CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Maximum no. of e^{-}in $n=4$ shell
(1) 72
(2) 50
(3) 16
(4) 32

Answer (4)

Sol. Maximum number of $\mathrm{e}^{-}=2 \mathrm{n}^{2}$

$$
\begin{aligned}
& =2(4)^{2} \\
& =32
\end{aligned}
$$

2. $B O D$ value of a water sample is 3 ppm .

Select the correct option about the given sample of water.
(1) It is highly polluted water
(2) It is clean water
(3) Concentration of oxygen in the given sample is very less
(4) None of these

Answer (2)

Sol. The given sample of water is clean water as BOD value of clean water ranges between 3 to 5 .
3. Which of the following chloride is more soluble in organic solvent?
(1) Be
(2) K
(3) Ca
(4) Mg

Answer (1)
Sol. Out of the given elements, the chlorides of K and Ca are largely ionic. So, they will be more soluble in water and less soluble in organic solvents. BeCl_{2} has higher covalent character than MgCl_{2}. Therefore, BeCl_{2} is more soluble in organic solvents than MgCl_{2}.
4. The correct order of bond strength
$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Te}$
(1) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(2) $\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(3) $\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}$

Answer (1)

Sol. The correct order of bond strength is
$\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
5. The correct order of acidic strength of the following compounds is

(a)

(b)

(c)

(d)
(1) a $>$ b $>$ c $>$ d
(2) c $>$ a $>$ b $>$ d
(3) $d>c>b>a$
(4) $c>b>a>d$

Answer (2)

Sol. The correct acidic order is

6. What is $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ bond angle in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$?
(1) 120° and 90°
(2) 90° and 180°
(3) 90°
(4) 180°

Answer (2)

Sol.

Bond angle $=90^{\circ} \quad$ Bond angle $=90^{\circ}$ and 180°
7. The correct decreasing order of stability of the following compounds is

(a)

(b)

(c)

(d)
(1) a $>$ b $>$ c $>$ d
(2) d $>$ b $>$ c $>$ a
(3) b $>$ d $>$ a $>$ c
(4) b $>$ a $>$ d $>c$

Answer (3)
Sol. The correct stability order is

8. Which of the following is correct order of $\mathrm{S}_{\mathrm{N}} 1$ reaction?

(a)

(b)

(c)
(2) c $>$ b $>$ d $>$ a
(1) a $>$ b $>$ c $>$ d
(4) $d>a>b>c$

Answer (2)

Sol. The reactivity order of the given aralkyl halides towards $\mathrm{S}_{\mathrm{N}} 1$ reaction will be decided by the stability of their corresponding carbocations.

(a)

(b)

(c)

(d)

The benzyl carbocation is stabilised by resonance. The presence of $-\mathrm{NH}_{2}$ group at the p-position promotes the resonance stabilisation due to +R effect. The -OMe group also promotes but to a lesser extent due to higher electronegativity of O -atom than N -atom. The $-\mathrm{NO}_{2}$ group opposes the resonance stabilisation due to its -R effect.
\therefore The correct order is $\mathrm{c}>\mathrm{b}>\mathrm{d}>\mathrm{a}$.
9. Lead storage battery have $38 \%(w / w) \mathrm{H}_{2} \mathrm{SO}_{4}$. Find the temperature at which the liquid of battery will freeze
($\mathrm{i}=2.67$); kf_{f} of water $=1.86 \frac{\mathrm{~K} \cdot \mathrm{~kg}}{\mathrm{~mole}}$
(1) $-3.1^{\circ} \mathrm{C}$
(2) $-31^{\circ} \mathrm{C}$
(3) $-0.31^{\circ} \mathrm{C}$
(4) $-0.031^{\circ} \mathrm{C}$

Answer (2)

Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{ik} \cdot \mathrm{m}$

$$
\begin{aligned}
& =(2.67)(1.86)(\mathrm{m}) \\
& \mathrm{m}=\frac{38(1000)}{(98)(62)}=6.25 \\
& \Delta \mathrm{~T}_{\mathrm{f}}=(2.67)(1.86)(6.25) \\
& \quad=31.06^{\circ} \mathrm{C}
\end{aligned}
$$

Freezing point $=-31.06^{\circ} \mathrm{C}$
10. KMnO_{4} oxidises I^{-}in acidic \& neutral medium in which form - respectively.
(1) $\mathrm{IO}_{3}^{-}, \mathrm{IO}^{-}$
(2) $\mathrm{IO}_{3}^{-}, \mathrm{IO}_{3}^{-}$
(3) $\mathrm{IO}_{3}^{-}, \mathrm{l}_{3}^{-}$
(4) $\mathrm{I}_{2}, \mathrm{IO}_{3}^{-}$

Answer (4)

Sol. : ן converts to I_{2} in acidic medium and converts to IO_{3}° in neutral medium.
11. Which of the following equation is correct?
(1) $\mathrm{LiNO}_{3} \rightarrow \mathrm{Li}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
(2) $\mathrm{LiNO}_{3} \rightarrow \mathrm{LiNO}_{2}+\mathrm{O}_{2}$
(3) $\mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
(4) $\mathrm{LiNO}_{3} \rightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2}$

Answer (3)

Sol. $2 \mathrm{LiNO}_{3} \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
12. The option containing correct match is

> (List-I)
(List-II)
A. $\mathrm{Ni}(\mathrm{CO})_{4}$
(i) $s p^{3}$
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(ii) $s p^{3} d^{2}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
(iii) $d^{2} s p^{3}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(iv) $d s p^{2}$
(1) A (i), B (iv), $C(i i), D(i i i)$
(2) A (iii), $\mathrm{B}(\mathrm{ii}), \mathrm{C}(\mathrm{iv}), \mathrm{D}(\mathrm{i})$
(3) A (ii), B (iii), $\mathrm{C}(\mathrm{iv}), \mathrm{D}$ (i)
(4) $\mathrm{A}(\mathrm{iv}), \mathrm{B}(\mathrm{ii}), \mathrm{C}(\mathrm{i}), \mathrm{D}$ (iii)

Answer (1)

Sol. $\mathrm{Ni}(\mathrm{CO})_{4} \rightarrow s p^{3}$
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \rightarrow d s p^{2}$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2} \rightarrow s p^{3} d^{2}$
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow d^{2} s p^{3}$
13. Statement 1:- Antihistamine prevents the secretion of acid in stomach

Statement 2: - Antiallergic and antacid work on same receptors
(1) 1 is correct, 2 is incorrect
(2) Both are correct
(3) 1 is incorrect, 2 is correct
(4) Both are incorrect

Answer (4)

Sol. Antihistamines do not affect the secretion of acid in stomach. Antiallergic and antacid drugs work on different receptors. Therefore, both the statements are incorrect.
14. Statement-1: During hall-heroult process mixing of CaF_{2} and $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ decreases the M.P. of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
Statement-2: During electrolytic refining Anode is pure and cathode is impure.
(1) Both are correct
(2) Statement-1 is correct, statement-2 is incorrect
(3) Both are incorrect
(4) Statement-1 is incorrect, statement-2 is correct

Answer (2)

Sol. Mixture of CaF_{2} and $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ decreases the melting point of $\mathrm{Al}_{2} \mathrm{O}_{3}$.
15. Nessler's reagent is
(1) $\mathrm{K}_{2}\left[\mathrm{Hgl}_{4}\right]$
(2) $\mathrm{K}_{3}\left[\mathrm{Hgl}_{4}\right]$
(3) $\mathrm{Hg}_{2} \mathrm{l}_{2}$
(4) Hgl_{2}

Answer (1)

Sol. Nessler's reagent is $\mathrm{K}_{2}\left[\mathrm{Hgl}_{4}\right]$
16. Boric acid is present in solid state while BF_{3} is a gas at room temperature because
(1) Hydrogen bonding is present in boric acid
(2) Boric acid has more molar mass as compared to BF_{3}
(3) BF_{3} is polymeric in nature
(4) Both (2) and (3)

Answer (1)

Sol. Due to H-bonding, boric acid is solid at room temperature.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. For given $\mathrm{E}_{\text {cell }}$,
$X\left|X^{2+}(0.001 M)\right|\left|Y^{2+}(0.01 M)\right| Y$ at 298 K
$E_{X^{2+} / X}^{\circ}=-0.76$
$E_{Y^{2+} / Y}^{\circ}=+0.34$
$\frac{2.303 R T}{F}=0.06$
If $E_{\text {cell }}=t$, find $5 t$ (closest integer).

Answer (6)

Sol. $E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.06}{2} \log \frac{10^{-3}}{10^{-2}}$

$$
=1.10-0.03(-1)
$$

$$
=1.10+0.03
$$

$\mathrm{t}=1.13 \mathrm{~V}$
$5 \mathrm{t}=5.65 \mathrm{~V}$
Nearest integer $=6$
22. Find the number of formula units of FeO per unit cell (Round off to the nearest integer)

Given that density $=4.0 \mathrm{gm} / \mathrm{cm}^{3}$
$\mathrm{a}=5 \AA$
$\mathrm{N}_{\mathrm{A}}=6.0 \times 10^{23}$

Answer (04)

Sol. Density $=\frac{Z M}{N_{A} \times a^{3}} \Rightarrow Z=\frac{\text { density } \times N_{A} \times a^{3}}{M}$

$$
\begin{aligned}
& =\frac{4 \times 6.0 \times 10^{23} \times\left(5 \times 10^{-8}\right)^{3}}{(56+16)} \\
& =\frac{4 \times 6 \times 125 \times 10^{-1}}{72}=4.16
\end{aligned}
$$

23. For $1^{\text {st }}$ order reaction, 540 s is required for 60% completion, then the time for 90% completion is 1.35×10^{x}. Find x.
$\left(\log ^{4}=0.6\right)$

Answer (3)

Sol. $\frac{t_{90}}{t_{60}}=\frac{\log \frac{100}{100-90}}{\log \left(\frac{100}{100-60}\right)}=\frac{1}{\log \frac{10}{4}}=\frac{1}{1-0.6}=\frac{1}{0.4}$
$t_{90}=\frac{540}{0.4}=1350 \mathrm{sec}$
$1350=1.35 \times 10^{x}$
$x=3$
24. 1 mole of a gas undergoes adiabatic process given that $\mathrm{Cv}=20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \mathrm{w}=3 \mathrm{~kJ}, \mathrm{~T}_{1}=27^{\circ} \mathrm{C}, \mathrm{T}_{2}=?\left({ }^{\circ} \mathrm{C}\right)$

Answer (177)
Sol. $w=+n C_{v}\left(T_{2}-T_{1}\right)$

$$
\begin{aligned}
& 3000=1 \times 20 \times\left(T_{2}-300\right) \\
& 150=T_{2}-300 \\
& T_{2}=450 \mathrm{~K} \\
& \Rightarrow T_{2}=177^{\circ} \mathrm{C}
\end{aligned}
$$

25. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution is 60 ' V ', strength of solution is \qquad g / L.
(Round off to the nearest integer)

Answer (182)

Sol. Volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}=60$ volume

$$
\begin{aligned}
\text { Molarity of } \mathrm{H}_{2} \mathrm{O}_{2} \text { solution } & =\frac{60}{11.2} \mathrm{M} \\
\text { Strength of } \mathrm{H}_{2} \mathrm{O}_{2} \text { solution } & =\frac{60 \times 34}{11.2} \\
& =182.14 \mathrm{~g} / \mathrm{L} \\
& \simeq 182 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

