Sample Paper

Time : 90 Minutes

General Instructions

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 quesions of 1 mark each. Any 16 quesitons are to be attempted.
- 3. Section B consists of 20 quersions of 1 mark each. Any 16 quesions are to be attempted.
- 4. Section C consists of 10 quesions based two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

SECTION-A

Section A consists of 20 questions of 1 mark each. Any 16 quesions are to be attempted.

1. If $x = 3 + 3^{2/3} + 3^{1/3}$,	then the value of
-------------------------------------	-------------------

 $x^3 - 9x^2 + 18x - 12$ is

- (a) 1 (b) 0 (c) -1 (d) 2
- 2. In $\triangle ABC$, AB = AC, P and Q are points on AC and AB respectively such that BC = BP = PQ = AQ. Then, $\angle AQP$ is equal to (use $\pi = 180^{\circ}$)
 - (a) $\frac{2\pi}{7}$ (b) $\frac{3\pi}{7}$ (c) $\frac{4\pi}{7}$ (d) $\frac{5\pi}{7}$

3. If the circumference of a circle increases from 4π to 8π , then its area is

- (a) halved (b) doubled (c) tripled (d) quadrupled
- 4. $(1 + \tan \theta + \sec \theta) (1 + \cot \theta \csc \theta) =$
 - (a) 0 (b) 1 (c) 2 (d) -1
- 5. If the point P(p, q) is equidistant from the points A(a + b, b a) and B(a b, a + b), then

(a) ap = by (b) bp = ay (c) ap + bq = 0 (d) bp + aq = 0

- 6. In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is 2 : 3. If further 44 girls leave the class, then the ratio of boys to girls is 5: 2. How many more boys should leave the class so that the number of boys equals that of girls?
 - (a) 16 (b) 24 (c) 30 (d) 36
- 7. Consider a $\triangle PQR$ in which the relation $QR^2 + PR^2 = 5 PQ^2$ holds. Let *G* be the points of intersection of medians *PM* and *QN*. Then $\angle QGM$ is always
 - (a) less than 45° (b) obtuse
 - (c) a right angle (d) acute and larger than 45°

8. In the adjoining figure, OACB is a quadrant of a circle of radius 7 cm. The perimeter of the quadrant is

9. Let *ABC* be a triangle and *M* be a point on side *AC* closer to vertex *C* than *A*. Let *N* be a point on side *AB* such that *MN* is parallel to *BC* and let *P* be a point on side *BC* such that *MP* is parallel to *AB*. If the area of the quadrilateral *BNMP* is equal to $\frac{5}{18}$ of the area of ΔABC , then the ratio *AM/MC* equals (a) $\frac{5}{5}$ (b) 6 (c) $\frac{18}{5}$ (d) $\frac{15}{2}$

10. Let $a_1, a_2, ..., a_{100}$ be non-zero real numbers such that $a_1 + a_2 + ... + a_{100} = 0$ Then,

(a)
$$\sum_{i=1}^{100} a_i 2^{a_i} > 0$$
 and $\sum_{i=1}^{100} a_i 2^{-a_i} < 0$ (b) $\sum_{i=1}^{100} a_i 2^{a_i} \ge 0$ and $\sum_{i=1}^{100} a_i 2^{-a_i} \ge 0$

(c)
$$\sum_{i=1}^{100} a_i 2^{a_i} \le 0$$
 and $\sum_{i=1}^{100} a_i 2^{-a_i} \le 0$ (d) The sign of $\sum_{i=1}^{100} a_i 2^{a_i}$ or $\sum_{i=1}^{100} a_i 2^{-a_i}$ depends on the choice of a_i 's

11. The points A (-4, -1), B (-2, -4), C (4, 0) and D (2, 3) are the vertices of a

(a) Parallelogram
(b) Rectangle
(c) Rhombus
(d) Square

12. For what value of p, the following pair of linear equations in two variables will have infinitely many solutions ?

px + 3y - (p - 3) = 0, 12x + py - p = 0(a) 6 (b) -6 (c) 0 (d) 2

13. If $x^2 - 4$ is the factor of $2x^3 + k_1x^2 + k_2x + 12$, where k_1, k_2 are constant, then the value of $k_1 + k_2$ is (a) 11 (b) 5 (c) -11 (d) -5

14. If a circular grass lawn of 35m in radius has a path 7m wide running around it on the outside, then the area of the path is (a) 1450 m² (b) 1576 m² (c) 1694 m² (d) 3368 m²
15. 9 sec² A - 9 tan² A =

(a) 1 (b) 9 (c) 8 (d) 0

16. Three - digit numbers formed by using digits 0, 1, 2 and 5 (without repetition) are written on different slips with distinct number on each slip, and put in a bowl. One slip is drawn at random from the bowl. The probability that the slip bears a number divisible by 5 is

(a)
$$\frac{5}{9}$$
 (b) $\frac{4}{9}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$

17. The graphs of the equations x - y = 2 and kx + y = 3, where k is a constant, intersect at the point (x, y) in the first quadrant, if and only if k is

(a) equal to -1 (b) greater than -1 (c) less than 3/2 (d) lying between -1 and 3/2**18.** The value of $0.\overline{235}$ is :

(a)
$$\frac{233}{900}$$
 (b) $\frac{233}{990}$ (c) $\frac{235}{999}$ (d) $\frac{235}{990}$

SP-32

(a) 11 cm

Sample Paper-5

19. The figure below shows two concentric circles with centre *O*. *PQRS* is a square inscribed in the outer circle. It also circumscribes the inner circle, touching it at point *B*, *C*, *D* and *A*. The ratio of the perimeter of the outer circle to that of polygon *ABCD* is

SP-33

- SP-	34							(Mathematics)			
29.	$\sin 2A = 2 \sin A$ is true wh	nen A =	=								
	(a) 0°	(b)	30°	(c)	45°	(d)	60°				
30.	Given that $\frac{1}{7} = 0.\overline{142857}$,	which	is a repeating of	decimal h	aving six different digits. I	f x is the	sum of such	first three positive			
	integers <i>n</i> such that $\frac{1}{n} = 0.\overline{abcdef}$, where a, b, c, d, e and f are different digits, then the value of x is										
	(a) 20	(b)	21	(c)	41	(d)	42				
31.	For an event E, $P(E) + P$	$\left(\overline{E}\right) = c$	q, then								
	(a) $0 \le q < 1$	(b)	$0 < q \le 1$	(c)	0 < q < 1	(d)	None of the	nese			
32.	A boat travels with a speed and then returns. The ratio	of 15 k of ave	cm/hr in still wa erage speed to t	ater. In a he speed	river flowing at 5 km/hr, the in still water is	boat trav	els some dis	stance downstream			
	(a) 8:3	(b)	3:8	(c)	8:9	(d)	9:8				
33.	If the polynomials $ax^3 + 4$	$x^2 + 3x$	$x - 4$ and $x^3 - 4x$	x + a leav	ve the same remainder when	n divided	by $x - 3$, th	en the value of <i>a</i> is			
	(a) 1	(b)	-1	(c)	19/14	(d)	-5/14				
34.	Which of the following re	lations	hip is the corre	ect?							
	(a) $P(E) + P(\overline{E}) = 1$			(b)	$P(\overline{E}) - P(E) = 1$						
	(c) $P(E) = 1 + P(\overline{E})$			(d)	None of these						
35.	$\frac{1 - \tan^2 45^{\circ}}{1 + \tan^2 45^{\circ}} =$										
	(a) tan 90°	(b)	1	(c)	sin 45°	(d)	0				
36.	The sum of two numbers conditions.	is 528	3 and their H.C	C.F. is 33	s, then find the number of	pairs of	numbers sa	tisfying the above			
	(a) 4	(b)	5	(c)	6	(d)	2				
37.	A man can row a boat in s time going downstream th	till wat an goir	ter at the rate ong upstream the	f 6 km po e same di	er hour. If the stream flows istance. His average speed	at the rat	te of 2 km/h eam and dov	r, he takes half the wn stream trip is			
	(a) 6 km/hr			(b)	16/3 km/hr						
	(c) Insufficient data to an	rive at	the answer	(d)	none of the above						
38.	A quadratic polynomial w	hen div	vided by $x + 2$	leaves a r (+2) (r	remainder of 1 and when di	vided by	x-1, leave	s a remainder of 4.			
	(a) 1	(b)	4	(c) $(x - 2)(x $	x+3	(d)	<i>x</i> – 3				
39.	$\frac{2\tan 30^\circ}{1+\tan^2 30^\circ} =$										
	(a) sin 60°	(b)	cos 60°	(c)	tan 60°	(d)	sin 30°				
40.	The unit digit in the expre	ssion 5	55725 + 735810 +	- 22 ⁸⁵³ is							
	(a) 0	(b)	4	(c)	5	(d)	6				

Sample Paper-5

SECTION-C

Case Study Based Questions:

Section C consists of 10 quesions of 1 mark each. Any 8 quesions are to be attempted.

Q 41. - Q 45 are based on case study-I

Case Study-I

Place a lighted bulb at a point O on the ceiling and directly below it a table in classroom. Place $\triangle ABC$ shape cardboard parallel to the ground between the lighted bulb and the table. Then a shadow of $\triangle A'B'C'$ is cost on the table such that $\triangle ABC \sim \triangle A'B'C'$ shown in figure.

If AB = 5 cm, A'B' = 15 cm; B'C' = 12 cm,

AC = 3 cm, $\angle B' = 60^{\circ}$ and $\angle A = 80^{\circ}$.

Answer the following questions.

41.	Length of A'C' is :						
	(a) 3 cm	(b)	4 cm	(c)	9 cm	(d)	12 cm
42.	Length of BC is :						
	(a) 4 cm	(b)	12 cm	(c)	3 cm	(d)	15 cm
43.	Measure of $\angle A'$ is :						
	(a) 60°	(b)	80°	(c)	180°	(d)	40°
44.	Find the measure of $\angle B$.						
	(a) 60°	(b)	40°	(c)	80°	(d)	180°
45.	Find the measure of $\angle C$.						
	(a) 60°	(b)	40°	(c)	80°	(d)	180°

SP-35

Q 46 - Q 50 are based on case study-II

Case Study-II

In a classroom, 4 friends are seated at the points P, Q, R and S as shown in figure. Then answer the following questions.

			10												
			9	-		\vdash	_								
			8				-		0				_		
			7						Y	-					
			6		\vdash	\vdash									
			Rows 5			Р						R			
			4												
			3												
			2						S						
			1												
					1 2	2 3	4	4	5 (5	7 8	8 9	9 1	0	
							(Colu	mn	8					
46.	The coordinate of P is :														
	(a) (4, 3)	(b)	(3, 4)		(c)		(6	i, 1)				(d))	(6, 7)	
47.	The distance of PQ is :														
	(a) $3\sqrt{2}$ unit	(b)	4 unit		(c)		2	$\sqrt{3}$	unit			(d))	6 unit	
18	The distance of PR is :	(0)	i unit		(0)		-	V.S	unn			(4)	,	0 unit	
40.	The distance of T K is .														
	(a) 7 unit	(b)	$6\sqrt{2}$ unit		(c)		6	unit	t			(d))	5 unit	
49.	The name of quadrilateral	is :													
	(a) Square	(b)	Rectangle		(c)		R	hon	nbus	5		(d))	Parallelogra	am
50.	The mid point of QS is :														
	(a) $(5, 4)$	(h)	$(7 \ 4)$		(c)		(6	2)				(d))	$(6 \ 4)$	

OMR ANSWER SHEET Sample Paper No –

- * Use Blue / Black Ball pen only.
- * Please do not make any atray marks on the answer sheet.
- Rough work must not be done on the answer sheet. *
- Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected. *

Start	1me :	me : End time						Time taken							
1. N	. Name (in Block Letters)														
Γ															
2. D	2. Date of Exam														
Γ															
3. C	Candidate's Signature														
	SECTION-A														
1. 2. 3. 4. 5. 6. 7. 8.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		000000000		9. a 10. a 11. a 12. a 13. a 14. a 15. a 16. a		000000000		17. 18. 19. 20.			© © © ©			
						SECTI	ON-B								
 21. 22. 23. 24. 25. 26. 27. 28. 			000000000		29. a 30. a 31. a 32. a 33. a 34. a 35. a 36. a		000000000		37. 38. 39. 40.		(a)	0000			
	SECTION-C														
41.42.43.44.	 a) a) a) a) 	(b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0 0 0 0 0	(d) (d) (d)	45. (a) 46. (a) 47. (a) 48. (a)		() () () () () () () () () () () () () ((d) (d) (d) (d)	49. 50.	(a) (a)	(b) (b)	© ©	(d) (d)		
No. c	of Qns. A	Attempted	d		Correct		Inc	correct			Mark	s			

Page for Rough Work