amino acids
- (D) aromatic amino acids

39. Proteins are several on the basis of their net charge by

- (A) it exchange chromatograph
- (B) affin to hromate graphy
- (C) gel filteration cl ro ... 'ography
- (D) dialysis

40. Bacterial capsure are generally viewed by

- (A) Ziehl-) Jeelsen staining
- (?) Grazi staining
- (C) Canning electron microscopy
- (D) Negative staining

41. What is the refractive index of oil?

- (A) 1.5
- (B) 1.0
- (C) 0.5
- (D) 0.75

42.	Approximate generation time of $E.coli$ is
	(A) 20 minutes (B) 10 minutes (C) 25 minutes (D) 30 minutes
43.	The precursor used in the production of pencillin

- Phenyl acetic acid
- Pencilloic acid (C)
- (D) Biotin
- Which among the following is thermoduric 1 acteria?
 - Salmonella
 - Bacillus (B)
 - (C) Pseudomonas
 - Flavobacterium (D)
- Which among the Clowing is not an air borne infection? 45.
 - (A) Partussis
 - (B) Pneu monia
 - (C) Diphtheria
 - (D) Typhoid
- Wine production: favoured by 46.
 - Pencil ium chrysogenum
 - Sac 'naromyces cerevisiae
 - L'spergillus niger
 - (D) Bacillus subtilis
- Which organism is coming under GRAS status? 47.
 - (A) E.coli
 - (B) P.aeroginosa
 - (C) L.lactis
 - (D) B.subtilis

48. The byproduct of streptomycin fermentation is (A) Glutamic acid (B) Ethanol (C) Vitamin B12 (D) Riboflavin

- 49. The typical temperature for an autoclaving is
 - (A) 121°C
 - (B) 100°C
 - (C) 180°C
 - (D) 160°C
- 50. The 1st bacterial genome to be completely sequenced
 - (A) Escherichia coli
 - (B) Haemophilus influerzae
 - (C) Bacillus subtilis
 - (D) Mycobacterium tuber vlosis
- 51. Mendel's experimental organism was
 - (A) C. enorabditis elegens
 - (B) New rerora crasea
 - (C) Drosophila melinguster
 - (D) Pisum sativum
- 52. The site of action f Chloramphenicol is
 - (A) OS ril osome
 - (P) 502 ribosome
 - (C) L'acleic acid
 - (D) Cell wall
- 53. Enzyme used for fruit juice clarification
 - (A) Amylase
 - (B) Protease
 - (C) Pectinase
 - (D) Lipase

54.	Calciu	im is not directly involved in
	(A) (B) (C) (D)	Blood clotting Cell signaling Muscle contraction Electron transport chain:
55.	Which	n one of the following organisms is used for the large scale production of
55.		binant insulin?
	(A) (B) (C) (D)	P.pastoris A.tumefaciens B.subtilis E.coli
56.	A stra	in of micro-organism which lacks the ability to some or more growth
	factors	
)'	(A) (B) (C) (D)	Autotrophs Heterotrophs Lithotrophs Auxotroph
57.	Which	on the following is a DNII vitus?
	(A) (B) (C) (D)	Adeno virus Picorna virus Myxovirus Coros wirus
58.	Immu	no. liffusion in gel is a type of
	(F) (B) (C) (D)	Frecipitation reaction Agglutination reaction Complement fixation reaction None of the above

Which of the following is not a part of downstream processing?

59.

(A) Filtration(B) Centrifugation

(D) Secondary screening

(C) Drying

60. An example for an anaerobic fermentation

(A) Citric acid production
(B) Amino acid production
(C) Acetone butanol fermentation

(D) Amylase production

- 61. Which among the following is a Type II restriction endonuclease:
 - (A) EcoP1
 - (B) EcoR1
 - (C) EcoB
 - (D) EcoK
- 62. Lamarck theory of organic evolution s usua. 'y known 2.s
 - (A) Natural selection
 - (B) Inheritance of Acquired c. aracters
 - (C) Genetic drift
 - (D) Continuity of germ pi, sm
- 63. A segment of DN has reads the same for ward and backward is called
 - (A) P. indromic DNA
 - (B) Con. Mementary DNA
 - (C) Tandem DNA.
 - (D) Microsatellite DNA
- 64. In a plant red col ur (R) is dominant over white (r). A cross was made between a red flowered plant and a white flowered plant. The offspring were 50% red and 50 % white. What is the rossible genotype of the red colored plant?
 - (F) KR
 - (B) Rr
 - (C) rr
 - (D) None of the above

65. In H1N1, H and N represent

- (A) Hemolysin and Neuraminase
- (B) Hemagglutinin and Neuraminase
- (C) Hemolysin and Neuraminidase
- (D) Hemagglutinin and Neuraminidase

66. BCG is an example for

- (A) Live attenuated vaccine
- (B) Killed vaccine
- (C) Recombinant vaccine
- (D) Subunit vaccine

67. Antibiotic sensitivity of a clinical isolate is tasted by the

- (A) Thayer-Martin method
- (B) Kirby-Bauer method
- (C) ONPG test
- (D) Vogues-Proskauer tes

68. Width of DNA do le helix is

- (A) 3. A°
- (B) 20A
- (C) 10A°
- (D) 3 /A°

69. 3' Terminal era c'm-RNA has a polymer of adenylate which is known as

- (A) Capping
- (E) Poi adenylate
- (C) roly (A) tail
- (D) None of the above

70. Tm is greater for DNA with

- (A) Higher GC content
- (B) Higher GA content
- (C) Higher AT content
- (D) Higher AC content

71.	The causative agent of Bubonic plague
	(A) Pasturella multocida (B) Vancinia nastia
	(B) Yersinia pestis(C) Yersinia enterocolitica
	(C) Tersina emerocolitica (D) Yersinia pseudotuberculosis
	(D) Tersinu pseudoidoereuxosis
72.	The etiological agent of common conjunctivitis/ pink eye
	(A) Pseudomonas aeruginosa
	(B) Klebsella pneumoniae
	(C) Haemophilus aegyptius
	(D) Staphylococcus aureus
73.	The ability to reveal closely adjacent points as separate and distinct
	(A) Magnification
· ·	(B) Resolution
	(C) Numerical aperture
	(D) None of the above
74.	The site where RND polymerase at aches to the DNA molecule to start the formation of
,	RNA is called
	(A) Pron. of Cr
	(E) Exon
	(C) ^I níron
	(D) GC hairpin
75	Which of the following exectors can commute largest in set?
75.	Which of the following vectors can carry the largest insert?
	Pla, mids
	(13) ragemids
	(C) YACs
	(D) Cosmids
	(13) r nagemids (C) YACs (D) Cosmids Ultraviolet radiation causes
- c	
76.	Ultraviolet radiation causes
	(A) Protein denaturation
	(B) Rupturing of cell membrane
	(C) Dimerization of Thymine
	(D) Frameshift mutation

77.	In which format are sequences submitted in BLAST server?	
	(A) FASTA	
	(A) TASTA (B) ASN.1	
	(C) MmCIF	
	(D) PDB file format	
78.	Transposons are discovered by	~
	(A) F. Griffith & Co.	
	(B) Watson and Crick	
	(C) B.MacClintok	
	(D) F Meicher	
79.	in a cell cycle DNA replication occur at phase	
$^{\prime}$ C		
	(A) S	
	(B) G1	
	(C) G2 (D) G0	
	(D) G0	
80.	The most effective way to analyze ariation at the whole genome level is to use	<i>Y</i>
	(A) Single nucleotide polymorphism (SNP)	
	(B) Structural DNA	
	(C) Segmental dupl cation	
	(D) Site directed L'utagenesis	
81.	Which of the fonc ving is a gaseous sterilizing agent?	
	(A) Ithancl	
	(P) For haldehyde	
	(C) Clutardehyde	
	(D) Ethylene oxide	
	VO s	
	Which of the fonc ving is a gaseous sterilizing agent? (A) I than (1) (B) For haldehyde (C) Clutardehyde (D) Ethylene oxide	
	(5)	
	coll	6

82. Match the following:

Organism General Name
(yalonema - (A) Freshwater sponge

I. HyalonemaII. Euplectella(A) Freshwater spon(B) Boring sponge

III. Cliona - (C) Glass rope sponge

IV. Spongilla - (D) Venus flower basket

(A) I-D, II-C, III-B, IV-A

(B) I-B, II-D, III-A, IV-C

(C) I-C, iI-D, III-B, IV-A

(D) 1-D, II-A, III-D, IV-C

- 83. Choose the correct order:
 - (A) Sporocyst, Miracidium, Fedia, Metacercaria, Cercaria
 - (B) Miracidium, Redia, Sporo vst, Metacercaria, Cercaria
 - (C) Miracidium, Spore vst, Redia, Cercaria, Metacarcaria
 - (D) Cercaria, Metacercari Miracidium Sporocyst, Redia
- 84. **Assertion (A)** In Trenia solium, energy s liberated by breaking glycogen into CO₂ and fatty acids.

Reason (R, A crobic respiration occurs in Taenia solium.

- (A) Both A and K are correct and R is the correct explanation for A
- (B) A is corre but? is incorrect
- (C) A is incorrect but R is correct
- (D) Both A and R are incorrect and R is not the correct explanation for A
- 85. Visich of the following is viviparous?
 - (A) Ascaris
 - (B) Trichinella
 - (C) Enterobius
 - (D) Ancyclostoma
- 86. I am an air-breathing arthropod with thin cuticle, a single pair of antennae, a single pair of jaws and numerous pairs of hollow stumpy legs. Who am I?

- (A) Centipede
- (B) Millipede
- (C) Spider
- (D) Peripattus

87. Match the following

Organ part

Parts formed

- I. Cornegeal layer
- (A) Rods and ones
- II. Vitrellae

(B) Corneal ins

III. Retinula

(C) Retractive rod

- IV. Rhabdome
- (D) Crystalline cone
- (A) I-D, II-C, III-B, IV-A
- (B) I-B, II-D, III-A, IV-C
- (C) I-C, II-A, III-D, IV-B
- (D) I-D, II-C, III-D, IV-A
- 88. Say True or False:
 - (A) In cockreach, the commatidium produces small pieces of images called 'mosaic image'.
 - (B) L' bright light the orimatidit m forms 'apposition image' and in dim light it forms 'sup musition image.
 - (A) Both A and L are True
 - (B) A is True . d B 's False
 - (C) A is False and B is True
 - (D) Both A and B are False
- 89. A mullae Lorenzini helps in_____
 - (A) Olfactory function
 - (B) Equilibrium and auditory function
 - (C) Detection of slow vibrations in water
 - (D) Detection of water temperature
- 90. The dental formula of rabbit is
 - (A) I = 2/2, C = 1/1, Pm = 2/2, M = 3/3
 - (B) I = 2/3, C = 0/1, Pm = 3/3, M = 3/3
 - (C) I = 2/1, C = 0/3, Pm = 3/2, M = 3/2

- (D) I = 1/1, C = 0/0, Pm = 0/0, M = 3/3
- 91. The embedding medium not used for embedding tissues for electron microscopy is
 - (A) Paraffin
 - (B) Vestoplaw
 - (C) Araldite
 - (D) Maraglas
- 92. The Bedouir women have smooth endoplasmic retirulurity. Oblem, because they are not able to make enough of this vitamin.
 - (A) Vitamin B
 - (B) Vitamin D
 - (C) Vitamin E
 - (D) Vitamin K
- 93. 'Pompe's Disease', an irrown disease is caused by the malfunctioning of
 - (A) ER
 - (B) Ribosomes
 - (C) Lysoson.
 - (D) Golgi complex
- 94. The microrubule is max's ap of _____ number of protein protofilaments cailed tubulin.
 - (A) 11
 - (B) 13
 - (C) 15
 - (D) 17
- 95. Calciun, dependent cell adhesion is mediated by this glycoprotein.
 - (A) Integrins
 - (B) Selectins
 - (C) Glycines
 - (D) Cadherins

96.	This gene is called as	s 'The Guardian of the Genome'.
	(A) Rb (B) p53 (C) PTEN (D) APC	(TEST 2019)

- 97. In *Mirablilis jalapa* the F2 generation has same phenotype and g notype ratios, which shows
 - (A) Complete dominance
 - (B) Codominance
 - (C) Incomplete dominance
 - (D) Pleiotrophism
- 98. According to Lyon hypothesis, the number of Barr books was always
 - (A) nX-1
 - (B) nX+1
 - (C) nX-2
 - (D) nX+2
- 99. (A) In the blind spot, both rods and comes are present.
 - (R) Image a mation does not take place at blind spot.
 - (A) Roth A and K is correct
 - (B) A is correct but? is not correct
 - (C) A is rat correct, but R is correct
 - (D) Both A and R is not correct
- 100. Valish how mone stops the acid secretion of the gastric gland?
 - (A) Gastrin
 - (B) Secretin
 - (C) Enterocrinin
 - (D) Entero-gastrone

101.	The in	nward rolling of c	cells through the dorsal lip during ga	astrulation of frog is called
			100	
	(A)	Involution	20 x	
	(B)	Invagination		
	(C)	Epiboly	C. T.	
	(D)	Delamination		<u> </u>

- 102. The budding of a new and very different daughter species from a senti-isolated peripheral population of the ancestral species in a cross fertilizing organism is called as
 - (A) Instantaneous speciation
 - (B) Gradual speciation
 - (C) Quantum speciation
 - (D) Sympatric speciation
- 103 An algae rich in proteins is
 - (A) Chlorella
 - (B) Oscillatoria
 - (C) Ulothrix
 - (D) Spirogyra
- 104. The loading of phloem during translocation means
 - (A) elongation of phloem cells
 - (E) separation of ph'a myarenchyma
 - (C) ctiengthening f phloem fibers
 - (D) pouring on a gara into phloem
- 105. First s'able p oduct of photosynthesis by C3 plants during dark reaction is
 - (i) PGX
 - (P) r yruvic acid
 - (C) RuBP
 - (D) Oxalo acetic acid

106.	Phytohormone causing abscission of leaves, senescence, bud dormancy and inhibition of
100.	cell division is
	cell division is
	(A) IAA
	(B) ethylene
	(C) cytokinins
	(D) ABA
	10,
107.	Main function of lenticels is
107.	Iviain function of tenticers is
	(A) transpiration
	(B) guttation
	(C) bleeding
	(D) gaseous exchange
100	Demode in a modic habrid between
103	Pomato is somatic hybrid between
	(A) poppy and potato
	(B) potato and tomato
	(C) poppy and tamarind
	(D) poppy and ton ate
100	
109.	Which of the following is used to determine the rate of transpiration in plants?
	(A) Poro re/er/hygrometer
	(E) Pot meters
	(C) Auxanometer
	(D) Tensiomere /barc neter
110	Desire the all the time of all the south air
110.	During the a, rk reactions of photosynthesis

- (A) Wa er splits
 (B) O₂ is reduced to organic compounds
 (C) Chlorophyll is activated
- (D) C6-Sugar is broken into three carbon sugars
- Which of the following is the most primitive vascular plant? 111.
 - (A) ferns

 - (B) cycas (C) sphagnum
 - psilotum

112. Which division of fungi lack flagella?

- (A) Mastigomycota
- (B) Amastgomycota
- (C) Gymnomycota
- (D) Basidiomycetes

113. Fruiting bodies of slime moulds are called

- (A) acervulus
- (B) sori
- (C) apothecium
- (D) perithecium

114. Cork cambium and vascular cambium are

- (A) parts of secondary xylem and phloem
- (B) parts of percycle
- (C) lateral meristem
- (D) apical meristem

115. A bicollateral ascular bundle is character zed by

- (A) pi oem teing sandwiched be ween xylem
- (B) trans verse splitting of vascular bundle
- (C) longitudinal spl. ttir of vascular bundle
- (D) vy'em being s'indwicked between phloem

116. What will be 'en 1' chlorophyll is burnt?

- (A) ¹agne sium
- (?) Manganese
- (C) in
- (D) Sulphur

117. Elements needed for chlorophyll formation in plants are

- (A) Sodium and copper
- (B) Calcium and potassium
- (C) Iron and magnesium
- (D) Iron and calcium

- 118. What is meant by 'Organ culture'?
 - (A) Maintenance alive of a whole organ, after removal from the organism by partial immersion in a nutrient fluid
 - (B) Introduction of a new organ in an animal body with a view to create genetic mutation in the progenies of that animal
 - (C) Cultivation of organs in a laboratory through the synthesis of tissues
 - (D) The aspects of culture in community which are mainly dedicated by the need of a specified organ of the human body
- 119. In addition to seeds, which of the following characteristics are unique to the seed-producing plants?
 - (A) sporopollenin
 - (B) lignin present in cell walls
 - (C) pollen
 - (D) megaphylls
- 120. White rust of crucifer is caused by
 - (A) Puccinia
 - (B) Ustilage
 - (C) Cystcou.
 - (D) Peziza
- 121. When F₁ plants heteroz₂ out for tallness are selfed, F₂ generation has both tall and dwarf plants. This depicts the principle of
 - (A) Dwarnings
 - (B) I a., of segregation
 - (C) \(\tau \) aw o \(\text{independent assortment} \)
 - (D) B. and ed inheritance
- 122. If the trait is X-linked recessive, which of the tollowing statements is true?
 - (A) Children will not have the trait
 - (B) Children might or might not have the trait
 - (C) All of the children will have the trait
 - (D) Males will have the trait, but females will only have the trait if their father also has the trait

- 123. Polyribosomes are aggregates of
 - (A) ribosomes and r-RNA
 - (B) only r-RNA
 - (C) peroxisomes
 - (D) several ribosomes held together by string of m-RNA
- 124. In ✓-helix secondary structure, hydrogen bonds lie between am. ¹e group of one amino acid and carbonyl group of
 - (A) 2nd amino acid
 - (B) 3rd amino acid
 - (C) fourth amino acid
 - (D) fifth amino acid
- Nucleotide arrangement in DNA can be seen by
 - (A) X-ray crystallography
 - (B) Electron microscop
 - (C) Confocal microscopy
 - (D) Light microscopy
- 126. Initiation condon of protein synth, sis (in eukaryotes) is
 - (A) GUA
 - (E \ GCA
 - (C) CCA
 - (D) AUG
- 127. If the DNA concons are ATG ATG ATG and a cytosine base is inserted at the beginning, then which of the following will result
 - (F) CAT GAT GAT G
 - (B) a non-sense mutation
 - (C) C ATG ATG ATG
 - (D) CATGATGATG

128.	The so 'subunit of polymerase has a function of
	 (A) Promoter binding (B) Elongation (C) Cation binding (D) Termination
129.	Northern blotting is performed for
	 (A) Determining the size of DNA (B) Determining the size of RNA (C) Quantification of RNA (D) Sequencing of RNA
130.	What is the function of polynucleotid kinas?
5	(A) Addition of phospha e at 3' – OH (B) Addition of phosphate at 5' – OH (C) Removal of phosphate at 3' – OH (D) Removal of phosphate at 5' – OH
131.	At how many places, reduced coen, vmes are produced in TCA cycle?
	(A) T '0 (B) Thre' (C) Four (D) Five
132.	What is the bypic, uct of bacterial photosynthesis?
	(A) \bigcirc (C) \bigcirc (D) \bigcirc (D) \bigcirc
133.	During electrophoresis denaturation of the double stranded DNA is brought about by
	 (A) Treatment with alkali (B) Application of current (C) Treatment with EtBr (D) Application of heat

134.	The inheritance pattern of RAPD is					
15	1110 11	and that to part of the first is				
	(A)	Dominant				
	(B)	Recessive				
	(C)	Codominant				
	(D)	Random				
135.	Δfter	entering a T cell, HIV first forms				
133.	711101	entering a 1 con, 111 v mist forms				
	(A)	mRNA				
	(B)	ssDNA				
	(C)	dsDNA				
	(D)	dsRNA				
136.	Whiel	n of the following compounds is responsible for coordinated regulation of glucose				
130.						
	and gi	ycogen metabolism?				
	(A)	NAD^+				
	(B)	Fructose 2, 6 bisr'is sphate				
	(C)	Acetyl-CoA				
	(D)	Fructose 1, 6 bisp. sphate				
107						
137.	An an	nino acid that has a secondary amine and disrupts • helix formation is				
	(A)	Glycing				
	(E)	Phe ylalanine				
	(C)	Scrine				
	(D)	Proline				
	. ,					
120	_					
138.	Pyram	id of n impers deals with the number of				
		Spelies in an area				
	(B)	Sub species in a community				
	(C)	Individuals in a community				
	(D)	Individuals in a tropical level				
	()					
139.	Food	chain in which micro-organisms breakdown the food formed by primary producers				
	(1)	Parasitic food chain				
	(A) (B)	Consumer food chain				
	(C)	Detritus food chain				
	(D)	Predator food chain				

140.	Whic	h national park is n	not present in Assam?	
			19	
	(A)	Kaziranga	30 x	
	(B)	Nameri		
	(C)	Namdhapa	55	
	(D)	Dibru-Saikhawa		
			17	
141.	Whic	h of the following	is not a primary contributor	to the green, buse effect?
	(A)	carbon dioxide		
	(B)	carbon monoxide		
	(C)	chlorofluorocarbo		
	(D)	methane gas		Y
				Y
1.40		. 11		
142.	The f	ollowing disease is	s caused by nonsense mutati	on
~	(A)	Beta thalassemia		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
,,,	(B)	Autism		Y
	(C)	Albinism	λ	
	(D)	Marfan syndrome	e	
1.42	The are	avamaian (C41-uh	de atronia affecta af un almas d	vy aviatina mantatian ia hyv
143.	rne r	eversion (1) 2 5n/2	enotypic effects of an alread	y existing mutation is by
	(A)	P, int mutation		
	(B)	Son tic mutation		

- 144. In ABO blood type, Type AB is produced by
 - (A) Tomo: ygous genotype
 - (2) Ho. Jozygous and Heterozygous genotype
 - (C) Leterozygous genotype
 - (D) None of the above

(C) Germline mutat or (D) Suppressor m. tation

- 145. In mutational event, when adenine is replaced by guanine, it is a case of
 - (A) Transition
 - (B) Frameshift mutation
 - (C) Transcription
 - (D) Transversion

146.	Citric acid is a useful component of a buffer mixture because					
	(A) it has one pK_a value					
	(B) it has two pK_a values					
	(C) it has four pK_a values					
	(D) it has three pK_a values					

- 147. Which of the vector was mostly used in Human Genome project.
 - (A) Lamda phage and M13 vectors
 - (B) Phagemid and shuttle vectors
 - (C) Plasmid and Cosmid
 - (D) BAC and YAC
- 148. Which of the following amino acids I ave an abundance of Histon's?
 - (A) Arginine and Glutamine
 - (B) Alanine and Glutamine
 - (C) Glycine and Glutzi, ine
 - (D) Lysine and Arginine
- 149. In Lineweaver Ry in place, the Y-intercept represents
 - (A) V nax
 - (B) Km
 - (C) 1/Vmax
 - (D) 1/Km
- 150. Viable material of endangered species can be preserved by
 - (A) Sene Lank
 - (?) Ge. 2 Library
 - (C) Cene Pool
 - (D) Herbarium
