Sample Paper

General Instructions

1. The question paper contains three parts A, B and C.
2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
5. There is no negative marking.

SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

1. If $x=3+3^{2 / 3}+3^{1 / 3}$, then the value of
$x^{3}-9 x^{2}+18 x-12$ is
(a) 1
(b) 0
(c) -1
(d) 2
2. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}, \mathrm{P}$ and Q are points on AC and AB respectively such that $\mathrm{BC}=\mathrm{BP}=\mathrm{PQ}=\mathrm{AQ}$. Then, $\angle \mathrm{AQP}$ is equal to (use $\pi=180^{\circ}$)
(a) $\frac{2 \pi}{7}$
(b) $\frac{3 \pi}{7}$
(c) $\frac{4 \pi}{7}$
(d) $\frac{5 \pi}{7}$
3. If the circumference of a circle increases from 4π to 8π, then its area is
(a) halved
(b) doubled
(c) tripled
(d) quadrupled
4. $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=$
(a) 0
(b) 1
(c) 2
(d) $\quad-1$
5. If the point $P(p, q)$ is equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$, then
(a) $a p=b y$
(b) $b p=a y$
(c) $a p+b q=0$
(d) $\quad b p+a q=0$
6. In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further 44 girls leave the class, then the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
(a) 16
(b) 24
(c) 30
(d) 36
7. Consider a $\triangle P Q R$ in which the relation $Q R^{2}+P R^{2}=5 P Q^{2}$ holds. Let G be the points of intersection of medians $P M$ and $Q N$. Then $\angle Q G M$ is always
(a) less than 45°
(b) obtuse
(c) a right angle
(d) acute and larger than 45°
8. In the adjoining figure, $O A C B$ is a quadrant of a circle of radius 7 cm . The perimeter of the quadrant is

(a) 11 cm
(b) 18 cm
(c) 25 cm
(d) 36 cm
9. Let $A B C$ be a triangle and M be a point on side $A C$ closer to vertex C than A. Let N be a point on side $A B$ such that $M N$ is parallel to $B C$ and let P be a point on side $B C$ such that $M P$ is parallel to $A B$. If the area of the quadrilateral $B N M P$ is equal to $\frac{5}{18}$ of the area of $\triangle A B C$, then the ratio $A M / M C$ equals
(a) 5
(b) 6
(c) $\frac{18}{5}$
(d) $\frac{15}{2}$
10. Let $a_{1}, a_{2}, \ldots, a_{100}$ be non-zero real numbers such that $a_{1}+a_{2}+\ldots+a_{100}=0$

Then,
(a) $\sum_{i=1}^{100} a_{i} 2^{a_{i}}>0$ and $\sum_{i=1}^{100} a_{i} 2^{-a_{i}}<0$
(b) $\quad \sum_{i=1}^{100} a_{i} 2^{a_{i}} \geq 0$ and $\sum_{i=1}^{100} a_{i} 2^{-a_{i}} \geq 0$
(c) $\sum_{i=1}^{100} a_{i} 2^{a_{i}} \leq 0$ and $\sum_{i=1}^{100} a_{i} 2^{-a_{i}} \leq 0$
(d) The sign of $\sum_{i=1}^{100} a_{i} 2^{a_{i}}$ or $\sum_{i=1}^{100} a_{i} 2^{-a_{i}}$ depends on the choice of a_{i} 's
11. The points $A(-4,-1), B(-2,-4), C(4,0)$ and $D(2,3)$ are the vertices of a
(a) Parallelogram
(b) Rectangle
(c) Rhombus
(d) Square
12. For what value of p, the following pair of linear equations in two variables will have infinitely many solutions ? $p x+3 y-(p-3)=0,12 x+p y-p=0$
(a) 6
(b) -6
(c) 0
(d) 2
13. If $x^{2}-4$ is the factor of $2 x^{3}+k_{1} x^{2}+k_{2} x+12$, where k_{1}, k_{2} are constant, then the value of $k_{1}+k_{2}$ is
(a) 11
(b) 5
(c) -11
(d) $\quad-5$
14. If a circular grass lawn of 35 m in radius has a path 7 m wide running around it on the outside, then the area of the path is
(a) $1450 \mathrm{~m}^{2}$
(b) $1576 \mathrm{~m}^{2}$
(c) $1694 \mathrm{~m}^{2}$
(d) $3368 \mathrm{~m}^{2}$
15. $9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}=$
(a) 1
(b) 9
(c) 8
(d) 0
16. Three - digit numbers formed by using digits $0,1,2$ and 5 (without repetition) are written on different slips with distinct number on each slip, and put in a bowl. One slip is drawn at random from the bowl. The probability that the slip bears a number divisible by 5 is
(a) $\frac{5}{9}$
(b) $\frac{4}{9}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$
17. The graphs of the equations $x-y=2$ and $k x+y=3$, where k is a constant, intersect at the point (x, y) in the first quadrant, if and only if k is
(a) equal to -1
(b) greater than -1
(c) less than $3 / 2$
(d) lying between -1 and $3 / 2$
18. The value of $0 . \overline{235}$ is :
(a) $\frac{233}{900}$
(b) $\frac{233}{990}$
(c) $\frac{235}{999}$
(d) $\frac{235}{990}$
19. The figure below shows two concentric circles with centre $O . P Q R S$ is a square inscribed in the outer circle. It also circumscribes the inner circle, touching it at point B, C, D and A. The ratio of the perimeter of the outer circle to that of polygon $A B C D$ is

(a) $\frac{\pi}{4}$
(b) $\frac{3 \pi}{2}$
(c) $\frac{\pi}{2}$
(d) π
20. Let P be an interior point of a $\triangle A B C$. Let Q and R be the reflections of P in $A B$ and $A C$, respectively. If Q, A, R are collinear, then $\angle A$ equals
(a) 30°
(b) 60°
(c) 90°
(d) 120°

SECTION-B

Section B consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.
21. Consider the following statements: For any integer n,
I. $n^{2}+3$ is never divisible by 17 .
II. $n^{2}+4$ is never divisible by 17 .

Then,
(a) both I and II are true
(b) both I and II are false
(c) I is false and II is true
(d) I is true and II is false
22. A girl calculates that the probability of her winning the first prize in a lottery is 0.08 . If 6000 tickets are sold, how many tickets has she bought?
(a) 40
(b) 240
(c) 480
(d) 750
23. $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
(a) $\cos 60^{\circ}$
(b) $\sin 60^{\circ}$
(c) $\quad \tan 60^{\circ}$
(d) $\sin 30^{\circ}$
24. The average incomes of the people in two villages are P and Q respectively. Assume that $P \neq Q . A$ person moves from the first village to the second village. The new average incomes are P^{\prime} and Q^{\prime} respectively. Which of the following is not possible?
(a) $P^{\prime}>P$ and $Q^{\prime}>Q$
(b) $\quad P^{\prime}>P$ and $Q^{\prime}<Q$
(c) $P^{\prime}=P$ and $Q^{\prime}=Q$
(d) $\quad P^{\prime}<P$ and $Q^{\prime}<Q$
25. If the value of a quadratic polynomial $p(x)$ is 0 only at $x=-1$ and $p(-2)=2$, then the value of $p(2)$ is
(a) 18
(b) 9
(c) 6
(d)
3
26. If the sector of a circle of diameter 10 cm subtends an angle of 144° at the centre, then the length of the arc of the sector is
(a) $2 \pi \mathrm{~cm}$
(b) $4 \pi \mathrm{~cm}$
(c) $5 \pi \mathrm{~cm}$
(d) $6 \pi \mathrm{~cm}$
27. x and y are two non-negative numbers such that $2 x+y=10$. The sum of the maximum and minimum values of $(x+y)$ is
(a) 6
(b) 9
(c) 10
(d) 15
28. The area of a sector of angle p (in degrees) of a circle with radius R is
(a) $\frac{p}{360^{\circ}} \times 2 \pi R$
(b) $\frac{p}{180^{\circ}} \times \pi R^{2}$
(c) $\frac{p}{720^{\circ}} \times 2 \pi R$
(d) $\frac{p}{720^{\circ}} \times 2 \pi R^{2}$
29. $\sin 2 \mathrm{~A}=2 \sin \mathrm{~A}$ is true when $\mathrm{A}=$
(a) 0°
(b) 30°
(c) 45°
(d) 60°
30. Given that $\frac{1}{7}=0 . \overline{142857}$, which is a repeating decimal having six different digits. If x is the sum of such first three positive integers n such that $\frac{1}{n}=0 . \overline{a b c d e f}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e and f are different digits, then the value of x is
(a) 20
(b) 21
(c) 41
(d) 42
31. For an event $\mathrm{E}, \mathrm{P}(\mathrm{E})+P(\bar{E})=\mathrm{q}$, then
(a) $0 \leq q<1$
(b) $0<q \leq 1$
(c) $0<q<1$
(d) None of these
32. A boat travels with a speed of $15 \mathrm{~km} / \mathrm{hr}$ in still water. In a river flowing at $5 \mathrm{~km} / \mathrm{hr}$, the boat travels some distance downstream and then returns. The ratio of average speed to the speed in still water is
(a) $8: 3$
(b) $3: 8$
(c) $8: 9$
(d) $9: 8$
33. If the polynomials $a x^{3}+4 x^{2}+3 x-4$ and $x^{3}-4 x+$ a leave the same remainder when divided by $x-3$, then the value of a is
(a) 1
(b) -1
(c) $19 / 14$
(d) $-5 / 14$
34. Which of the following relationship is the correct?
(a) $P(E)+P(\bar{E})=1$
(b) $\quad P(\bar{E})-P(E)=1$
(c) $P(E)=1+P(\bar{E})$
(d) None of these
35. $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
(a) $\tan 90^{\circ}$
(b) 1
(c) $\quad \sin 45^{\circ}$
(d) 0
36. The sum of two numbers is 528 and their H.C.F. is 33 , then find the number of pairs of numbers satisfying the above conditions.
(a) 4
(b) 5
(c) 6
(d) 2
37. A man can row a boat in still water at the rate of 6 km per hour. If the stream flows at the rate of $2 \mathrm{~km} / \mathrm{hr}$, he takes half the time going downstream than going upstream the same distance. His average speed for upstream and down stream trip is
(a) $6 \mathrm{~km} / \mathrm{hr}$
(b) $16 / 3 \mathrm{~km} / \mathrm{hr}$
(c) Insufficient data to arrive at the answer
(d) none of the above
38. A quadratic polynomial when divided by $x+2$ leaves a remainder of 1 and when divided by $x-1$, leaves a remainder of 4 . What will be the remainder if it is divided by $(x+2)(x-1)$?
(a) 1
(b) 4
(c) $x+3$
(d) $x-3$
39. $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
(a) $\sin 60^{\circ}$
(b) $\cos 60^{\circ}$
(c) $\tan 60^{\circ}$
(d) $\sin 30^{\circ}$
40. The unit digit in the expression $55^{725}+73^{5810}+22^{853}$ is
(a) 0
(b) 4
(c) 5
(d) 6

SECTION-C

Case Study Based Questions:

Section C consists of 10 quesions of 1 mark each. Any 8 quesions are to be attempted.

Q 41. - $Q 45$ are based on case study-I

Case Study-I

Place a lighted bulb at a point O on the ceiling and directly below it a table in classroom. Place $\triangle \mathrm{ABC}$ shape cardboard parallel to the ground between the lighted bulb and the table. Then a shadow of $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is cost on the table such that $\Delta \mathrm{ABC} \sim \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ shown in figure.
If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{~A}^{\prime} \mathrm{B}^{\prime}=15 \mathrm{~cm} ; \mathrm{B}^{\prime} \mathrm{C}^{\prime}=12 \mathrm{~cm}$, $A C=3 \mathrm{~cm}, \angle \mathrm{~B}^{\prime}=60^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$.

Answer the following questions.
41. Length of $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is :
(a) 3 cm
(b) 4 cm
(c) 9 cm
(d) 12 cm
42. Length of BC is :
(a) 4 cm
(b) 12 cm
(c) 3 cm
(d) 15 cm
43. Measure of $\angle \mathrm{A}^{\prime}$ is :
(a) 60°
(b) 80°
(c) 180°
(d) 40°
44. Find the measure of $\angle B$.
(a) 60°
(b) 40°
(c) 80°
(d) 180°
45. Find the measure of $\angle \mathrm{C}$.
(a) 60°
(b) 40°
(c) 80°
(d) 180°

Q 46-Q 50 are based on case study-II

Case Study-II

In a classroom, 4 friends are seated at the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S as shown in figure. Then answer the following questions.

46. The coordinate of P is :
(a) $(4,3)$
(b) $(3,4)$
(c) $(6,1)$
(d) $(6,7)$
47. The distance of PQ is :
(a) $3 \sqrt{2}$ unit
(b) 4 unit
(c) $2 \sqrt{3}$ unit
(d) 6 unit
48. The distance of PR is :
(a) 7 unit
(b) $6 \sqrt{2}$ unit
(c) 6 unit
(d) 5 unit
49. The name of quadrilateral is :
(a) Square
(b) Rectangle
(c) Rhombus
(d) Parallelogram
50. The mid point of QS is :
(a) $(5,4)$
(b) $(7,4)$
(c) $(6,2)$
(d) $(6,4)$

OMR ANSWER SHEET

Sample Paper No -
 \square

* Use Blue / Black Ball pen only.
* Please do not make any atray marks on the answer sheet.
* Rough work must not be done on the answer sheet.
* Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

Start time : \qquad End time Time taken

1. Name (in Block Letters)

2. Date of Exam

3. Candidate's Signature \square
SECTION-A

1.	(a)	(b)	(c)	(d)	9.	(a)	(b)	(c)	(d)	17.	(a)	(b)	(c)	(d)
2.	(a)	(b)	(c)	(d)	10.	(a)	(b)	(c)	(d)	18.	(a)	(b)	(c)	(d)
3.	(a)	(b)	(c)	(d)	11.	(a)	(b)	(c)	(d)	19.	(a)	(b)	(c)	(d)
4.	(a)	(b)	(c)	(d)	12.	(a)	(b)	(c)	(d)	20.	(a)	(b)	(c)	(d)
5.	(a)	(b)	(c)	(d)	13.	(a)	(b)	(c)	(d)					
6.	(a)	(b)	(c)	(d)	14.	(a)	(b)	(c)	(d)					
7.	(a)	(b)	(c)	(d)	15.	(a)	(b)	(c)	(d)					
8.	(a)	(b)	(c)	(d)	16.	(a)	(b)	(c)	(d)					

SECTION-B

SECTION-C

41.	(a)	(b)	(c)	(d)	45.	(a)	(b)	(c)	(d)	49.	(a)	(b)	(c)	(d)
42.	(a)	(b)	(c)	(d)	46.	(a)	(b)	(c)	(d)	50.	(a)	(b)	(c)	(d)
43.	(a)	(b)	(c)	(d)	47.	(a)	(b)	(c)	(d)					
44.	(a)	(b)	(c)	(d)	48.	(a)	(b)	(c)	(d)					

No. of Qns. Attempted		Correct		Incorrect		Marks

Page for Rough Work

