(1) (3) Bicarbonate ion Carbonic acid ## UGC NET PAPER 2 NOVEMBER 05, 2017 SHIFT 1 1 ENVIRONMENTAL SCIENCES QUESTION PAPER | Note | | 3.5 | per co
npulso | | s fifty | (50) objecti | ve typ | e que | stions of | two (2) | marks c | each. All quest | ions | | |------|--|-------|------------------|--------|---------|--------------|---------|---------|---------------------------|---------|---------|-----------------|--------|--| | 1. | The | inner | most la | ayer c | of the | earth is ma | de up | of: | | | | | | | | | (1) | Silic | on and | d alur | nina | | (2) | Silic | on and r | nagnesi | um | | | | | | (3) | Silic | on and | d nick | el | | (4) | Nic. | kel and in | ron | | | | | | = | | | VV 10 | 14 10 | | | | 0 100 | | 44. 4 | | | | | | 2. | | | | | d thro | ugh a verti | | 0.000 | | alled: | | | | | | | (1) | | ection | | | | (2) | | usion | | | | | | | | (3) | Con | vectio. | n | | | (4) | Tur | bulance | | | | | | | 3. | Whi | ch of | the fol | llowin | ig stal | tement(s) is | /are t | rue fo | or an isot | hermal | process | ; ? | | | | | Which of the following statement(s) is/are true for an isothermal process? (a) There is no change in enthalpy | | | | | | | | | | | | | | | | (b) | | | | | | | | | | | | | | | | (c) | | | | | mperature | | | | 40, | | | | | | | 35 | | e corr | 1000 | | • | | | | | | | | | | | (1) | (a) c | only | | | | (2) | (b) a | and (c) or | aly | | | | | | | (3) | (a) a | ınd (b) | only | | | (4) | (a), | (b) and (| c) | | | | | | 4. | Mat | | List- | I | List-I | I. Identify | the cor | rect a | L | ist-II | code g | iven below : | | | | | V 1 | | (Aeros | | | | EV | 22 | 18/000 | ource) | 2 | | | | | | (a) | | nary n | | | | (i) | | anic mat | | | | | | | | (b) | | ndary | | | | (ii) | | Soot from biomass burning | | | | | | | | (c) | Prin | nary ai | nthroj | poger | iic aerosol | (iii) | | phate a
ssions | erosol | from | powerplant | SO_2 | | | | (d) | Seco | ndary | anth | ropog | enic aerosc | ol (iv) | Soil | dust | | | | | | | | Cod | Code: | | | | | | | | | | | | | | | | (a) | (b) | (c) | (d) | | | | | | | | | | | | (1) | (i) | (ii) | (iii) | (iv) | | | | | | | | | | | | (2) | (ii) | (iii) | (iv) | (i) | | | | | | | | | | | | (3) | (iii) | (iv) | (i) | (ii) | | | | | | | | | | | | (4) | (iv) | (i) | (ii) | (iii) | | | | | | | | | | | 5. | Whi | ch of | the fol | lowin | g is n | ot a heavy | metal | ? | | | | | | | | | (1) | Leac | | | (2) | Mercury | | (3) | Bismut | h | (4) | Aluminum | | | | 6. | The | domii | nant d | issolv | ed ca | rbon dioxid | le spec | ties in | sea wate | er is : | | | | | (2) Carbonate ion Aquated carbon dioxide | 7. | Anot | | A' und | der the same conc | | | | absorbance of 0.42.
0.36. What is the | |-----|--------------|--|----------------|--|-----------------------|---|----------------|--| | | | | | $0.35 \text{ mol } L^{-1}$ | (3) | $0.12 \text{ mol } L^{-1}$ | (4) | 0.10mol L^{-1} | | 8. | Whic | th one of the follo
Sulphur | wing
(2) | is not a soil micro
Boron | onutri
(3) | ent ?
Iron | (4) | Zinc | | 9. | | e of NO ₂ be 0.693
1.44 days | | ts residence time
1.0 day | is: (3) | 0.693 day | (4) | 0.48 day | | 10. | | | | ula of PAN type
C _X H _Y OO ₂ NO ₂ | - 24- | | (4) | $C_x H_Y ONO_2$ | | 11. | In ar
(1) | ecosystem, whic
Herbivores | h one
(2) | of the following
Omnivores | | nicro-consumer ?
Carnivores | (4) | Saprotrophs | | 12. | A str
(1) | ructure with hund
Guild | dreds
(2) | of species non-lin
Food chain | early
(3) | interlinked for the
Food web | eir liv
(4) | elyhood is called :
Pyramid | | 13. | The j | process of examir | nation | of change in spec | cies di | iversity between e | ecosys | stems is a measure | | | (1)
(3) | Alpha diversity
Gamma diversit | у | (2)
(4) | | diversity
etic diversity | | | | 14. | Red t | tide is caused by | : | 40 | | | | | | | (1) | Diatoms | (2) | Dianoflagillates | (3) | Navicula | (4) | Desmids | | 15. | | inidirectional seri
stable aquatic co | | 2.078 | ninhal | oited water body to | o a wa | iter body inhabited | | | (1) | Eutrophication | | 92E | (3) | Regeneration | (4) | Reclamation | | 16. | Unde | 37 | y day, | , the maximum d | epth o | of the ocean at w | hich p | hotosynthesis can | | | (1) | 10 m | (2) | 250 m | (3) | 80 m | (4) | 600 m | | 17. | The (1) (3) | organism likely to
Blue - green alga
Protozoan | | nost similar to the | first 1
(2)
(4) | ife form that evol
Methane produc
Red algae | | | | 18. | A lar
(1) | ndform that resul
Alluvial fan | ts fror
(2) | n free fall of rocks
Debris flow | s is ca
(3) | lled :
Talus slope | (4) | Valley fills | | 19. | In In
(1) | dia lignite is min
Neyveli | ed in :
(2) | Jharia | (3) | Singrauli | (4) | Singareni | | 20. | Tree
(1) | height can be me
Resourcesat | easure
(2) | d using ren
Landsat | note se | ensing
(3) | ; data from :
Cartosat | (4) | RISAT | |-----|---|--|--|--|----------------------|--------------------------|--------------------------------------|---------------|-------------------------------------| | 21. | Ecos (1) (3) | ystem restoration
Ecosystem integ
Physical enviro | rity | | ring :
(2)
(4) | | iversity
ystem resistance | | | | 22. | | insolation is 800 | W/m | ² , the effici | ency o | f the | | | at upto 2.5 A. If the ~ 10.2 % | | 00 | X Z | | 84 (20) | | | 90.V | | (-) | * MAT - SM - 60 | | 23. | | ch of the followin
²³⁸ U
₉₂ U | | | | (3) | ²³³ ₉₂ U | (4) | ²³⁹ ₉₄ U | | 24. | Whice (1) | ch of the followir
Crude oil | ig fuel
(2) | s has minir
CNG | num n | itrogo
(3) | en content ?
Producer gas | (4) | LPG | | 25. | Max. (1) (3) | imum sulfur cont
Bituminous
Lignite | ent is | found in w | hich g
(2)
(4) | Sub- | of coal ?
- bituminous
nracite | | | | 26. | (1) | ch of the followir
Cd Te, thin film
Amorphous Si : | | | (2) | Si, p | olycrystalline | ? | | | 27. | | se level of 70 dB c
10 ⁻⁵ Wm ⁻² | | | | | | (4) | 10 ^{-3.5} Wm ⁻² | | 28. | | 5°C and 1 atm. p:
1310 μg/m ³ | | | | | | | | | 29. | Reas
Reas
Choo
(1)
(2)
(3) | son (R): ertion (A): Arse son (R): Arse ose the correct ar Both (A) and (R | enic (II
enic (V
aswer
(are o
(R) is f | I) is more to binds the correct and correct and calse. | oxic the sulfhy | nan ar
/dryl
the c | senic (V). | ngly th | A). | | 30. | | half life period of
disintegration ?
16 h | f a rad
(2) | ioactive su
96 h | bstanc | e is 32
(3) | 2 h. How much t
128 h | ime it
(4) | would take for its 64 h | | 31. | iviau | L | ist-I | | mae-11 | . ideittii y | fy the correct answer from the code given below : List-II | |------------|--|--|--|--|--|--|---| | | Sc 31 | | ticide | s) | | 10560450 | (Target) | | | (a) | Avic | | | | (i) | | | | (b) | | nfecta | nt | | (ii | | | | (c) | | picide | | | 35. | iii) Birds | | | (d) | Pisci | cide | | | (ix | iv) Micro-organisms | | | Cod | 9 Q | (1.) | 7.3 | / TV | | | | | (1) | (a) | (b) | (c) | (d) | | | | | (1) | (i) | (ii) | (iii) | (iv) | | | | | (2) | (ii) | (i) | (iii) | (iv) | | | | | (3) | (iii) | (iv) | (ii) | (i) | | | | | (4) | (iv) | (ii) | (i) | (iii) | | | | 32. | Nlite | ogan f | ivation | n in n | aturo | ie nat acc | complished by : | | 04. | (1) | 100 | tning | | ature | is not acc | (2) Cyanobacteria | | | (3) | Rotif | | | | | (4) Bacteria in root nodules of Leguminous plants | | | (.7) | KOLII | C.1., | | | | (1) Bacteria in root notates or Eegaminous plants | | 33. | Whi | ch cou | intry I | nas or | oted or | ut of Par | ris Agreement on climate change ? | | more en | | | | | | | a (3) Australia (4) Russia | | | 8 6 | | | | 3 3 | | | | 20 | | | | | | | | | 34. | Und | er the | EIA 1 | notific | ation | of 14 th S | September, 2006, preparation of EIA is not required for | | 34. | | ler the
project | | | | of 14 th S | September, 2006, preparation of EIA is not required for | | 34. | | project | | ng in | the: | of 14 th S | September, 2006, preparation of EIA is not required for (2) Category 'B' projects | | 34. | the j | project
Cate | s falli | ng in
A′ pr | the :
ojects | of 14 th S | | | | the _]
(1)
(3) | project
Cate
Cate | s falli:
gory '
gory I | ng in
A' pr
B ₁ pro | the :
ojects
ojects | | (2) Category 'B' projects (4) Category B ₂ projects | | 34.
35. | the j
(1)
(3)
Whi | project
Cate
Cate
ch typ | s falli:
gory '
gory I
e of p | ng in
A' pr
B ₁ pro
roject | the :
ojects
ojects
s usua | illy requi | (2) Category 'B' projects (4) Category B ₂ projects iire an EIA ? | | | the j
(1)
(3)
Whi
(1) | project
Cate
Cate
ch typ
Com | s fallingory ' gory l e of p munit | ng in
A' pr
B ₁ pro
roject
sy gar | the :
ojects
ojects
s usua
den d | illy requi
evelopm | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? | | | the j (1) (3) Whi (1) (2) | project
Cate
Cate
ch typ
Com
Mini | s fallingory f
gory f
gory f
e of p
munit
ng an | ng in
A' pr
3 ₁ pro
roject
y gar
d mir | the :
ojects
ojects
s usua
den d
ieral d | illy requi
evelopm | (2) Category 'B' projects (4) Category B ₂ projects iire an EIA ? | | | the j (1) (3) Whi (1) (2) (3) | project
Cate
Cate
ch typ
Com
Mini
Outc | s fallingory for a factor of the second t | ng in
A' pro
Toject
Ty gar
d mir
ecreat | the :
ojects
s usua
den d
neral d | lly requi
evelopm
evelopm | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? nent nent projects | | | the j (1) (3) Whi (1) (2) | project
Cate
Cate
ch typ
Com
Mini
Outc | s fallingory for a factor of the second t | ng in
A' pro
Toject
Ty gar
d mir
ecreat | the :
ojects
s usua
den d
neral d | illy requi
evelopm | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? nent nent projects | | | the j (1) (3) Whi (1) (2) (3) (4) | project
Cate
Cate
ch typ
Com
Mini
Outo
Deve | s fallingory for the second property of s | ng in
A' pro
roject
ty gar
d mir
ecreat
ent of | the : ojects s usua den d neral d nion comn | illy requi
evelopm
evelopm
nunity w | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? nent nent projects | | 35. | the j (1) (3) Whi (1) (2) (3) (4) | project
Cate
Cate
ch typ
Com
Mini
Outo
Deve | s fallingory for gory I for muniting an elopmonth List-I | ng in
A' pro
roject
ty gar
d mir
ecreat
ent of | the : ojects s usua den d neral d nion comn | illy requi
evelopm
evelopm
nunity w | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? nent nent nent projects | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate | project
Cate
Cate
ch typ
Com
Mini
Outo
Deve
ch the
Lis
(Seri | s fallingory for gory I see of permunition for recommended to the contract of | ng in A' prosect by gar ecreat ent of and | the : ojects s usua den d neral d nion comn | dly requi
evelopm
evelopm
nunity w
. Identify
(E | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? nent nent projects vells fy the correct answer from the code given below : List-II Environmental labelling) | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate | project Cate Cate ch typ Com Mini Outo Deve ch the Lis (Seri | s fallingory from the of properties of the second testing and the second testing and the second testing testing the second testing testing the second testing testing the second testing te | ng in A' pro Barroject by garroject ecreate ent of and Barrogen ecreate ent of ecreat | the : ojects s usua den d neral d nion comn | ally requicvelopmonerates where the contraction of | (2) Category 'B' projects (4) Category B ₂ projects aire an EIA ? nent ment projects vells fy the correct answer from the code given below : List-II Environmental labelling) Principles and procedures | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) | project Cate Cate Cate Ch typ Com Mini Outo Deve ch the List (Seri ISO ISO | s fallingory from the of properties of the contract con | ng in A' pro B ₁ pro Project By gar descreated and By | the : ojects s usua den d neral d nion comn | ally requicevelopments. Identify (E (i) Pr (ii) Se | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA ? nent ment projects vells fy the correct answer from the code given below : List-II Environmental labelling) Principles and procedures self declaration of environmental claims | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) (c) | project Cate Cate Cate Ch typ Com Mini Outo Deve ch the Lis (Seri ISO ISO ISO | s fallingory from the gory from the grand from the log model of mo | ng in A' pro B ₁ pro Project By gar degree at the enternal of | the : ojects s usua den d neral d nion comn | ally requicevelopments. aunity work in the control of | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA? nent ment projects vells fy the correct answer from the code given below: List-II Environmental labelling) Principles and procedures self declaration of environmental claims symbols | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) (c) (d) | ch typ Com Mini Outc Ch the Lis (Seri ISO ISO ISO ISO | s fallingory from the of properties of the contract con | ng in A' pro B ₁ pro Project By gar degree at the enternal of | the : ojects s usua den d neral d nion comn | ally requicevelopments. aunity work in the control of | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA ? nent ment projects vells fy the correct answer from the code given below : List-II Environmental labelling) Principles and procedures self declaration of environmental claims | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) (c) | ch typ Com Mini Outo Deve ch the Lis (Seri ISO ISO ISO ISO ISO ISO | s fallingory factoring and door relaped List-I 14021 14023 14024 | ng in A' pro Barroject by garroject descripted mire ecreate ent of and Barroject and Barroject betweent of Barroject betweent betwe | the : ojects ojects s usua den d neral d nion comn | ally requicevelopments. aunity work in the control of | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA? nent ment projects vells fy the correct answer from the code given below: List-II Environmental labelling) Principles and procedures self declaration of environmental claims symbols | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) (c) (d) Cod | ch typ Com Mini Outo Deve ch the Lis (Seri ISO | s fallingory for gory I | ng in A' pro B ₁ pro Project By gar degree at the enternal of | the : ojects ojects s usua den d neral d nion comm List-II | ally requicevelopments. aunity work in the control of | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA? nent ment projects vells fy the correct answer from the code given below: List-II Environmental labelling) Principles and procedures self declaration of environmental claims symbols | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) (c) (d) Cod (1) | ch typ Com Mini Outo Deve ch the List ISO | s fallingory factoring and loor recommendation of the loop market t | ng in A' pro A' project by gar decreased and (c) (iii) | the : ojects ojects s usua den d neral d nion comm List-II (d) (iv) | ally requicevelopments. aunity work in the control of | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA? nent ment projects vells fy the correct answer from the code given below: List-II Environmental labelling) Principles and procedures self declaration of environmental claims symbols | | 35. | the j (1) (3) Whi (1) (2) (3) (4) Mate (a) (b) (c) (d) Cod | ch typ Com Mini Outo Deve ch the Lis (Seri ISO | s fallingory for gory I | ng in A' pro Barroject by garroject decreased mired and and (c) | the : ojects ojects s usua den d neral d nion comm List-II | ally requicevelopments. aunity work in the control of | (2) Category 'B' projects (4) Category B ₂ projects tire an EIA? nent ment projects vells fy the correct answer from the code given below: List-II Environmental labelling) Principles and procedures self declaration of environmental claims symbols | 42. (1) (2) (3) (4) | 37. | Mat | en the | List-l | | List-II. Identify ti | ne cor | rect answer | from | the code given below :
List-II | |-----|-----|---------|----------|----------|----------------------|---------|--------------|-------------|---| | | | | (Act | s) | | (Year) | | | | | | (a) | Envi | ironm | ental : | 1991 | | | | | | | (b) | Air | (Preve | ention | and Control of P | ollutio | on) Act | (i)
(ii) | 1977 | | | (c) | Wate | er (Pre | eventi | on and Control o | f Poll | ution) Act | (iii) | 1981 | | | (d) | Publ | lic Lia | bility | Insurance Act | | | (iv) | 1986 | | | Cod | e : | | | | | | | | | | | (a) | (b) | (c) | (d) | | | | | | | (1) | (i) | (ii) | (iii) | (iv) | | | | | | | (2) | (ii) | (iii) | (iv) | (i) | | | | | | | (3) | (iii) | (iv) | (i) | (ii) | | | | | | | (4) | (iv) | (iii) | (ii) | (i) | | | | . de | | | | | | | | | | | CUIT | | 38. | | d fore | | | 2.77 | | (D) | 93 | ove the environment and safe
g principles of environmental | | | (1) | Pollt | uter pa | ays pr | rinciple | (2) | Precaution | ary p | principle | | | (3) | Prin | ciple c | of stric | t liability | (4) | Moral dut | y of tl | he state | | | | | | | | | seles a | | | | 39. | Whi | ch is t | the co | rrect (| classification of fo | rests | under the Ir | ndian | Forest Act, 1927? | | | (1) | Gras | sland | s, trop | oical forests, wetla | ands | | | | | | (2) | Prot | ected | forest, | reserved forest, | village | eforest | | | | | (3) | Wild | llife sa | anctua | ıry, national park | s, bios | sphere reser | ve | | | | (4) | Priv | ate fo | rest, s | ocial forest, town | fores | t | | | | | | | | | | | | | | | 40. | Har | dening | g of th | ie stec | el releases the haz | ardou | ıs waste cor | itainii | ng: | | | (1) | Brin | e slud | ge co | ntaining mercury | (2) | Cyanide - | nitrat | e containing sludge | | | (3) | Leac | l bear | ing re | sidues | (4) | Tar contai | ning | waste | | | | | | | | | | | | | 41. | Red | colou | red co | ntain | ers in the hospital | ls are | used to dur | np: | | | | (1) | Was | te froi | m labo | oratory cultures | (2) | House kee | ping | waste | | | (3) | Hun | nan ai | natom | ical waste | (4) | Waste sha | rps | | Mercury pollution is considered hazardous to human health because, Mercury accumulates and its concentration increases high up in the food chain Mercury is highly soluble in water and easily absorbed by human body Mercury is a pure metal and hard to digest Mercury is heavy and is not dispersed by the wind | 43. | In the context of | Gaussian Plu | me Dispersion | model | assumptions, | consider t | he following | |-----|-------------------|--------------|---------------|-------|--------------|------------|--------------| | | statements: | | | | | | | - The pollutants have the same density as the air surrounding them. (a) - (b) The atmosphere is stable. Choose the correct code: - Both (a) and (b) are true (1) - (2)(a) is true, (b) is false - (3)(a) is false, (b) is true - (4)Both (a) and (b) are false (1)Histogram Frequency polygon (2) (3)Box plot (4)Pie chart (1) - 24 - (4) - (1)0.46 - (2) 4.26 - 2.18(4) 47. In total global emissions of $$CO_2$$, India's contribution is about : - ~ 3% (1) - (2) $\sim 6\%$ (3) $\sim 9\%$ - (4)~ 12% 48. According to IPCC, in order to restrict global mean temperature rise to 2°C by the year 2050, global energy related $$CO_2$$ emissions (reference year 2005) need to be cut down by the year 2050 by : - (1)~ 50% - $(2) \sim 90\%$ - (3) $\sim 40\%$ (4) $\sim 30\%$ ## Global average water consumption (L/person/day) is : 49. - ~ 53 (1) - $(2) \sim 20$ - $(4) \sim 80$ $1.4 \times 10^4 \text{ m}^3 / \text{day}$ (1) $2.8 \times 10^4 \text{ m}^3 / \text{day}$ (2) $6.1 \times 10^4 \text{ m}^3 / \text{day}$ (3) $11.3 \times 10^4 \text{ m}^3 / \text{day}$ (4) Space For Rough Work