JAM 2006

MATHEMATICAL STATISTICS TEST PAPER

Special Instructions / Useful Data

- 1. For an event A, P(A) denotes the probability of the event A.
- 2. The complement of an event is denoted by putting a superscript "c" on the event, e.g. A^c denotes the complement of the event A.
- 3. For a random variable X, E(X) denotes the expectation of X and V(X) denotes its variance.
- 4. $N(\mu, \sigma^2)$ denotes a normal distribution with mean μ and variance σ^2 .
- 5. Standard normal random variable is a random variable having a normal distribution with mean 0 and variance 1.
- 6. P(Z > 1.96) = 0.025, P(Z > 1.65) = 0.050, P(Z > 0.675) = 0.250 and P(Z > 2.33) = 0.010, where Z is a standard normal random variable.
- 7. $P(\chi_2^2 \ge 9.21) = 0.01$, $P(\chi_2^2 \ge 0.02) = 0.99$, $P(\chi_3^2 \ge 11.34) = 0.01$, $P(\chi_4^2 \ge 9.49) = 0.05$, $P(\chi_4^2 \ge 0.71) = 0.95$, $P(\chi_5^2 \ge 11.07) = 0.05$ and $P(\chi_5^2 \ge 1.15) = 0.95$, where $P(\chi_n^2 \ge c) = \alpha$, where χ_n^2 has a Chi-square distribution with n degrees of freedom.
- 8. n! denotes the factorial of n.
- 9. The determinant of a square matrix A is denoted by |A|.
- 10. R: The set of all real numbers.
- 11. R": *n*-dimensional Euclidean space.
- 12. y' and y'' denote the first and second derivatives respectively of the function y(x) with respect to x.

NOTE: This Question-cum-Answer book contains THREE sections, the Compulsory Section A, and the Optional Sections B and C.

- Attempt ALL questions in the compulsory section A. It has 15 objective type questions of six marks each and also nine subjective type questions of fifteen marks each.
- Optional Sections B and C have five subjective type questions of fifteen marks each.
- Candidates seeking admission to either of the two programmes, M.Sc. in Applied Statistics & Informatics at IIT Bombay and M.Sc. in Statistics & Informatics at IIT Kharagpur, are required to attempt ONLY Section B (Mathematics) from the Optional Sections.
- Candidates seeking admission to the programme, M.Sc. in Statistics at IIT Kanpur, are required to attempt ONLY Section C (Statistics) from the Optional Sections.

You must therefore attempt either Optional Section B or Optional Section C depending upon the programme(s) you are seeking admission to, and accordingly tick one of the boxes given below.

Optional Section Attempted	В
	С

- The negative marks for the Objective type questions will be carried over to the total marks.
- Write the answers to the objective questions in the <u>Answer Table for Objective Questions</u> provided on page MS 11/63 only.

Compulsory Section A

1. If $a_n > 0$ for $n \ge 1$ and $\lim_{n \to \infty} (a_n)^{1/n} = L < 1$, then which of the following series is not convergent?

$$(A) \sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$$

$$(\mathbf{B}) \sum_{n=1}^{\infty} a_n^2$$

(C)
$$\sum_{n=1}^{\infty} \sqrt{a_n}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{a_n}}$$

2. Let E and F be two mutually disjoint events. Further, let E and F be independent of G. If p = P(E) + P(F) and q = P(G), then $P(E \cup F \cup G)$ is

(A)
$$1-pq$$

(B)
$$q + p^2$$

(C)
$$p + q^2$$

(D)
$$p+q-pq$$

3. Let X be a continuous random variable with the probability density function symmetric about 0. If $V(X) < \infty$, then which of the following statements is true?

$$(A) E(|X|) = E(X)$$

(B)
$$V(|X|) = V(X)$$

(C)
$$V(|X|) < V(X)$$

(D)
$$V(|X|) > V(X)$$

4. Let

$$f(x) = x |x| + |x-1|, -\infty < x < \infty.$$

Which of the following statements is true?

- (A) f is not differentiable at x = 0 and x = 1.
- (B) f is differentiable at x = 0 but not differentiable at x = 1.
- (C) f is not differentiable at x = 0 but differentiable at x = 1.
- (D) f is differentiable at x = 0 and x = 1.
- 5. Let Ax = b be a non-homogeneous system of linear equations. The augmented matrix [A : b] is given by

$$\begin{bmatrix} 1 & 1 & -2 & 1 & 1 \\ -1 & 2 & 3 & -1 & 0 \\ 0 & 3 & 1 & 0 & -1 \end{bmatrix}.$$

Which of the following statements is true?

- (A) Rank of A is 3.
- (B) The system has no solution.
- (C) The system has unique solution.
- (D) The system has infinite number of solutions.
- 6. An archer makes 10 independent attempts at a target and his probability of hitting the target at each attempt is $\frac{5}{6}$. Then the conditional probability that his last two attempts are successful given that he has a total of 7 successful attempts is
 - (A) $\frac{1}{5^5}$
 - (B) $\frac{7}{15}$
 - (C) $\frac{25}{36}$
 - (D) $\frac{8!}{3! \ 5!} \left(\frac{5}{6}\right)^7 \left(\frac{1}{6}\right)^3$
- 7. Let

$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5), -\infty < x < \infty.$$

The number of distinct real roots of the equation $\frac{d}{dx} f(x) = 0$ is exactly

- (A) 2
- (B) 3
- (C) 4
- (D) 5

8. Let

$$f(x) = \frac{k|x|}{(1+|x|)^4}, \quad -\infty < x < \infty.$$

Then the value of k for which f(x) is a probability density function is

- (A) $\frac{1}{6}$
- (B) $\frac{1}{2}$
- (C) 3
- (D) 6
- 9. If $M_X(t) = e^{3t+8t^2}$ is the moment generating function of a random variable X, then $P(-4.84 < X \le 9.60)$ is
 - (A) equal to 0.700
 - (B) equal to 0.925
 - (C) equal to 0.975
 - (D) greater than 0.999

- 10. Let X be a binomial random variable with parameters n and p, where n is a positive integer and $0 \le p \le 1$. If $\alpha = P(|X np| \ge \sqrt{n})$, then which of the following statements holds true for all n and p?
 - $(A) 0 \le \alpha \le \frac{1}{4}$
 - $(B) \frac{1}{4} < \alpha \le \frac{1}{2}$
 - (C) $\frac{1}{2} < \alpha < \frac{3}{4}$
 - $(D) \frac{3}{4} \le \alpha \le 1$
- 11. Let $X_1, X_2, ..., X_n$ be a random sample from a Bernoulli distribution with parameter p; $0 \le p \le 1$. The

bias of the estimator $\frac{\sqrt{n} + 2\sum_{i=1}^{n} X_i}{2(n + \sqrt{n})}$ for estimating p is equal to

- $(A) \ \frac{1}{\sqrt{n}+1} \left(p \frac{1}{2} \right)$
- $(\mathbf{B}) \; \frac{1}{n+\sqrt{n}} \; \left(\frac{1}{2} p\right)$
- (C) $\frac{1}{\sqrt{n+1}} \left(\frac{1}{2} + \frac{p}{\sqrt{n}} \right) p$
- (D) $\frac{1}{\sqrt{n+1}} \left(\frac{1}{2} p \right)$
- 12. Let the joint probability density function of X and Y be

$$f(x,y) = \begin{cases} e^{-x}, & \text{if } 0 \le y \le x < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Then E(X) is

- (A) 0.5
- (B) 1
- (\mathbf{C}) 2
- (D) 6

13. Let $f: \Box \rightarrow \Box$ be defined as

$$f(t) = \begin{cases} \frac{\tan t}{t}, & t \neq 0, \\ 1, & t = 0. \end{cases}$$

Then the value of $\lim_{x\to 0} \frac{1}{x^2} \int_{x^2}^{x^3} f(t) dt$

- (A) is equal to -1
- (B) is equal to 0
- (C) is equal to 1
- (D) does not exist

14. Let X and Y have the joint probability mass function;

$$P(X = x, Y = y) = \frac{1}{2^{y+2}(y+1)} \left(\frac{2y+1}{2y+2}\right)^x, \quad x, y = 0, 1, 2, \dots$$

Then the marginal distribution of Y is

- (A) Poisson with parameter $\lambda = \frac{1}{4}$
- (B) Poisson with parameter $\lambda = \frac{1}{2}$
- (C) Geometric with parameter $p = \frac{1}{4}$
- (D) Geometric with parameter $p = \frac{1}{2}$

15. Let X_1 , X_2 and X_3 be a random sample from a N(3, 12) distribution. If $\overline{X} = \frac{1}{3} \sum_{i=1}^{3} X_i$ and $S^2 = \frac{1}{2} \sum_{i=1}^{3} \left(X_i - \overline{X} \right)^2$ denote the sample mean and the sample variance respectively, then $P\left(1.65 < \overline{X} \le 4.35, \ 0.12 < S^2 \le 55.26\right)$ is

- (A) 0.49
- (B) 0.50
- (C) 0.98
- (D) none of the above

16. (a) Let $X_1, X_2, ..., X_n$ be a random sample from an exponential distribution with the probability density function;

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x}, & \text{if } x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 0$. Obtain the maximum likelihood estimator of P(X > 10). 9 Marks

(b) Let $X_1, X_2, ..., X_n$ be a random sample from a discrete distribution with the probability mass function given by

$$P(X = 0) = \frac{1-\theta}{2}; \quad P(X = 1) = \frac{1}{2}; \quad P(X = 2) = \frac{\theta}{2}, \quad 0 \le \theta \le 1.$$

Find the method of moments estimator for θ .

6 Marks

- 17. (a) Let A be a non-singular matrix of order n (n > 1), with |A| = k. If adj(A) denotes the adjoint of the matrix A, find the value of |adj(A)|.

 6 Marks
 - (b) Determine the values of a, b and c so that (1, 0, -1) and (0, 1, -1) are eigenvectors of the matrix,

$$\begin{bmatrix} 2 & 1 & 1 \\ a & 3 & 2 \\ 3 & b & c \end{bmatrix}.$$
 9 Marks

18. (a) Using Lagrange's mean value theorem, prove that

$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2},$$

where $0 < \tan^{-1} a < \tan^{-1} b < \frac{\pi}{2}$.

6 Marks

- (b) Find the area of the region in the first quadrant that is bounded by $y = \sqrt{x}$, y = x 2 and the x-axis. **9 Marks**
- 19. Let X and Y have the joint probability density function;

$$f(x, y) = \begin{cases} c x y e^{-(x^2 + 2y^2)}, & \text{if } x > 0, y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Evaluate the constant c and $P(X^2 > Y^2)$.

- 20. Let PQ be a line segment of length β and midpoint R. A point S is chosen at random on PQ. Let X, the distance from S to P, be a random variable having the uniform distribution on the interval $(0, \beta)$. Find the probability that PS, QS and PR form the sides of a triangle.
- 21. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, 1)$ distribution. For testing $H_0: \mu = 10$ against $H_1: \mu = 11$, the most powerful critical region is $\overline{X} \ge k$, where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Find k in terms of n such

that the size of this test is 0.05.

Further determine the minimum sample size n so that the power of this test is at least 0.95.

22. Consider the sequence $\{s_n\}$, $n \ge 1$, of positive real numbers satisfying the recurrence relation $s_{n-1} + s_n = 2 s_{n+1}$ for all $n \ge 2$.

(a) Show that
$$|s_{n+1} - s_n| = \frac{1}{2^{n-1}} |s_2 - s_1|$$
 for all $n \ge 1$.

- (b) Prove that $\{s_n\}$ is a convergent sequence.
- 23. The cumulative distribution function of a random variable X is given by

Find
$$P(0 < X < 2)$$
, $P(0 \le X \le 1)$ and $P(\frac{1}{2} \le X \le \frac{3}{2})$.

Find
$$P(0 < X < 2)$$
, $P(0 \le X \le 1)$ and $P(\frac{1}{2} \le X \le \frac{3}{2})$.

24. Let A and B be two events with P(A|B) = 0.3 and $P(A|B^c) = 0.4$. Find P(B|A) and $P(B^c|A^c)$ in terms of P(B). If $\frac{1}{A} \le P(B|A) \le \frac{1}{3}$ and $\frac{1}{A} \le P(B^c|A^c) \le \frac{9}{16}$, then determine the value of P(B).

Optional Section B

25. Solve the initial value problem

$$y' - y + y^2 (x^2 + 2x + 1) = 0$$
, $y(0) = 1$.

26. Let $y_1(x)$ and $y_2(x)$ be the linearly independent solutions of

$$x y'' + 2 y' + x e^x y = 0.$$

If $W(x) = y_1(x) y_2'(x) - y_2(x) y_1'(x)$ with W(1) = 2, find W(5).

27. (a) Evaluate
$$\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy$$
.

9 Marks

(b) Evaluate $\iiint z \ dx \ dy \ dz$, where W is the region bounded by the planes x = 0, y = 0, z = 0, z = 1and the cylinder $x^2 + y^2 = 1$ with $x \ge 0$, $y \ge 0$.

6 Marks

A linear transformation $T: \square^3 \to \square^2$ is given by T(x, y, z) = (3x + 11y + 5z, x + 8y + 3z).

Determine the matrix representation of this transformation relative to the ordered $\{(1,0,1),(0,1,1),(1,0,0)\},\{(1,1),(1,0)\}$. Also find the dimension of the null space of this transformation.

29. (a) Let
$$f(x, y) = \begin{cases} \frac{x^2 + y^2}{x + y}, & \text{if } x + y \neq 0, \\ 0, & \text{if } x + y = 0. \end{cases}$$

Determine if f is continuous at the point (0,0).

6 Marks

(b) Find the minimum distance from the point (1, 2, 0) to the cone $z^2 = x^2 + y^2$.

9 Marks

Optional Section C

30. Let $X_1, X_2, ..., X_n$ be a random sample from an exponential distribution with the probability density function;

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text{if } x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\theta > 0$. Derive the Cramér-Rao lower bound for the variance of any unbiased estimator of θ . Hence, prove that $T = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the uniformly minimum variance unbiased estimator of θ .

31. Let $X_1, X_2, ...$ be a sequence of independently and identically distributed random variables with the probability density function;

$$f(x) = \begin{cases} \frac{1}{2} x^2 e^{-x}, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Show that $\lim_{n\to\infty} P\left(X_1 + ... + X_n \ge 3\left(n - \sqrt{n}\right)\right) \ge \frac{1}{2}$.

32. Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, \sigma^2)$ distribution, where both μ and σ^2 are unknown. Find the value of b that minimizes the mean squared error of the estimator $T_b = \frac{b}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2 \text{ for estimating } \sigma^2, \text{ where } \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i.$

33. Let $X_1, X_2, ..., X_5$ be a random sample from a $N(2, \sigma^2)$ distribution, where σ^2 is unknown. Derive the most powerful test of size $\alpha = 0.05$ for testing $H_0: \sigma^2 = 4$ against $H_1: \sigma^2 = 1$.

34. Let $X_1, X_2, ..., X_n$ be a random sample from a continuous distribution with the probability density function;

$$f(x; \lambda) = \begin{cases} \frac{2x}{\lambda} e^{-\frac{x^2}{\lambda}}, & \text{if } x > 0, \\ 0, & \text{otherwise,} \end{cases}$$

where $\lambda > 0$. Find the maximum likelihood estimator of λ and show that it is sufficient and an unbiased estimator of λ .

