DAY and TIME		COURS	SUBJECT		
DAY-1 10.30 am to 12.30 pm ME/M.Tech/M.Arch/MB (Infrastructure Manageme courses offered by VTU)			ent) SCIENCES		
SESSION: FORENOON	U	VCE/UBI	CE/UBDTCE BME/ME		
MAXIMUM MARKS	TOTAL D	URATION			
100	150 MIN	150 MINUTES CET NO. Q		120 MINUTES	
MENTION YOUR PG	CET NO.			BOOKLET DETAILS	
		VERSION	CODE	SERIAL NUMBER	
		A -	1	155549	

DOs:

- Check whether the PGCET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- Ensure whether the circles corresponding to course and the specific branch have been shaded on the OMR answer sheet and also ensure the circle against the appropriate paper you are answering in Part-B is also shaded.
- This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.25 a.m.
- The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'Ts:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.
- The 3rd Bell rings at 10.30 a.m., till then;
 - Do not remove the paper seal / polythene bag of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 75 (items) questions and each question will have one statement and four answers. (Four different options / responses.)
- 2. After the 3rd Bell is rung at 10.30 a.m., remove the paper seal / polythene bag of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- During the subsequent 120 minutes:
 - Read each question (item) carefully.
 - Choose one correct answer from out of the four available responses (options / choices) given under each question / item. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose only one response for each item.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last Bell is rung at 12.30 pm, stop marking on the OMR answer sheet and affix your left hand thumb impression on the OMR answer sheet as per the instructions.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating the top sheet, the invigilator will return the bottom sheet replica (Candidate's copy) to you to . carry home for self-evaluation.
- Preserve the replica of the OMR answer sheet for a minimum period of ONE year.
- Only Non-programmable calculators are allowed.

Marks Distribution

Part-A: (Section I) 30 Questions: $30 \times 1 = 30$ (Section II) 15 Questions: $15 \times 2 = 30$ Part-B: (Section I) 20 Questions: $20 \times 1 = 20$ (Section II) 10 Questions: $10 \times 2 = 20$

Turn Over

ELECTRICAL SCIENCE

IMPORTANT INSTRUCTIONS AND BRANCHWISE INDEX FOR THE CANDIDATES

Question Nos. 1 to 45 is compulsory and common to all the branches. Question Nos. 46 to 75 are optional. Sub-branches are there in this booklet. The candidate has to opt any one branch according to his/her Application Form.

Cb-bsb	Sub-branch Subject		No.
Sub-branch	Subject	From	To
1.	Electrical and Electronics Engineering (E & E)	12	16
2.	Electronics and Communication Engineering (E & C) & Telecommunication Engineering (TC)	17	21
3.	Bio-Medical Engineering (BME)* & Medical Electronics (ME)	22	26
4.	Instrumentatin Technology (IT)	27	31

007

PART – A (Common to E&E / E&C / TC / BME / ME / IT)

SECTION-I

Each question carries one mark.

 $(30\times1=30)$

1. The matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -2 & -4 & -6 \end{bmatrix}$$
 is

(A) Singular

(B) Non-singular

(C) Symmetric

(D) Scalar matrix

2. The differential equation
$$\frac{dy}{dx} = y^2$$
 is

(A) Linear

(B) Non-linear

(C) Quasi-linear

(D) None of these

3. If A and B are mutually exclusive events, then
$$P(A \cup B) =$$

- (A) $P(A) + P(B) P(A \cap B)$
- (B) P(A) + P(B)

(C) P(A) - P(B)

(D) $P(A) \times P(B)$

4. If r is the correlation coefficient, then which of the following is correct?

(A) r > 1

 $(B) \quad r > 0 \quad .$

(C) $0 \le r \le 1$

(D) $-1 \le r \le 1$

5. The Gray Code equivalent of Binary 1100 is

(A) 1011

(B) 1101

(C) 1010

(D) 1100

Space For Rough Work

collegedunias
India's largest Student Review Platform

_				
6.	Meaning	of deco	ding	15

(A) Binary addition

(B) Data transmission

(C) Demultiplexing

(D) Storage of binary information

7. Flip flop cannot be called as

- (A) Bistable multivibrator
- (B) One bit memory unit

(C) Latch

(D) Combinational circuit

8. In which of the code only one bit changes at each time?

(A) BCD

(B) Binary code

(C) Excess-3 code

(D) Gray code

9.
$$(0.3125)_{10}$$
 when converted to base 8 gives

 $(A) (0.16)_8$

(B) $(0.26)_8$

(C) $(0.24)_8$

(D) (0.124)₈

- (A) $F = \overline{X}Y + X\overline{Y}$
- (B) $F = XY + X\overline{Y}$
- (C) $F = XY + \overline{X}\overline{Y}$

(D) F = XY + X

11. Intel 8085 microprocessor has two registers known as primary data pointers. These are

(A) Register B & C

(B) Register D & E

(C) Register H & L

(D) Register SP

12. A Boolean variable or its complement is known as

(A) literal

- (B) prime implicant
- (C) essential prime implicant
- (D) non-essential prime implicant

Space For Rough Work

collegedunia India's largest Student Review Platform

- 13. Gauss law relates the electric field intensity E with volume charge density ρ at a point as
 - (A) $\nabla \times \mathbf{E} = \boldsymbol{\varepsilon}_{\mathbf{o}} \, \boldsymbol{\rho}$

- (B) $\nabla .E = \rho/\epsilon_0$
- (C) $\nabla \times \mathbf{E} = \rho/\epsilon_0$
- (D) $\nabla .E = \varepsilon_0 \rho$
- 14. Which of the following method of biasing provides the best operating point stability?
 - (A) Two battery bias
- (B) Collector to base bias

(C) Fixed bias

- (D) Self bias
- 15. In a JFET, at pinch-off voltage applied on the gate
 - (A) The drain current becomes almost zero
 - (B) The drain current begins to decrease
 - (C) The drain current is almost at saturation value
 - (D) The drain-to-source voltage is close to zero volts
- 16. Transistor is a
 - (A) Current controlled current device.
 - (B) Current controlled voltage device.
 - (C) Voltage controlled current device.
 - (D) Voltage controlled voltage device.
- 17. An oscillator of the LC type that has a split capacitor in the circuit is
 - (A) Hartley oscillator
- (B) Colpitts oscillator
- (C) Weinbridge oscillator
- (D) R-C phase shift oscillator
- 18. The 'slew rate' of an operational amplifier indicates
 - (A) how fast its output current can change
 - (B) how fast its output impedance can change
 - (C) how fast its output power can change
 - (D) how fast its output voltage can change when a step input signal is given

Active loaded MOS di	fferential circuit has a
--	--------------------------

(A) high CMRR

(B) low CMRR

(C) high delay

(D) high differential gain

20. The maximum binary number counted by a ripple counter that uses four FlipFlops is

(A) (0000)₂

(B) (1011)₂

(C) $(11111)_2$

(D) (0101)₂

21. The electric field strength at any point equals

- (A) The potential gradient at that point
- (B) Negative of the potential gradient at that point
- (C) The charge at that point
- (D) Negative of the charge at that point

22. The Laplace transform of a unit ramp function starting at t = a, is

(A) $1/(s+a)^2$

(B) $e^{-as}/(s+a)^2$

(C) e^{-as}/s^2

(D) a/s²

23. In an RC coupled CE amplifier, typical value of coupling capacitor is

(A) 1000 pF

(B) $0.1 \, \mu F$

(C) 10 µF

(D) 0.01 μF

24. The device which behaves like a SCR is

(A) UJT

(B) Triac

(C) MOSFET

(D) SRD

25.	Stra	pping is used in a Magnetron to		
	(A)	prevent mode jumping	(B)	reduce frequency drift
	(C)	ensure proper bunching	(D)	dissipate heat
26.	HDI	LC is a term for		
	(A)	Data Communication protocol	(B)	Synchronizing pulse
	(C)	Gain control in receivers	(D)	Error checking
27.	Whi	ch family of the following ICs has t	he hig	hest speed ?
	(A)	DTL	(B)	ECL
	(C)	TTL	(D)	CMOS
28.	Whi	ch of the following microwave tube	s can l	be considered as broadband devices?
	(A)	Magnetrons	(B)	Klystron
	(C)	Reflex Klystron	(D)	Travelling Wave Tube (TWT)
29.	Baud	d is		
	(A)	Total number of bits per second in	each	character
	(B)	Reciprocal of shortest signal elem-	ent in	a character
	(C)	Duration of a character in data tran	nsmiss	ion
	(D)	None		
30.	Ener	gy stored in a capacitor is a function	n of vo	oltage is given by
	(A)	CV ²	(B)	$V^2/2C$
	(C)	CV ² /2	(D)	V/2C

SECTION - II

Each question carries two marks.

 $(15\times 2=30)$

31.
$$L\left[\frac{\sin t}{t}\right] =$$

(A) $\frac{1}{s^2+1}$

(B) cot⁻¹ s

(C) $\cot^{-1}(s-1)$

(D) tan-1 s

32. The eigen values of a matrix
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 are

(A) -2, 3, 6

(B) 0, 3, 6

(C) 2, -3, -6

(D) 0, 0, -6

33. The unit tangent vector to the curve
$$x = t$$
, $y = t^2$, $z = t^3$ at the point $(-1, 1, -1)$ is

- (A) $\frac{1}{\sqrt{14}}(\hat{i} + 2\hat{j} + 3\hat{k})$
- (B) $\frac{1}{\sqrt{14}}(\hat{i}-2\hat{j}+3\hat{k})$
- (C) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$

(D) $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$

34. For a poisson variata x;
$$P(x = 1) = P(x = 2)$$
, the mean of x is

(A) 3

(B) 4

(C) 2

(D) 1

35. The following sequence of instructions are executed by 8085 microprocessor:

The contents of the stack pointer (SP) and the HL register pair on completion of execution of these instructions are

(A)
$$SP = 27FF, HL = 1003$$

(B)
$$SP = 27FD, HL = 1003$$

(C)
$$SP = 27FF, HL = 1006$$

(D)
$$SP = 27FD$$
, $HL = 1006$

36. For the system described by the state equation

$$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.5 & 1 & 2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$$
, if the control signal U is given by $U = [-0.5 - 3 - 5]$

X + V, then the Eigen values of the closed loop system will be

(A)
$$0, -1, -2$$

(B)
$$0, -1, -1$$

(C)
$$-1, -1, -2$$

(D)
$$0 - 1 - 1$$

37. The minimized form of logical expression

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$
 is

(A)
$$\overline{A}\overline{C} + B\overline{C} + \overline{A}B$$

(B)
$$A\overline{C} + \overline{B}C + \overline{A}B$$

(C)
$$\overline{A}C + \overline{B}C + \overline{A}B$$

(D)
$$A\bar{C} + \bar{B}C + A\bar{B}$$

- 38. A class A transformer coupled transistor power amplifier is required to deliver a power output 10 Watts. The maximum power rating of the transistor should not be less than
 - (A) 5 W

(B) 10 W

(C) 20 W

- (D) 40 W
- 39. A second order system has a transfer function given by

$$G(S) = \frac{25}{S^2 + 8S + 25}$$

If the system, initially at rest is subjected to a unit step input at t = 0, the second peak in the response will occur at

(A) π sec

(B) $\pi/3$ sec

(C) $2\pi/3$ sec

- (D) $\pi/2$ sec
- 40. The decimal equivalent of hex number 1A53 is
 - (A) 6793

(B) 6739

(C) 6973

- (D) 6379
- 41. The simplification of the Boolean expression ABC + \overline{ABC} is
 - (A) 0

(B)

(C) A

- (D) BC
- 42. If the input to T-flip flop is 100 Hz signal, the final output of the three T-flip flops in cascade is
 - (A) 1000 Hz

(B) 500 Hz

(C) 333 Hz

(D) 12.5 Hz

43. For the circuit shown in Fig.1, the input resistance Rid will be

Fig. 1

(A) $2R_1$

(B) $2R_1 + R_2$

(C) $2(R_1 + R_2)$

(D) Infinity

44. The Laplace transform of e-2t is

(A) $\frac{1}{2.s}$

(B) $\frac{2}{s}$

(C) $\frac{2}{s+1}$

(D) $\frac{1}{s+2}$

45. In integrated circuits, npn construction is preferred to pnp construction because

- (A) npn construction is cheaper
- (B) to reduce diffusion constant, n-type collector is preferred
- (C) npn construction permits higher packing of elements
- (D) p-type base is preferred

Note: Please choose to answer Part-B below corresponding to your basic degree PART - B

(E & E : ELECTRICAL AND ELECTRONICS ENGINEERING)

SECTION - I

Each question carries one mark.

(B)

(D)

The armature of a DC generator is laminated to (A) reduce the bulk provide passage for cooling air (B) (C) insulate the core reduce the eddy current loss (D) In DC shunt generator the voltage build up is generally restricted by (A) Speed limitation Armature heating

- 48. No Load speed of which of the following DC motor will be highest?
 - (A) Shunt Motor

- (B) Series Motor
- **Cumulative Component Motor**
- Differently Compound Motor (D)

Saturation of the core

- What will happen if the back emf of a DC motor vanishes suddenly?
 - The motor will stop (A)
- The motor will continue to run (B)
- The armature may burn (C)

Insulate the core

- The motor will run noisly (D)
- Which of the following does not change in a transformer?
 - (A) Current

(B) Voltage

(C) Frequency

(D) All of the above

Space For Rough Work

 $(20\times1=20)$

51.		ch of the following is the main acts of the following is	dvantag	e of an auto transformer over a two winding
	(A)	Hysteresis losses are reduced	(B)	Saving in winding material
	(C)	Copper losses are negligible	(D)	Eddy current losses are totally eliminated
52.	In ar	n induction motor, on no load, the	slip is g	generally
	(A)	less than 1%	(B)	1.5%
	(C)	2%	(D)	4%
53.	In a	3 ph Induction Motor, the number zero	of pole	es in the rotor winding is always
	(B)	more than the number of poles in	n the St	ator
	(C)	less than number of poles in Stat		A Sang
	(D)	equal to number of poles in State		
	(D)	equal to number of poles in State	J1	
54.	ZPF	method for an alternator is genera	ally use	d to determine
	(A)	Synchronous Impedance	(B)	Efficiency
	(C)	Voltage regulation	(D)	None
55.	If th then		alterna	tor is constant but the excitation is changed,
	(A)	Pf of the load remains constant		1967
	(B)	reactive component of the outpu	t is char	nged
	(C)	active component of the output i	s chang	ged
	(D)	all of the above	:35	
				î -
56.	Und	er which of the following condition	ns, hunt	ing of synchronous motor is likely to occur?
	(A)	Periodic variations of Load	(B)	Over excitation
	(C)	Over loading for long periods	(D)	Small and constant load
57.	A sy	nchronous motor can be used as a	synchro	onous condenser when it is
	(A)	under loaded	(B)	over loaded
	(C)	under excited	(D)	over excited
		Space	For Ro	igh Work

			pro-	ET ES
58.	The	capacity factor of a plant is eq	ual to	
	(A)	max load/plant capacity	(B)	avg load/max load
	(C)	avg load/plant capacity	(D)	max load/avg load
59.	The	inductance of the line is minir	num when	
	(A)	GMD is high	(B)	GMR is high
	(C)	both GMD & GMR are high	(D)	GMD is low & GMR is high
60.	A la	rge diversity factor of the load	in a power	system
	(A)	reduces the installation cost	(B)	increases the installation cost
	(C)	does not affect the installation	on (D)	none
61.	In su	spension type insulator, the p	otential dro	p is
	(A)	max across the lowest disc		
	(B)	max across the top most disc	;	
	(C)	uniformly distributed over th	ne disc	
	(D)	· non-uniformly distributed ov	er the disc	
62.	Whi	ch distribution system is more	reliable?	
	(A)	Ring main system	(B)	Tree system
	(C)	Radial system	(D)	All are equally reliable
63.	The	inertia constants of two group	os of machi	nes which do not swing together are M ₁ and
	M_2			
	(A)	$M_1 + M_2$	(B)	$\mathbf{M_1} - \mathbf{M_2} \ \mathbf{z_f} \ \mathbf{M_1} \ \mathbf{M_2}$
	()	Application of the second	(-)	1212
	(C)	$\frac{\mathbf{M_1}\mathbf{M_2}}{\mathbf{M_1} + \mathbf{M_2}}$	(D)	$\sqrt{M_1M_2}$
	(C)	$M_1 + M_2$	·	V 1 2
	(C)	1 2		
64.	į•	. 2	rom a line i	nto a transformer bank if the windings are
64.	į•	. 2	rom a line in	nto a transformer bank if the windings are Delta / star

(B)

(D)

Stability studies

Load frequency control

65. Load flow study is carried out for

System planning

(A) Fault calculations

(A) (C)	Under all abnormal currents e penalty factor of a plant is unity, 11.0 Zero ower system is subjected to a faul all to zero. The nature of the fault is Double line to ground fault Line to ground fault	(B) (D)	The combination is never rements transmission loss is - 1.0 None h makes the zero seq component of current Double line fault 3 ph to ground fault
If the (A) (C)	e penalty factor of a plant is unity, 11.0 Zero ower system is subjected to a fault to zero. The nature of the fault is	its incr (B) (D)	rements transmission loss is - 1.0 None h makes the zero seq component of current
If the (A) (C)	e penalty factor of a plant is unity, 11.0 Zero ower system is subjected to a faul	its incr (B) (D)	rements transmission loss is - 1.0 None
If the	e penalty factor of a plant is unity,	its incr	rements transmission loss is - 1.0
If the	e penalty factor of a plant is unity,	its incr	rements transmission loss is - 1.0
If th	e penalty factor of a plant is unity,	its incr	rements transmission loss is
(C)	Under all abnormal currents	(D)	The combination is never
(A)	Low over load currents	(B)	Short circuits currents
If a for	combination of HRC fuse and circ	cuits br	reaker are used, the circuits breaker operates
(C)	Under all abnormal currents	(D)	The combination is never
(A)	Low over load currents	(B)	Short circuit current
oper	ated unparallel, which transformer	will re	each full load first?
62	The state of the s		KVA t _r has 3% impedance, when they are
		()	
(C)	67%	(D)	55%
(A)	89%	(B)	75%
		200	five discs and the earth to disc capacitance
1	ratio (A)	ratio is 0.10. The string efficiency will be (A) 89%	

71.		ase the back EMF and the speed of notor will	a DC	Motor are doubled, the torque developed by			
	(A)	remain unchanged	(B)	reduce to one fourth volume			
	(C)	increase four times	(D)	double			
72.	For a (A) (B)	a DC shunt Motor, if the excitation Torque remain constant Torque will change but power ren					
	(C)						
	(D)						
73.	The		ı New	ton Raphson method for load flow Studies			
	(A)	Derivative	(B)	Real Numbers			
	(C)	Partial	(D)	Partial derivatives			
74.	Slip	test is used for calculating the volta	ige reg	gulation of			
	(A)	Non salient Pole Alternator	(B)	Salient Pole Alternator			
	(C)	Turbo Alternator	(D)	None			
75.	Equa	al area criteria is used for the analys	sis of				
	(A)	Dynamic Stability	(B)	Steady State Stability			
12444	(C)	Transient Stability	(D)	None			
				1.11			

PART-B

(E&C AND TC: Electronics and Communication Engineering and Telecommunication Engineering)

SECTION - I

Each question carries one mark. $(20\times 1=20)$ 46. The ASCII is an input output code (B) It is a four bit code (A) It is a two bit code (C) It is a seven bit code (D) It is an eight bit code 47. A digital circuit designed to execute exactly one program is known as (A) General purpose processor (B) Application specific instruction set processor (C) Single purpose processor (D) All purpose processor 48. A half wave folded dipole has a radiation resistance of (A) 72 Ω (B) 50Ω 288Ω (C) 144Ω (D) If several stations in a network want to use a single channel without interfering with one another, the technique used is called (A) Carrier sense Phantom-freeze (B) (C) Packet switching Multiplexing (D) Modulation index of the frequency modulation depends on 50. (A) Amplitude and frequency of the modulating signal (B) Frequency and amplitude of carrier signal (C) Carrier frequency (D) Sampling frequency

51.	To 1	To limit the rate of rise of SCR anode current a small							
	(A)	Inductor is inserted in cathode of	ircuit						
	(B)	Inductor is inserted in anode cir		6					
	(C)								
	(D)	Capacitor is inserted in cathode							
52.	The	important application of Schmitt	trigger i	c ·					
	(A)	To convert slowly varying input							
	(B)	To convert abruptly varying inp	1700						
	(C)	To change the frequency of the		ge into slowly varying output					
	(D)	None	mput						
53.	The 3dB band width means the frequency at which								
55.	(A)	The open loop voltage gain reduced to 0.707							
	(B)	The open loop gain reduced to u							
	(C)	Maximum voltage of a signal is	1.00	distortion					
	(D)	It is medium wave band width o							
54.	The	noise figure of a receiver is a mea	sure of						
	(A)	Excess noise generated	(B)	Bandwidth of the receiver					
	(C)	Gain of the receiver	(D)	Operating frequency					
55.	The	frequency deviation in FM system	n is prop	portional to					
	(A)	Modulating frequency	(B)	Carrier amplitude					
	(C)	Modulating signal amplitude	(D)	None					
56.	The	velocity of electromagnetic wave	in a coa	axial cable is					
	(A)	Equal to the velocity in free spa-	ce						
	(B)	Less than the velocity in free sp	ace						
	(C)	Greater than the velocity in free	space						
	(D)	None							

57. The Smith Chart generally covers a distance of

(A) Quarter wavelength

(C) One wavelength

Space For Rough Work

(B)

(D)

Half wavelength

Twice the wavelength

58.	In w	hich of the counter the cloc	k input is com	mon to all flip flops?
		Up counter	(B)	Down counter
	(C)	Asynchronous counter	(D)	Synchronous counter

- 59. An OPAMP integrator will be

 (A) Capacitor at input
 (B) Diode at input
 (C) Diode feedback
 (D) Capacitor feedback
- 60. The term free running is usually associated with

 (A) Monostable multivibrator

 (B) Astable multivibrator

 (C) Bistable multivibrator

 (D) Schmitt trigger
- 61. The feedback network of a phase shift oscillator is usually consist of

 (A) RC circuit

 (B) RL circuit

 (C) LC circuit

 (D) RLC circuit
- 62. The bilinear transformation is characterized by

 (A) $s = \frac{2(1 + Z^{-1})}{T(1 Z^{-1})}$ (B) $s = \frac{2(1 Z^{-1})}{T(1 + Z^{-1})}$ (C) $s = \frac{T(1 Z^{-1})}{2(1 + Z^{-1})}$ (D) None of the above
- 63. The number of complex multiplications required for calculating the DIT FFT is

 (A) $Nlog_2N$
 (B) $\frac{N}{2}log_2N$
 - (A) $N\log_2 N$ (B) $\frac{1}{2}\log_2 N$ (C) $\log_2 N$ (D) $N\log_2 (N-1)$
- 64. The Boolean expression a + bc is equal to

 (A) a + b

 (B) b + c

 (C) (a + b) (a + c)

 (D) ab + c
- 65. How many bits are needed to address 64k Bytes of memory locations?

 (A) 3

 (B) 10
 - (C) 16 (D) 32

SECTION - II

Each question carries two marks.

 $10\times 2=20$

66. For a logical expression $\overline{AB} + \overline{A} + \overline{AB}$ is

(A) 0

(B) A

(C) Ā

(D) 1

67. Nyquist sampling interval for the signal $sinc(100\pi t)$ is

(A) 2 ms

(B) 3.18 ms

(C) 8.29 ms

(D) 7.29 ms

68. Given $W_{64}^{16} = W_{128}^x$, solve for x.

(A) 8

(B) 16

(C) 32

(D) 128

69. The linear convolution of the sequences $x_1(n) = [2, 1, 1, 2]$ and $x_2(n) = [1, -1, -1, 1]$ is

- (A) [2, -1, -2, 2, -2, -1, 2]
- (B) [-2, -1, -2, 2, -2, -1, -2]
- (C) [2, 1, -2, 2, -2, 1, 2]
- (D) [2, 1, 2, -2, 2, -1, 2]

70. If x (n + qN) = x(n), where 'q' is an integer, what is the fundamental period of the signal x(n)?

(A) qN

(B) q

(C) N

(D) n+qN

71.	into cosin	n an analog signal of bandwidth 20 16 levels. The resultant digital sign the pulse (roll-off factor 0.3). A char mit the data. The baud rate is	nal is	transmitted using M-ary PS	K WI	th raise	ed
	(A)	20 kilo symbol/sec	(B)	80 kilo symbol/sec		22	
	(C)	30 kilo symbol/sec	(D)	45 kilo symbol/sec			
				ge B a a			
72.	degra	a communication system; using adation due to phase error about 0.1 olerate is	cohe dB o	rent BPSK, it is necessary or less. The phase error in degr	y to rees, th	keep t ne syste	he m
			(B)	5			
	(A)				e 2		
	(C)	6	(D)	7.1	2 1 2		
				* E.,		9 38	
73.	The	efficiency η of AM with 50 percent	modu	ılation is	e × •	4	
	(A)	33.3%	(B)	11.1%	11	, '	
	(C)	22.2%	(D)	44.4%	8		f
74.	The	DFT of the sequence $x(n)=[2, 1, 2,$	1] is				
		[1, 1, 2, 2]	(B)	[6, 2, 0, 0]			
	1 (1)	[6, 0, 2, 0]	, ,	[4, 2, 4, 2]		2	
	(C)	[0, 0, 2, 0]	(2)	[", -, ", -]			
	20020			100 -t 6 -i- 100 -t + 1		O est in	
75.	The	Nyquist rate for the analog signal a	c(t) = 1	$3 \cos 100 \pi t - 6 \sin 400 \pi t + 4$	cos o	O TI IS	30
	(A)	100	(B)	200			
	(C)	300	(D)	400			
				0.000			

A-1

PART-B

(BME & ME: BIOMEDICAL ENGINEERING & MEDICAL ELECTRONICS)

 $(20\times1=20)$

SECTION - I

Each question carries one mark.

				• ***				
46.	Vol	ume of air that can be taken in and	l exnel	led out by maximum inspiration is				
	(A)	lung capacity	(B)	vital capacity				
	(C)		(D)	71.77				
47.	Which of the following flow measurement techniques is not based on the principle of indicator dilution?							
	(A)	Plethysmography	(B)	Injecting saline				
	(C)	Injecting indocyanine green	(D)	Fick technique				
48.	Prec	cordial leads is also known as						
	(A)	avL, aVF, aVF	(B)	V1 – V6				
	(C)	chest leads	(D)	both (B) and (C)				
49.	An e	electrode converts	, 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	(A) Voltage in body to voltage in an amplifier							
	(B) Action potentials to digital signals							
	(C)	Ionic current to electron current						
	(D)	Reduction to oxidation reactions		9 (40) 5 (80)				
50.	A m	utation in the reproductive cell due	to exc	essive x-ray exposure is an example of				
	(A)	radiative effect	(B)	meiotic effect				
	(C)	somatic effect	(D)	genetic effect				
				f programme and the second				
51.	The	cathode of the tube is composed of	•					
	(A)	suction cup	(B)	metallic cup				
	(C)	electronic cup	(D)	none of these				

52.	In pu	alse echo systems, the number of tra	ansduc	er(s) is
	(A)	zero	(B)	one
	(C)	two	(D)	three
53.	A w	eaker MR signal is obtained for tiss	ue wit	h T1
	(A)	long	(B)	short
	(C)	neither of them	(D)	strong
54.	Dou	ble integration of a unit step function	on wou	ıld lead to
	(A)	An impulse	(B)	A parabola
	(C)	A ramp	(D)	A doublet
55.	The	Laplace Transform of $f(t) = t$ is gi	ven by	C.
	(A)	1/S ²	(B)	1/S
	(C)	$2/S^{3}$	(D)	S
				686

- The Z-transform of the time function $\sum_{k=0}^{\infty} \delta(n-k)$ is
 - (A) z-1/z

007

(B) $Z/(Z-1)^2$

(C) Z/(Z-1)

- (D) $(Z-1)^2/Z$
- The discrete time system described by $y(n) = x(n)^2$ is
 - (A) Causal, linear and time varying
 - (B) Causal, non-linear and time varying
 - (C) Non-Causal, linear and time invariant
 - (D) Non-Causal, non-linear and time variant

58.	Averaging 100 responses will improve the signal to noise ratio by what factor?					
	(A) 100 (B) 10		GEN MINE			
	(C)	1	(D)	none of these		
59.	59. FIR filter has					
	(A)	finite impulse response	(B)	linear phase		
	(C)	stability	(D)	all of these		
60. Huffman algorithm is one of the algorithm.				gorithm.		
	(A)	lossless	(B)	lossy		
	(C)	neither lossless nor lossy	(D)	none of these		
61.	Differentiation technique is used as one of the QRS detection technique based of					
	(A)	first derivative	(B)	second derivative		
	(C)	first and second derivatives	(D)	none of these		
62.	. In 7-bit Hamming (7, 4) code, the h ₂ bit associated with 4 bit binary number is					
	(A)	$\mathbf{b}_3 \oplus \mathbf{b}_2 \oplus \mathbf{b}_0$	(B)	$\mathbf{b}_3 \oplus \mathbf{b}_1 \oplus \mathbf{b}_0$		
	(C)	$\mathbf{b_2} \oplus \mathbf{b_1} \oplus \mathbf{b_0}$	(D)	$\mathbf{b_3} \oplus \mathbf{b_2} \oplus \mathbf{b_1}$		
63.	3. The high boost filter expression in an image enhancement is represented as					
	(A)	HPF image - LPF image	(B)	LPF image – original image		
	(C)	A*original image - LPF image	(D)	A*original image – HPF image		
64.	Which of the following image transform is input dependent?					
	(A)	Walsh	(B)	Hadamard		
	(C)	Haar	(D)	Karhunen-Loeve		
65.		redundancy is associated with	h the re	enresentation of data		
	(A)	Interpixel	(B)	Coding		
	(C)	Psychovisual	(D)	Temporal		
	10 mm	Andrews Andrews Andrews Contraction	(-)			

SECTION - II

Each question carries two marks.

 $(10\times 2=20)$

66. When ECG is recorded by connecting two electrodes, one is on right arm and other is on left leg, recording is made in

- (A) Lead I configuration
- (B) Lead II configuration
- (C) Lead I and Lead II configurations
- (D) Lead III configuration

67. Which of the following are the stages of respiration in the correct order?

- (A) Gaseous transport, breathing, tissue respiration and cellular respiration
- (B) Breathing, gaseous transport, tissue respiration and cellular respiration
- (C) Breathing, gaseous transport, cellular respiration and tissue respiration
- (D) Breathing, tissue respiration, cellular respiration and gaseous transport

68. X-ray electromagnetic radiation lie in the range

- (A) $2.5 \mu m$ to $25 \mu m$
- (B) 400 nm to 700 nm
- (C) 0.1 mm to 1 mm
- (D) 10 nm to 100 nm

69. Volume of blood the heart pumps to systemic circulation each day is

(A) $4.3 \times 10^3 \text{ cm}^3$

(B) $4.3 \times 10^5 \text{ cm}^3$

(C) $8.3 \times 10^3 \text{ cm}^3$

(D) $8.3 \times 10^6 \text{ cm}^3$

70. The most important electrolyte present in intracellular fluid is:

- (A) Sodium
- (B) Calcium
- (C) Chloride
- (D) Potassium

71.	. N-point FFT requires number of stages			
	(A)	N^2	(B)	Nlog ₂ N
	(C)	log_2N	(D)	N
	e ²⁰			
72. The convolution between the two sequences $x[n] = \{1,4,2\}$ and $h[n] = \{1,1,1,1\}$ is				$f[n] = \{1,4,2\}$ and $h[n] = \{1,1,1,1\}$ is
	(A)	{1,3,7,7,6,1}	(B)	{1,5,7,7,6,2}
	(C)	{1,3,7,6}	(D)	{1,1,1,1}
73.	The	filter has $H(z) = (z - 1)/(z^2 - z + 1/2)$	2), it w	vill be
	(A)	stable	(B)	unstable
	(C)	marginally stable	(D)	none of these
74.	. The power law transformation is represented as			
	(A)	s = L - 1 - r	(B)	s = clog(1 + r)
	(C)	$s = cr^{\gamma}$	(D)	none of these
75.	75. The smallest discernible change in gray level is called and the effect cause the insufficient number of gray levels is called			
	(A)	false contouring, gray level resolu	tion	
	(B)	spatial resolution, thresholding		
	(C)	gray level resolution, false contour	ring	
	(D)	false contouring, gray level resolut	tion	

PART – B

(IT: INSTRUMENTATION TECHNOLOGY)

SECTION - I

Each question carries one mark.

46.	The	error observed when the instrument	is und	der the reference condition is called					
	(A)	Absolute error	(B)	Intrinsic error					
	(C)	Relative error	(D)	Random error					
47.	Hyst	eresis is usually expressed as a p _ full scale level	ercent	age of the full scale output measured a	t				
	(A)	15%	(B)	25%					
	(C)	50%	(D)	75%					
48.	Desi	rable dynamic characteristics of a r	neasur	rement system are					
	(A)	fast response and fidelity	(B)	fast response and dynamic error					
	(C)	fidelity and measuring lag	(D)	none of these					
49.	The values of static stiffness and compliance in a measurement system determine the amount of								
	(A)	current drain from a system	(B)	potential drain from a system					
	(C)	power drain from a system	(D)	energy drain from a system					
50.	Unb	onded strain gauges are	, r: ,	By Fig.					
	(A)								
	(B)	exclusively used for stress analys		n to E					
	(C)	used for unbonded strains only							
	(D)	none of these	1						
	(2)			e total en v					
51.	Dynamometer type moving coil instruments are provided with								
	(A)	eddy current damping	(B)	pneumatic damping					
	(C)	fluid friction damping,	(D)	electrostatic damping					

Space For Rough Work

 $(20\times 1=20)$

52. A force digital transducer measures the pressure in the range of 0-200 N with a resolution of 0.1% of full scale. The smallest change it can measure is

(A) 0.2 N

(B) 0.4 N

(C) 0.5 N

(D) 1.0 N

53. Given F(z) the inverse transform $z^{-1}(F(z))$ yields

(A) f(t)

- (B) f(t + kT)
- (C) f(kT) for k = 0,1,2,3...
- (D) f(t-kT)

54. Which of the following gives the describing function of an ideal relay?

(A) $4M/\pi X$

- (B) $3X^2/4$
- (C) $4M/\pi X$ with angle $tan^{-1}(1/X)$
- (D) none of these

55. Which of the following is not a performance measure?

- (A) $\int_{t}^{t_{f}} [x^{T} Qx + u^{T} Ru] dt$
- (B) $\int_{t_0}^{t_f} dt$

(C) $\int_{t_0}^{t_f} |u| dt$

(D) Ax + Bu

56. Matrix Riccatti equation is used to solve which type optimal control system?

- (A) Minimum energy problem
- (B) Quadratic regulator problem
- (C) Minimum time problem
- (D) Minimum fuel problem

57. Light appears to travel in straight lines, since

- (A) it is not absorbed by the atmosphere
- (B) it is not reflected by the atmosphere
- (C) its wavelength is very small
- (D) its velocity is very large

58	. Prog	rammable controller			for logic systems.	w.				
, x	(C)	50%	2	11.00	100%					
59		observing a cricket r	natch, binocular	is p	referred to terrestrial telesco	ope because the				
	(A)	is very easy to hand								
	(B)	provides three dime		herra	tion					
	(C) (D)	produces image need produces erect image		ociia						
60	Volume of blood the heart pumps to systemic circulation each day is									
	, ,	$4.3 \times 10^3 \text{ cm}^3$			$4.3 \times 10^5 \text{ cm}^3$					
	(C)	$8.3 \times 10^3 \text{ cm}^3$	7	(D)	$8.3 \times 10^6 \text{ cm}^3$					
61	. The	electrodes generated	in x-rays can be	cont	rolled					
	(A)			(B)	in pairs					
	(C)	independently	3.9	(D)	none of these					
62	62. When $x[n]=\{1, 2, 3, 4, 5\}$, $h[n]=\{1\}$ then $x[n]*h[n]$ is									
	(A)	$\{1, 3, 6, 10, 15\}$		(B)	{1, 2, 3, 4, 5}					
	(C)	{1, 4, 9, 16, 20}		(D)	{1, 4, 6, 8, 10}					
63	63. Periodic function of half wave symmetry is necessarily									
	(A)	an even function		(B)	an odd function					
	(C)	neither odd nor eve	n	(D)	both odd and even					
			∞		g in g and					
6-	4. Fou	rier transform of f(t)	is $\int_{0}^{\infty} \phi(t)\cos \omega t$	dt if a	and only if					
	(A)	t is real and f(t) is a	eal	(B)	t is real and f(t) is even					
	(C)	f(t) is real and f(t)		(D)	the function is $f(t) e^{-j\omega t}$					
6	5. The	discrete time equation	on $v(n + 1) + 0$	Snv(n	$\mathbf{a} = 0.5x (x + 1) \text{ is not attribute}$	itable to a				
U	(A)			(B)	time varying system					
	(C)		- jt.	(D)	causal system	×				
	(0)			` '						

007

SECTION - II

Each question carries two marks.

 $(10 \times 2 = 20)$

66. A piezoelectric transducer has capacitance of 1000pF a charge sensitivity of 40×10^{-3} c/m. Capacitance of connecting cable is 300pF and oscillator for readout is 50pF in parallel with resistance of $1M\Omega$. Find out the sensitivity of transducer alone.

(A) $10 \times 10^6 \text{V/m}$

(B) $20 \times 10^6 \text{V/m}$

(C) $30 \times 10^6 \text{V/m}$

(D) $40 \times 10^6 \text{V/m}$

67. A hydraulic testing machine is to apply a maximum force of 300 kN/m². The diameter of ram is 130 mm and arc of 270° the pressure is

(A) $22.6 \, \text{GN/m}^2$

22.6 N/m²

(C) 22.6 MN/m²

(D) 22.6 mN/m^2

Two linear block are connected in cascade without sampler. Determine the pulse response of the function of G1(s) = 1/s and G2(s) = 1/(S + 2)

(A) $\frac{1}{2} Z / [(z-1)(z-e^{-2T})]$ (B) $\frac{1}{2} Z (Z-e^{-2T}) / [(z-1)(z-e^{-2T})]$

(C) $\frac{1}{2} \frac{Z}{[(z-1)(z-2)]}$

(D) None of the above

69. Lyapunov's method can be used to develop optimal control law. The matrix P is solved for equation A^TP +PA =-Q optimal values of performance index J is

(A) $-X^{T}(\infty)PX(\infty) + X^{T}(0)PX(0)$

(B) X^TPX

(C) $-X^{T}(\infty)PX(0) + X^{T}(0) PX(\infty)$ (D) $-X^{T}PX + X^{T} PX(0)$

Final value of f(kT) i.e., limit f(kt) as K-> can be obtained by

(A) Lt F(Z) as $z \rightarrow 1$

(B) Lt (z-1)F(Z)/Z as $z \rightarrow 1$

(C) Lt (Z-1)F(Z)/Z as $z \rightarrow 1$

(D) None of the above

Space For Rough Work

007

71.	What is cardiac output when 10mg of indicator was injected and average concentration as calculated for curve was 5mg/lt for 20S?				
	(A)	61/m	(B)	4.51/m	
	(C)	41/m	(D)	51/m	
			*:		
72.		spectrophotometer the monochron 9 nm and 500.1 nm required resolut		must be able to resolve two wavelength of	
	(A)	1000	(B)	2000	
	(C)	3000	(D)	100	
				•	
73.	What is the pulse separation in mode locked Nd:YAG laser when fluorescent line width is 1.1×10^{11} Hz and laser rod is 0.1 m long?				
	(A)	0.5nS	(B)	0.6nS	
	(C)	0.7nS	(D)	0.8nS	
				NA THE RESERVE OF THE	
74.	Fourier series coefficient of time domain signal x(t)=j∂(k-1)-j∂(k+1)+ ∂(k+3)+ ∂(k-3) as w=2P then corresponding time domain signal will be				
	(A) (C)	2(cos6Π t-sinΠt) 2(cos6Π t-sin2Πt)	(B) (D)	$-2(\cos 6\Pi t - \sin \Pi t)$ $-2(\cos 6\Pi t - \sin \Pi t)$	
	г.	1 PPT - C[1 1 1 1]			
75.	Fino	FFT of [1 1 1 1]			
	(A)	[2 0 0 0]	(B)	$[2j-2j\ 2j-2j]$	
	(C)	[4 0 0 0]	(D)	[4111]	

A-1

