CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Maximum no. of e- in n = 4 shell
 - (1) 72
 - (2) 50
 - (3) 16
 - (4) 32

Answer (4)

Sol. Maximum number of $e^- = 2n^2$

$$= 2(4)^2$$

= 32

2. BOD value of a water sample is 3 ppm.

Select the correct option about the given sample of water.

- (1) It is highly polluted water
- (2) It is clean water
- (3) Concentration of oxygen in the given sample is very less
- (4) None of these

Answer (2)

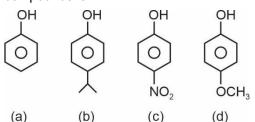
- **Sol.** The given sample of water is clean water as BOD value of clean water ranges between 3 to 5.
- 3. Which of the following chloride is more soluble in organic solvent?
 - (1) Be
 - (2) K
 - (3) Ca
 - (4) Mg

Answer (1)

Sol. Out of the given elements, the chlorides of K and Ca are largely ionic. So, they will be more soluble in water and less soluble in organic solvents. BeCl₂ has higher covalent character than MgCl₂. Therefore, BeCl₂ is more soluble in organic solvents than MgCl₂.

4. The correct order of bond strength

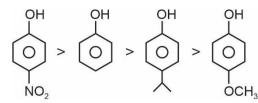
H₂O, H₂S, H₂Se, H₂Te


- (1) $H_2O > H_2S > H_2Se > H_2Te$
- (2) $H_2S > H_2O > H_2Se > H_2Te$
- (3) $H_2Te > H_2Se > H_2S > H_2O$
- (4) $H_2Te > H_2S > H_2O > H_2Se$

Answer (1)

Sol. The correct order of bond strength is

 $H_2O > H_2S > H_2Se > H_2Te$


5. The correct order of acidic strength of the following compounds is

- (1) a > b > c > d
- (2) c > a > b > d
- (3) d > c > b > a
- (4) c > b > a > d

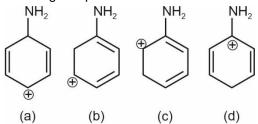
Answer (2)

Sol. The correct acidic order is

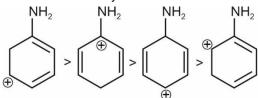
- 6. What is CI Co CI bond angle in $[Co(NH_3)_3CI_3]$?
 - (1) 120° and 90°
 - (2) 90° and 180°
 - (3) 90°
 - (4) 180°

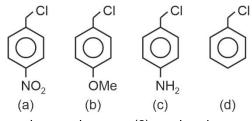
Answer (2)

Sol.


$$\begin{bmatrix} CI \\ H_3N & I \\ CO \\ H_3N & I \\ NH_3 \end{bmatrix} CI \begin{bmatrix} 3+ \\ H_3N & CO \\ H_3N & I \\ CI \end{bmatrix} AH \begin{bmatrix} CI \\ H_3N & CI \\ CO \\ H_3N & CI \end{bmatrix}$$

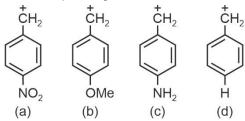
Bond angle = 90° and 180°


7. The correct decreasing order of stability of the following compounds is


- (1) a > b > c > d
- (2) d > b > c > a
- (3) b > d > a > c
- (4) b > a > d > c

Answer (3)

Sol. The correct stability order is


8. Which of the following is correct order of S_N1 reaction?

- (1) a > b > c > d
- (2) c > b > d > a
- (3) c > a > b > d
- (4) d > a > b > c

Answer (2)

Sol. The reactivity order of the given aralkyl halides towards $S_N 1$ reaction will be decided by the stability of their corresponding carbocations.

The benzyl carbocation is stabilised by resonance. The presence of $-NH_2$ group at the p-position promotes the resonance stabilisation due to +R effect. The -OMe group also promotes but to a lesser extent due to higher electronegativity of O-atom than N-atom. The $-NO_2$ group opposes the resonance stabilisation due to its -R effect.

 \therefore The correct order is c > b > d > a.

9. Lead storage battery have 38% (w/w) H₂SO₄. Find the temperature at which the liquid of battery will freeze

(i = 2.67);
$$k_f$$
 of water = 1.86 $\frac{K \cdot kg}{mole}$

- (1) -3.1°C
- (2) -31°C
- (3) -0.31°C
- (4) -0.031°C

Answer (2)

Sol. $\Delta T_f = ik_f \cdot m$

$$= (2.67)(1.86)(m)$$

$$m = \frac{38(1000)}{(98)(62)} = 6.25$$

$$\Delta T_f = (2.67)(1.86)(6.25)$$

= 31.06°C

Freezing point = -31.06°C

- KMnO₄ oxidises I⁻ in acidic & neutral medium in which form – respectively.
 - (1) IO_3^-, IO^-
 - $(2) IO_3^-, IO_3^-$
 - (3) IO_3^-, I_3^-
 - $(4) I_2, IO_3^-$

Answer (4)

- **Sol.** : I^{\ominus} converts to I_2 in acidic medium and converts to IO_3^{\ominus} in neutral medium.
- 11. Which of the following equation is correct?
 - (1) $LiNO_3 \rightarrow Li + NO_2 + O_2$
 - (2) LiNO₃ \rightarrow LiNO₂ + O₂
 - (3) $LiNO_3 \rightarrow Li_2O + NO_2 + O_2$
 - (4) LiNO₃ \rightarrow Li₂O + N₂O₄ + O₂

Answer (3)

Sol.
$$2\text{LiNO}_3 \xrightarrow{\Delta} \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$$

12. The option containing correct match is

(List-I)

(List-II)

A. Ni(CO)₄

(i) sp^3

B. [Ni(CN)₄]²⁻

(ii) sp^3d^2

C. $[Cu(H_2O)_6]^{+2}$

(iii) d^2sp^3

D. [Fe(CN)₆]⁴⁻

(iv) dsp^2

(1) A(i), B(iv), C(ii), D(iii)

(2) A(iii), B(ii), C(iv), D(i)

(3) A(ii), B(iii), C(iv), D(i)

(4) A(iv), B(ii), C(i), D(iii)

Answer (1)

Sol. Ni(CO)₄ \rightarrow sp³

 $[Ni(CN)_4]^{2-} \rightarrow dsp^2$

$$\left[\operatorname{Cu(H_2O)}_6\right]^{+2} \to \operatorname{sp}^3 d^2$$

$$\left[\mathsf{Fe}\big(\mathsf{CN}\big)_{6}\right]^{4-}\to d^{2}\mathsf{s}\rho^{3}$$

13. Statement 1:– Antihistamine prevents the secretion of acid in stomach

Statement 2: – Antiallergic and antacid work on same receptors

(1) 1 is correct, 2 is incorrect

(2) Both are correct

(3) 1 is incorrect, 2 is correct

(4) Both are incorrect

Answer (4)

Sol. Antihistamines do not affect the secretion of acid in stomach. Antiallergic and antacid drugs work on different receptors. Therefore, both the statements are incorrect.

14. **Statement-1:** During hall-heroult process mixing of CaF₂ and Na₃AlF₆ decreases the M.P. of Al₂O₃.

Statement-2: During electrolytic refining Anode is pure and cathode is impure.

(1) Both are correct

(2) Statement-1 is correct, statement-2 is incorrect

(3) Both are incorrect

(4) Statement-1 is incorrect, statement-2 is correct

Answer (2)

Sol. Mixture of CaF₂ and Na₃AlF₆ decreases the melting point of Al₂O₃.

- 15. Nessler's reagent is
 - (1) K₂[HgI₄]
 - (2) K₃[HgI₄]
 - (3) Hg₂l₂
 - (4) Hgl₂

Answer (1)

Sol. Nessler's reagent is K₂[Hgl₄]

- Boric acid is present in solid state while BF₃ is a gas at room temperature because
 - (1) Hydrogen bonding is present in boric acid
 - (2) Boric acid has more molar mass as compared to BF₃
 - (3) BF₃ is polymeric in nature
 - (4) Both (2) and (3)

Answer (1)

Sol. Due to H-bonding, boric acid is solid at room temperature.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. For given Ecell,

$$X \mid X^{2+}(0.001M) \mid Y^{2+}(0.01M) \mid Y \text{ at } 298 \text{ K}$$

$$E_{X^{2+}/X}^{\circ} = -0.76$$

$$E_{Y^{2+}/Y}^{\circ} = +0.34$$

$$\frac{2.303 \, RT}{F} = 0.06$$

If $E_{cell} = t$, find 5t (closest integer).

Answer (6)

Sol.
$$E_{cell} = E_{cell}^{\circ} - \frac{0.06}{2} log \frac{10^{-3}}{10^{-2}}$$

= 1.10 - 0.03 (-1)
= 1.10 + 0.03

$$t = 1.13 \text{ V}$$

$$5t = 5.65 \text{ V}$$

Nearest integer = 6

22. Find the number of formula units of FeO per unit cell (Round off to the nearest integer)

Given that density = 4.0 gm/cm³

$$a = 5Å$$

$$N_A = 6.0 \times 10^{23}$$

Answer (04)

Sol. Density =
$$\frac{ZM}{N_{\Delta} \times a^3} \Rightarrow Z = \frac{\text{density} \times N_{A} \times a^3}{M}$$

$$=\frac{4\times6.0\times10^{23}\times(5\times10^{-8})^3}{(56+16)}$$

$$=\frac{4\times6\times125\times10^{-1}}{72}=4.16$$

23. For 1st order reaction, 540 s is required for 60% completion, then the time for 90% completion is 1.35×10^x . Find x.

$$(\log^4 = 0.6)$$

Answer (3)

Sol.
$$\frac{t_{90}}{t_{60}} = \frac{\log \frac{100}{100 - 90}}{\log \left(\frac{100}{100 - 60}\right)} = \frac{1}{\log \frac{10}{4}} = \frac{1}{1 - 0.6} = \frac{1}{0.4}$$

$$t_{90} = \frac{540}{0.4} = 1350 \text{ sec}$$

$$1350 = 1.35 \times 10^{x}$$

$$x = 3$$

24. 1 mole of a gas undergoes adiabatic process given that $C_V = 20 \text{ JK}^{-1} \text{ mol}^{-1}$, w = 3 kJ, $T_1 = 27^{\circ}\text{C}$, $T_2 = ? (^{\circ}\text{C})$

Answer (177)

Sol.
$$w = + nC_v(T_2 - T_1)$$

$$3000 = 1 \times 20 \times (T_2 - 300)$$

$$150 = T_2 - 300$$

$$T_2 = 450 \text{ K}$$

$$\Rightarrow$$
 T₂ = 177°C

25. Volume strength of H_2O_2 solution is 60 'V', strength of solution is _____ g/L.

(Round off to the nearest integer)

Answer (182)

Sol. Volume strength of $H_2O_2 = 60$ volume

Molarity of
$$H_2O_2$$
 solution = $\frac{60}{11.2}$ M

Strength of
$$H_2O_2$$
 solution = $\frac{60 \times 34}{11.2}$
= 182.14 g/L
 \approx 182 g/L

