GGSIPU Mathematics 2005

1. The equation of the plane through the intersection of the planes x+y+z=1 and 2x+3y-z+4=0 and parallel to x-axis is:

ay
$$-3z+6=0$$
 b 3y $-z+6=0$

b
$$3y -z+6 = 0$$

$$c y+3z+65=0$$

$$c y+3z+65=0$$
 (dby $3y-2z+6=0$

2. The distance of the point 3,8,2 from the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{y-2}{3}$ measured parallel to the plane 3x+2y-2z+15 = 0 is :

c 6 d
$$\frac{19}{2}$$

3. Let 3,4, -1 and -1,2,3 are the end points of a diameter of sphere. Then the redius of the sphere is equal to:

a 1 b 2 c 3 d 9

4. If A,B,C,D are the points 2,3, -1,3,5, -3,1,2,3,3,5,7respectively,Then the angle between AB and CD is:

a
$$\frac{\pi}{2}$$
 b $\frac{\pi}{3}$

(c)
$$\frac{\pi}{4}$$
 d $\frac{\pi}{6}$

5. If $u = \log \left(\frac{x^2 + y^2}{x + y} \right)$, then the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is :

c 1 d 2

6. A five digits number is formed by writing the digits 1,2,3,4,5 in a random order without repetitions. Then the probability that the number is divisible by 4, is:

a3/5 b 18/5

c 1/5 d 6/5

7. Two persons A and B takes turns In throwing a pair of dice. The first person to throw 9 from both dice will be awarded the price.If A throws first, then the probability that B wins the game , is :

a 9/17 b 8/17

c 8/9 d 1/9

8. The probability that in year of the 22nd century chosen at random, then there will be 53 Sundays, is :

a 3/28 b 2/28

c 7/28 d 5/28

9. The standard deviation of a variable x is 10. Then the standard deviation of 50+5x is :

a 50 b 550

c 10 d 0.98

10. The octal equivalent of the decimal number 0.3125 is :

a 0.24 b 0.42

c 0.39 d 0.98

11. The hexadecimal equivalent of the binary number 111100001010001 is

a 15C3 b C351

c | 3C51 d C315

12. A real value of x will satisfy the equation $\left(\frac{3-4lx}{3+4lx}\right) = \alpha - l\beta$ α and β are real,If:

a $\alpha^2 - \beta^2 = -1$ **b** $\alpha^2 - \beta^2 = 1$

c $\alpha^2 + \beta^2 = 1$ d $\alpha^2 - \beta^2 = 2$

13. If ω is a complex cube root of unity, then the value of

 $\frac{p+q\omega+r\omega^2}{r+p\omega+q\omega^2}+\frac{p+q\omega+r\omega^2}{q+r\omega+p\omega^2}$ p,q,r \in R is equal to :

a 0 b 1

c -1 d 2

14. If P,Q,R,S are represented by the complex numbers 4 + I,1 + 6 I,-4 + 3i,-1 -2i respectively,then PQRS is a :

a rectangle b square

c rhombus d parallelogram

15. If n is a positive integer, then 1+i ⁿ + 1 -i ⁿ is equal to:

a
$$\sqrt{2}^{n-2}\cos\left(\frac{n\pi}{4}\right)$$

b
$$\sqrt{2}^{n-2} \sin\left(\frac{n\pi}{4}\right)$$

c
$$\sqrt{2}$$
]ⁿ⁺² cos $\left(\frac{n\pi}{4}\right)$

d
$$\sqrt{2}^{n+2} \sin\left(\frac{n\pi}{4}\right)$$

16. The number of ways in which 9 persons can be divided into three equal groups is :

17. A dictionary is printed consisting of 7 letters words only that can be made with a letters of the word CRICKET. If the words are printed are alphabetical order is an ordinary dictionary, then the number of words are before the word CRICKET is:

18. If the sum of the coefficient in the expansion of x+y ⁿ is 1024, then the value of the greatest coefficient in the expansion is :

19. The value of the determinant

20. If A and B are 3x3 matrices such that AB = B and BA = A,than:

a A
2
 = A and B $^2 \neq$ B

$$b A^2 \neq A \text{ and } B^2 = B$$

c
$$A^2 = A$$
 and $B^2 = B$

$$dA^2 \neq A$$
 and $B^2 \neq B$

21. If the points $xx_1, y_1, (x_2, y_2)$ and x_3, y_3 are collinear, then the rank of the matrix

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$
 will always be less than :

a 2 b 3

c 1 d none of these

22. The system of equations; $x+y+z=6,x+2y+3z=10,x+2y+\lambda$ z = 6 has number solution for :

a
$$\lambda$$
 = 3, μ = 10 b λ = 3, $\mu \neq$ 10

$$\lambda = 3, \mu \neq 10$$

$$\lambda \neq 3, \mu \neq 10$$
 d none of these

23. If A =
$$\begin{vmatrix} \sin(\theta + \alpha & \cos(\theta + \alpha) & \mathbf{1} \\ \sin(\theta + \beta & \cos(\theta + \beta) & \mathbf{1} \\ \sin(\theta + \gamma & \cos(\theta + \gamma) & \mathbf{1} \end{vmatrix}$$
 Then:

a A=0 for all θ

b A is a odd function of θ

c A=0 for $\theta = \alpha + \beta + \gamma$

d A is a independent of θ

24. An investigator interviewed 100 students to determine the performance of three drinks milk,coffy and tea;20 students take milk and coffee ,30 students take coffee and tea,25 students take milk and tea,12 students take milk only,5 students take coffee only and 8 students take tea only. Then the number of students who did not take any drinks any of three, is:

25. Let $Y=\{1,2,3,4,5\}$, $A=\{1,2\}$, $B=\{3,4,5\}$ and ϕ denots null set. If AxB denotes Cartesian product of the sets A and B, then $YxA \cap yxB$ is :

$$\mathbf{b} \ \mathbf{B} \qquad \qquad \mathbf{d} \quad \phi$$

26. let A={2,3,4,5,......,16,17,18}.Let ≈ be the equivalence relation on AxA Cartesian product of A and A,defined by a,b ≈ c,d if ad=bc,then the number of ordered pairs of the equivalence class of 3,2 is

27. A question 'who have studied Physics?' was asked to three students A,B and C.The question was answered correctly as it is true that If A studied Physics, then B also studied Physics but it is false statement that if C studied Physics, then B also studied physics. Then physics was studied by:

a both A and B

b only A

c only B

d only C

28. If a,b be two fixed positive integers such that $f(a+x=b+[b^3+1-3b^2fx+3b\{fx\}-\{f(x]^3]^{1/3}f)$ for all real x,then f(x is a periodic function with period:

b 2a

clb

d 2b

29. The domain of the function $f(x = \log_3 + x \quad x^2 - 1)$ is:

a -3,-1 \cup 1, ∞

b [-3,-1] ∪ [1,∞

c -3,-2 \cup -2,-1 \cup 1, ∞

d [-3,-2 \cup -2,-1 \cup 1, ∞

30. The value of cot70°+4cos 70° is:

a 1/ $\sqrt{3}$ b $\sqrt{3}$

c 2 $\sqrt{3}$ d ½

31. The equation of sinx+siny+sinz = -3 for $0 \le x \le 2 \pi$, $0 \le y \le 2 \pi$, $0 \le z \le 2 \pi$ has :

a one solution

b two sets of solution

c four sets of solution

d no solution

32. If $\theta = \sin^{-1} x + = \cos^{-1} x - \tan^{-1} x, x \ge 0$ then the smallest interval in which θ lies is :

a $\frac{\pi}{2} \le \theta \le \frac{3\pi}{4}$ b 0 $\le \theta \le \frac{\pi}{4}$

c $-\frac{\pi}{4} \le \theta \le 0$ d $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$

- 33. Let A,B and C are the angles Of a plain triangle and $\tan\left(\frac{A}{2}\right) = \frac{1}{3}$, $\tan\left(\frac{B}{2}\right) = \frac{2}{3}$. Than $\tan\left(\frac{C}{2}\right)$ is equal to :
 - a 7/9 b2/9 c 1/3 d 2/3 2/3
- **34.** If α , β $\alpha \neq \beta$ satisfies the question a cos θ + b sin θ =c, then the value of tan $\left(\frac{\alpha+\beta}{2}\right)$ is :
 - a b/a b c/a c a/b d c/b
- 35. A ray of light passing through the point 1,2 is reflected on the x -axis at a point P and passes through the point 5,3,then the abscissa of a point P is:
 - a 3 b 13/3
 - c 13/5 d 13/4
- 36. The equation $4x^2-24 \times y+11 y^2 = 0$ represents:
 - a two parallel lines
 - b two perpendicular lines
 - c two lines through the origin
 - d a circle
- 37. The length of the chord joining the points in which the straight line $\frac{x}{3} + \frac{y}{4} = 1$ cuts the circle $x^2 + y^2 = \frac{169}{25}$ is :
 - a 1 b 2
 - c 4 d 8
- 38. The normal to the parabola y²=8x at the point 2,4 meets the parabola against the point :
 - a -18,-12 b -18,12
 - c 18,12 d 18, -12
- 39. If a bar of given length moves with its extremities on two fixed straight lines at right angles, then the locus of any point on bar marked on the bar describes a/an:
 - a circle b parabola
 - c ellipse d hyperbola
- 40. The straight line $x+y=\sqrt{2}p$ will touch the hyperbola $4x^2-9y^2=36$ if :
 - a p2= 2 b p 2 =5

c 5p 2 = 2 d 2p 2 = 5

41. The function $f(x = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$, so that fx is continuous at $x=\pi$, is:

a -1/2 b ½

c -1 d 1

42. If fx=sin 2 xand the composite function gf(x = $|\sin x|$, then the function gx is equal to :

a $\sqrt{x-1}$ b \sqrt{x}

c $\sqrt{x+1}$ d $-\sqrt{x}$

43. Area of the figure bounded by the curves y = |x-1| and y = 3 - |x| is:

a 1 sq. units b 2 sq.units

c 3 sq. units d 4 sq. units

44. Let $x = \left[\frac{a+2b}{a+b}\right]$ and $y = \frac{a}{b}$, where a and b are positive integers. If $y^2 > 2$, then:

 $a x^{2} \le 2$ $b x^{2} < 2$

c x $^{2}>2$ d x $^{2}\geq 2$

45. $\int_0^1 tan^{-1} \left(\frac{1}{\frac{2}{x-1+1}} \right) dx$ is:

a log 2 b log 2

c $\frac{\pi}{2}$ + log 2 d $\frac{\pi}{2}$ - log 2

46. The curves x=log y+e and y= log $\binom{1}{x}$:

a do not meet

b meet at one point

c meet at two points

d meet at more than two points

-1

47. $\lim_{x\to 0} \frac{\cos{(\sin{x})-1}}{x^2}$ equals :

a 0

48. Let \vec{u} , \vec{b} be three vectors from \vec{u} x \vec{b} x \vec{c} = \vec{u} x \vec{b} x \vec{c} if :

a
$$\vec{b}$$
x \vec{a} X \vec{b} = (1) b \vec{a} (\vec{b} \vec{c} = 1)

$$c \in X = 1 = 1 \times 1 =$$

49. If $\hat{i}_{i},\hat{j}_{i},\hat{k}$ are units vectors and $|\hat{i}_{i}| = a$, then the value of

$$|\hat{i} \times |\hat{i}|^2 + |\hat{j} \times |\hat{i}|^2 + |\hat{k} \times |\hat{i}|^2$$
 is:

$$a$$
 a^2 b 3 a 2 c 2 a 2 d 4 a 2

50. If the area above the x-axis bounded by the curves $y = 2^{kx}$ and x = 0 and x = 2 is $\frac{3}{\log 2}$, then the value of k is:

51. The value of $\int_a^b \frac{x}{|x|} dx$, a < b < 0 is :

52. The value of

$$\int_{-2}^{2} \left[p \log \left(\frac{1+x}{1-x} \right) + q \log \left(\frac{1-x}{1+x} \right)^{-2} + r \right] dx$$
 depends on:

- a The value of p
- b The value of q
- c The value of r
- The value of p and q
- 53. A curve having the condition that the slope of tengent at some point is two times the slope of the straight line joining the same point to the oigin of co-ordinates, is a/an:

54. If a is an arbitrary constant, then solution of differential equation

$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$$
 is :

a
$$X\sqrt{1-y^2} + y\sqrt{1-x^2} = a$$

b
$$y\sqrt{1-y^2} + x\sqrt{1-x^2} = a$$

c
$$X \sqrt{1-y^2} - y \sqrt{1-x^2} = a$$

d
$$y\sqrt{1-y^2} - x\sqrt{1-x^2} = a$$

55. A particle is moving along the curve $x=at^2+bt+c$. If $ac=b^2$, then the particle would be moving with uniform:

56. The solution of the equation $x^2 \frac{d^2 y}{dx^2} = \log x$ when x=1,y=0 and $\frac{dy}{dx}$ =-1 is:

$$a \quad \frac{1}{2} \log x \quad ^2 + \log x$$

$$b = \frac{1}{2} (bg x^2 - log x)$$

$$c - \frac{1}{2} \log x^2 + \log x$$

$$d - \frac{1}{2} \log x^2 - \log x$$

57. Let the unit vectors in and is be the perpendicular to each other and the unit vector is be inclined at an angle θ to both \vec{u} and \vec{b} . If $\vec{c} = \alpha \cdot \vec{u} + \beta \cdot \vec{b} + \gamma \cdot \vec{u}$. \vec{b} , where α, β, γ are scalars, then:

a
$$\alpha$$
=cot θ , β =sin θ , γ^2 =cos 2 θ

b
$$\alpha = \cos \theta$$
, $\beta = \cos \theta$, $\gamma^2 = \cos 2 \theta$

c
$$\alpha = \cos \theta$$
, $\beta = \sin \theta$, $\gamma^2 = \cos 2 \theta$

d
$$\alpha = \sin \theta$$
, $\beta = \cos \theta$, $\gamma^2 = -\cos 2\theta$

58. If y = $\frac{1}{\sqrt{a^2-b^2}}\cos^{-1}\left[\frac{a\cos(x-a)+b}{\theta}\right]$ where θ = a+b cosx - α , then $\frac{dy}{dx}$ is equal to :

a 1/
$$\theta$$
 b 2/ θ

c 1/
$$\theta^2$$
 d 2/ θ^2

$$\theta^2$$

59. Let K be a set of real number and f:K \rightarrow R such that for all x any y | f(x - f(y | \le | x-y | 5 . If f(3 = 7, then the value of f(9 is equal to

60. If $f(x = \frac{1}{1-x})$ then the darrivative of the composite function f[f(x)] is equal to:

a 0 b ½

c 1 d 2