- \mathbb{C} denotes the set of complex numbers.
- \mathbb{R} denotes the set of real numbers.
- \mathbb{Q} denotes the set of rational numbers.
- \mathbb{Z} denotes the set of integers.
- \mathbb{N} denotes the set of positive integers.

Q 1. Let $f: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ be a continuous function and $\left\{x_{n}\right\}$ a sequence of real numbers converging to x. Define

$$
\begin{aligned}
g_{n}(y) & =f\left(x_{n}, y\right), 0 \leq y \leq 1, \\
g(y) & =f(x, y), \quad 0 \leq y \leq 1 .
\end{aligned}
$$

Show that g_{n} converges to g uniformly on $[0,1]$.
Q 2. Let f be a real valued continuous function on $[-1,1]$ such that $f(x)=$ $f(-x)$ for all $x \in[-1,1]$. Show that for every $\epsilon>0$ there is a polynomial $p(x)$ with rational coefficients such that for every $x \in$ $[-1,1]$,

$$
\left|f(x)-p\left(x^{2}\right)\right|<\epsilon .
$$

Q 3. Show that every bijection $f: \mathbb{R} \rightarrow[0, \infty)$ has infinitely many points of discontinuity.

Q 4. (a) Let f be an entire function such that $\lim _{|z| \rightarrow \infty}|f(z)|=\infty$. Prove that f is a polynomial.
(b) Let f be an entire function which is not a polynomial. Then prove that the image of the set $\{z \in \mathbb{C}:|z|>1\}$ under f is dense in \mathbb{C}.

Q 5. Let $P(z)$ be a monic polynomial with complex coefficients with all roots distinct and in $\{z \in \mathbb{C}: \operatorname{Im}(z)<0\}$.
(a) Prove that the sum of all the residues of $\frac{P^{\prime}}{P}$ is the degree of the polynomial P.
(b) Prove that P^{\prime} has no real root.

Q 6. Let A be a Lebesgue measurable subset of \mathbb{R} and $\lambda(A)=1$, where λ is the Lebesgue measure on \mathbb{R}. Prove that there exists a Lebesgue measurable subset B of A such that $\lambda(B)=1 / 2$.

Q 7. Let $p \geq 1$ and f be a Lebesgue measurable function on \mathbb{R} such that $\int_{\mathbb{R}}|f(x)|^{p} d x<\infty$. Show that,

$$
\int_{\mathbb{R}}|f(x)|^{p} d x=\int_{0}^{\infty} p t^{p-1} \lambda(\{x:|f(x)|>t\}) d t
$$

where λ denotes the Lebesgue measure.
Q 8. Let $\Omega \subset \mathbb{R}^{n}$ be an open set and $K \subset \Omega$ compact. Prove that there exists an $r>0$ such that the set

$$
\left\{y \in \mathbb{R}^{n}:\|y-x\| \leq r \text { for some } x \in K\right\}
$$

is a compact subset of Ω.
Q 9. Let \sim be an equivalence relation on a topological space X such that each equivalence class is connected and the quotient space X / \sim is connected. Show that X is connected.

Q 10. Let C be a curve in \mathbb{R}^{2} passing through $(3,5)$ and $L(x, y)$ denote the segment of the tangent line to C at (x, y) lying in the first quadrant. Assuming that each point (x, y) of C in the first quadrant is the midpoint of $L(x, y)$, find the curve.

