GGSIPU Mathematics 2005

1. The equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to x-axis is :
ay $-3 z+6=0$
b $3 y-z+6=0$
c $y+3 z+6 ;=0$
(d3y $3 y-2 z+6=0$
2. The distance of the point $3,8,2$ from the line $\frac{x-1)}{2}=\frac{y-3)}{4}=\frac{y-2)}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is :
a 2
b 3 3
c 6
d $\frac{19}{2}$
3. Let $3,4,-1$ and $-1,2,3$ are the end points of a diameter of sphere. Then the redius of the sphere is equal to :
a 1
b 2
c 3
d 9
4. If A, B, C, D are the points $2,3,-1,3,5,-3,1,2,3,3,5,7$ respectively, Then the angle between $A B$ and $C D$ is :
a $\frac{\pi}{2}$
b $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
d $\frac{\pi}{6}$
5. If $\mathrm{u}=\log \left(\frac{x^{2}+y^{2}}{x+y}\right)$, then the value of $\mathrm{x} \frac{\partial u}{\partial x}+\mathrm{y} \frac{\partial u}{\partial y}$ is :
a -1
b 0
c 1
d 2
6. A five digits number is formed by writing the digits $1,2,3,4,5$ in a random order without repetitions. Then the probability that the number is divisible by 4,is :
a3/5
b $18 / 5$
c $1 / 5$
d 6/5
7. Two persons A and B takes turns In throwing a pair of dice.The first person to throw 9 from both dice will be awarded the price. If A throws first, then the probability that B wins the game ,is :
a 9/17
b 8/17
c $8 / 9$
d $1 / 9$
8. The probability that in year of the $22^{\text {nd }}$ century chosen at random, then there will be 53 Sundays, is :
a $3 / 28$
b $\mathbf{2 / 2 8}$
c $7 / 28$
d $5 / 28$
9. The standard deviation of a variable x is 10 .Then the standard deviation of $50+5 x$ is :
a 50
b 550
c 10
d 0.98
10. The octal equivalent of the decimal number 0.3125 is :
a 0.24
b 0.42
c 0.39
d 0.98
11. The hexadecimal equivalent of the binary number 111100001010001 is
a 15 C 3
b C351
c $\mathbf{3 C 5 1}$
d C315
12. A real value of x will satisfy the equation $\left(\frac{3-4 i x}{3+4 i x}\right)=\alpha-I \beta \alpha$ and β are real, If :
a $\quad \alpha^{2}-\beta^{2}=-1$
b $\quad \alpha^{2}-\beta^{2}=1$
c $\alpha^{2}+\beta^{2}=1$
d $\alpha^{2}-\beta^{2}=2$
13. If ω is a complex cube root of unity, then the value of

$$
\frac{p+q \omega+r \omega^{2}}{r+p \omega+q \omega^{2}}+\frac{p+q \omega+r \omega^{2}}{q+r \omega+p \omega^{2}} \quad p, q, r \in \mathrm{R} \text { is equal to: }
$$

a 0
b 1
c $-\mathbf{1}$
d 2
14. If P, Q, R, S are represented by the complex numbers $4+I, 1+6 I,-4+3 i,-1-2 i$ respectively, then PQRS is a :
a rectangle b square
c rhombus
d parallelogram
15. If \boldsymbol{n} is a positive integer, then $1+i^{n}+1-i^{n}$ is equal to :
a $\sqrt{2}^{\mathrm{n}-2} \cos \left(\frac{n \pi}{4}\right)$
b $\quad \sqrt{2}^{n-2} \sin \left(\frac{n \pi}{4}\right)$
c $\sqrt{2}^{n+2} \cos \left(\frac{n \pi}{4}\right)$
d $\sqrt{2}^{n+2} \sin \left(\frac{n \pi}{4}\right)$
16. The number of ways in which 9 persons can be divided into three equal groups is :
a 1680
b 840
c 560 d 280
17. A dictionary is printed consisting of 7 letters words only that can be made with a letters of the word CRICKET.If the words are printed are alphabetical order is an ordinary dictionary,then the number of words are before the word CRICKET is :
a 530
b 480
c 531 d 481
18. If the sum of the coefficient in the expansion of $x+y{ }^{n}$ is 1024 , then the value of the greatest coefficient in the expansion is :
a 356
b 252
c 210
d 120
19. The value of the determinant
|10! 11! 12 !
11! 12! 13 ! is:
12! 13! 14!
a $210!11!$
b 2 10!13!
b 210!11!12! d 211!12!13!
20. If A and B are 3×3 matrices such that $A B=B$ and $B A=A$,than :
a $A^{2}=A$ and $B^{2} \neq B$
b $A^{2} \neq A$ and $B^{2}=B$
c $A^{2}=A$ and $B^{2}=B$
d $A^{2} \neq A$ and $B^{2} \neq B$
21. If the points $x x_{1}, y_{1} ; \prime\left(x_{2}, y_{2}\right)$ and x_{3}, y_{3} are collinear, then the rank of the matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right] \text { will always be less than : }} \\
& \begin{array}{ccccc}
\text { a } & 2 & \text { b } 3
\end{array} \\
&
\end{aligned}
$$

22. The system of equations; $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=6$ has number solution for :
a $\lambda=3, \mu=10 \quad$ b $\lambda=3, \mu \neq 10$
r $\lambda \neq 3, \mu \neq 10 \quad d$ none of these
23. If $\mathrm{A}=\left|\begin{array}{lll}\sin (\theta+\alpha & \cos (\theta+\alpha) & 1 \\ \sin (\theta+\beta & \cos (\theta+\beta) & 1 \\ \sin (\theta+\gamma & \cos (\theta+\gamma) & 1\end{array}\right| \quad$ Then :
a $\mathbf{A}=\mathbf{0}$ for all θ
b \mathbf{A} is a odd function of θ
c $\mathbf{A}=\mathbf{0}$ for $\theta=\alpha+\beta+\gamma$
$\mathbf{d} \mathbf{A}$ is a independent of θ
24. An investigator interviewed 100 students to determine the performance of three drinks milk,coffy and tea; $\mathbf{2 0}$ students take milk and coffee , $\mathbf{3 0}$ students take coffee and tea, 25 students take milk and tea, 12 students take milk only, 5 students take coffee only and 8 students take tea only.Then the number of students who did not take any drinks any of three,is :
a 10
b 20
c 25
d 30
25. Let $Y=\{1,2,3,4,5\}, A=\{1,2\}, B=\{3,4,5\}$ and ϕ denots null set.If $A x B$ denotes Cartesian product of the sets A and B,then $Y x A \cap y x B$ is :
a Y
b A
b B
d ϕ
26. let $A=\{2,3,4,5, \ldots, 16,17,18\}$. Let \approx be the equivalence relation on $A x A$ Cartesian product of A and A,defined by $a, b \approx c, d$ if $a d=b c$, then the number of ordered pairs of the equivalence class of $\mathbf{3 , 2}$ is :
a 4
b 5
C 6
d 7
27. A question 'who have studied Physics?' was asked to three students A, B and C. The question was answered correctly as it is true that If A studied Physics,then B also studied Physics but it is false statement that if C studied Physics,then B also studied physics. Then physics was studied by :
a both A and B
b only A
c only B
d only C
28. If a, b be two fixed positive integers such that $f\left(a+x=b+\left[b^{3}+1-3 b^{2} f x+3 b\{f x\}-\left\{f(x]^{3}\right]^{1 / 3}\right.\right.$ for all real x,then $f(x$ is a periodic function with period :
a a
b 2a
c I b
d 2 b
29. The domain of the function $f\left(x=\log _{3}+x \quad x^{2}-1\right.$ is :
a $-3,-1 \cup 1, \infty$
b $[-3,-1] \cup[1, \infty$
c $-3,-2 \cup-2,-1 \cup 1, \infty$
d $[-3,-2 \cup-2,-1 \cup 1, \infty$
30. The value of $\cot 70^{\circ}+4 \cos 70^{\circ}$ is :
a 1/ $\sqrt{3}$
b $\sqrt{3}$
c $2 \sqrt{3}$
d $1 / 2$
31. The equation of $\sin x+\sin y+\sin z=-3$ for $0 \leq x \leq 2 \pi, 0 \leq y \leq 2 \pi, 0 \leq z \leq 2 \pi$ has :
a one solution
b two sets of solution
c four sets of solution
d no solution
32. If $\theta=\sin ^{-1} x+=\cos ^{-1} x-\tan ^{-1} x, x \geq 0$ then the smallest interval in which θ lies is :
a $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{4}$
b $0 \leq \theta \leq \frac{\pi}{4}$
c $-\frac{\pi}{4} \leq \theta \leq 0$
d $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$
33. Let A, B and C are the angles Of a plain triangle and $\tan \left(\frac{A}{2}\right)=\frac{1}{3}, \tan \left(\frac{B}{2}\right)=\frac{2}{3}$. Than $\tan \left(\frac{C}{2}\right)$ is equal to :
a $7 / 9$
b2/9
c $1 / 3$
d 2/3
$2 / 3$
34. If $\alpha, \beta \quad \alpha \neq \beta$ satisfies the question a $\cos \theta+b \sin \theta=c$, then the value of $\tan \left(\frac{a+\beta}{2}\right)$ is :
$a b / a \quad b c / a \quad c a / b \quad d c / b$
35. A ray of light passing through the point 1,2 is reflected on the x-axis at a point P and passes through the point 5,3 , then the abscissa of a point P is :
a 3
b $13 / 3$
c 13/ 5
d $13 / 4$
36. The equation $4 x^{2}-24 x y+11 y^{2}=0$ represents :
a two parallel lines
b two perpendicular lines
c two lines through the origin
d a circle
37. The length of the chord joining the points in which the straight line $\frac{x}{3}+\frac{y}{4}=1$ cuts the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=$ $\frac{169}{25}$ is :
a 1
b 2
c 4
d 8
38. The normal to the parabola $y^{2}=8 x$ at the point 2,4 meets the parabola against the point :
a $-18,-12$
b $-\mathbf{- 1 8 , 1 2}$
c 18,12 d 18,
-12
39. If a bar of given length moves with its extremities on two fixed straight lines at right angles,then the locus of any point on bar marked on the bar describes a/an :
a circle b parabola
c ellipse
d hyperbola
40. The straight line $x+y=\sqrt{2} p$ will touch the hyperbola $4 x^{2}-9 y^{2}=36$ if :
a $\mathrm{p} 2=2$
b $p^{2}=5$
c $5 p^{2}=2$
d $2 p^{2}=5$
41. The function $\mathrm{f}\left(\mathrm{x}=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}\right.$ is not defined at $\mathrm{x}=\pi$. The value of $\mathrm{f}(\pi, \mathrm{so}$ that fx is continuous at $\mathrm{x}=\pi$, is :
a $\quad-1 / 2$
b $1 / 2$
c $\mathbf{- 1}$
d 1
42. If $\mathrm{fx}=\sin ^{2} \mathrm{x}$ and the composite function $\mathrm{gf}(\mathrm{x}=|\sin \mathrm{x}|$, then the function gx is equal to :
a $\sqrt{x-1}$
b \sqrt{x}
c $\sqrt{x+1}$
d $-\sqrt{x}$
43. Area of the figure bounded by the curves $\mathbf{y = | x - 1 |}$ and $\mathbf{y = 3 - | x |}$ is :
a 1 sq. units
b 2 sq.units
c 3 sq. units d 4 sq. units
44. Let $\mathrm{x}=\left[\frac{a+2 b}{a+b}\right]$ and $\mathrm{y}=\frac{a}{b}$, where a and b are positive integers.If $\mathrm{y}^{2}>2$, then :
a $x^{2} \leq 2$
b $x^{2}<2$
c $x^{2}>2$
d $x^{2} \geq 2$
45. $\int_{0}^{1} \tan ^{-1}\left(\frac{1}{x-\frac{2}{x+1}}\right) d x$ is :
a $\quad \log 2 \quad b \quad-\log 2$
c $\frac{\pi}{2}+\log 2 d \frac{\pi}{2}-\log 2$
46. The curves $\mathrm{x}=\log \mathrm{y}+\mathrm{e}$ and $\mathrm{y}=\log \left(\frac{1}{x}\right)$:
a do not meet
b meet at one point
c meet at two points
d meet at more than two points
47. $\lim _{x \rightarrow 0} \frac{\cos (\sin x)-1}{x^{2}}$ equals :
a 0 b -1

$$
c \| / 2: d \quad-1 / 2
$$

49. If $\hat{\imath}, \hat{\jmath}, \widehat{k}$ are units vectors and $|i \vec{i}|=a$, them the value of

$$
\begin{aligned}
& \left|\hat{\imath} \times|\hat{i}|^{2}+|\hat{\jmath} \times \vec{i}|^{2}+|\widehat{k} \times \hat{l}|^{2}\right. \text { is: } \\
& \quad a \quad a^{2} \quad b \quad 3 a a^{2} \text { c } 2 a^{2} d 4 a^{2}
\end{aligned}
$$

50. If the area above the x-axis bounded by the curves $y=2^{k x}$ and $x=0$ and $x=2$ is $\frac{3}{\log 2}$, then the value of k is :
a $1 / 2$
b 1
c
-1
d 2
51. The value of $\int_{a}^{b}-\frac{x}{|x|} \mathrm{dx}, \mathrm{a}<\mathrm{b}<0$ is:
a $-|\mathbf{a}|+|\mathbf{b}|$
b $\quad|\mathbf{b}|-|\mathbf{a}|$
c $|\mathbf{a}|-|\mathbf{b}|$
d $\quad|a|+|b|$
52. The value of

$$
\int_{-2}^{2}\left[p \log \left(\frac{1+x}{1-x}\right)+q \log \left(\frac{1-x}{1+x}\right)^{-2}+r\right] \mathrm{dx} \text { depends on: }
$$

a The value of p
b The value of q
c The value of r
d The value of p and q
53. A curve having the condition that the slope of tengent at some point is two times the slope of the straight line joining the same point to the oigin of co-ordinates, is a/an :
a circle
b ellipse
c parabola
d hyperbola
54. If a is an arbitrary constant, then solution of differential equation

$$
\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0 \text { is : }
$$

a $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=a$
b $y \sqrt{1-y^{2}}+x \sqrt{1-x^{2}}=a$
c $x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}=a$
d $y \sqrt{1-y^{2}}-x \sqrt{1-x^{2}}=\mathrm{a}$
55. A particle is moving along the curve $x=a t^{2}+b t+c$.If $a c=b^{2}$, then the particle would be moving with uniform :
a rotation
b velocity
c accelererion d retardation
56. The solution of the equation $\mathrm{x}^{2} \frac{d^{2} y}{d x^{2}}=\log \mathrm{x}$ when $\mathrm{x}=1, \mathrm{y}=0$ and $\frac{d y}{d x}=-1$ is :
a $\frac{1}{2} \log x^{2}+\log x$
b $\frac{1}{2}\left(b g x^{2}-\log x\right.$
c $-\frac{1}{2} \log x^{2}+\log x$
d $-\frac{1}{2} \log x^{2}-\log x$
57. Let the unit vecters $\overrightarrow{i n} \vec{a} d \vec{b}$ be the pe pendicelar to each other and the unit vector $\dot{t}^{ \pm}$be inclined at an angle θ to both in and
a $\alpha=\cot \theta, \beta=\sin \theta, \gamma^{2}=\cos 2 \theta$
b $\alpha=\cos \theta, \beta=\cos \theta, \gamma^{2}=\cos 2 \theta$
c $\alpha=\cos \theta, \beta=\sin \theta, \gamma^{2}=\cos 2 \theta$
d $\alpha=\sin \theta, \beta=\cos \theta, \gamma^{2}=-\cos 2 \theta$
58. If $\mathrm{y}=\frac{1}{\sqrt{a^{2}-b^{2}}} \cos ^{-1}\left[\frac{a \cos (x-a)+b}{g}\right]$ where $\theta=\mathrm{a}+\mathrm{b} \cos \mathrm{x}-\alpha$, then $\frac{d y}{d x}$ is equal to :
a 1/ θ
b 2/ θ
c 1/ θ^{2}
d 2/ θ^{2}
59. Let K be a set of real number and $f: K \rightarrow R$ such that for all x any $y \mid f\left(x-f\left(y\left|\leq|x-y|^{5}\right.\right.\right.$. If $f(3=7$, then the value of $f(9$ is equal to
a 5
b 7
c 9
d 11
60. If $f\left(x=\frac{1}{1-x}\right.$ then the darrivative of the composite function $f[f\{f(x\}]$ is equal to :
a 0
b $1 / 2$
c 1
d 2

