JRF Mathematics Examination RM I

Solve any six questions.

1. Suppose that X is a Hausdorff space and $\alpha:[0,1] \rightarrow X$ is a continuous function. If α is one-one, then prove that the image of α is homeomorphic to $[0,1]$. Give an example where α is not one-one but the image of α is homeomorphic to $[0,1]$.
2. Prove that the following collection of subsets defines a topology on the set of natural numbers \mathbb{N} :

$$
\emptyset, \mathbb{N}, U_{n}=\{1, \ldots, n\}, \quad n \in \mathbb{N} .
$$

Is \mathbb{N} compact in this topology? What are the continuous functions from this space to the space \mathbb{R} of real numbers with standard topology?
3. Let $\left\{a_{n}\right\}$ be a sequence of non-zero real numbers. Show that it has a subsequence $\left\{a_{n_{k}}\right\}$ such that $\lim \frac{a_{n_{k+1}}}{a_{n_{k}}}$ exists and belongs to $\{0,1, \infty\}$.
4. Let D denote the open ball of unit radius about origin in the complex plane \mathbb{C}. Let f be a continuous complex-valued function on its closure \bar{D} which is analytic on D. If $f\left(e^{i t}\right)=0$ for $0<t<\frac{\pi}{2}$, show that $f(z)=0$ for all z.
5. Let U be an open connected set in \mathbb{C} and $f: U \rightarrow \mathbb{C}$ be a continuous map such that $z \mapsto f(z)^{n}$ is analytic for some positive integer n. Prove that f is analytic.
6. Let C be a closed convex set in \mathbb{R}^{2}. For any $x \in C$, define

$$
C_{x}=\left\{y \in \mathbb{R}^{2} \mid x+t y \in C, \quad \forall t \geq 0\right\}
$$

Prove that for any two points $x, x^{\prime} \in C$, we have $C_{x}=C_{x^{\prime}}$.
7. Let $U=B(c, R)$ denote the open ball of radius R around $c \in \mathbb{C}$. Let f be an analytic function on U such that there exists $M>0$ with $\left|f^{\prime}(z)\right| \leq M$ for all $z \in U$. Prove that

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq M\left|z_{1}-z_{2}\right| \forall z_{1}, z_{2} \in U .
$$

8. Let a, b be two real numbers. If the function $x(t)$ is a solution of

$$
\frac{d^{2} x}{d t^{2}}-2 a \frac{d x}{d t}+b x=0
$$

with $x(0)=x(1)=0$, then show that $x(n)=0$ for all $n \in \mathbb{N}$.
(Hint: Show that there exists a constant c such that $x(t+1)=c x(t)$ for all t.)
9. Let μ be a measure on the Borel σ-field of \mathbb{R} such that $\mu(\mathbb{R})=1$. Recall that the support of μ is the largest closed set C such that for all open sets U with $U \cap C \neq \emptyset$, we have $\mu(U)>0$. Assume that every continuous real-valued function on \mathbb{R} is integrable with respect to μ. Prove that the support of μ is compact.
10. Find all pairs $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that the following initial value problem has a unique solution in a neighbourhood of $\left(x_{0}, y_{0}\right)$:

$$
y^{\prime}=y^{\frac{1}{3}}+x ; y\left(x_{0}\right)=y_{0} .
$$

11. Let (X, d) be a complete metric space. Let $f: X \rightarrow X$ be a function such that for all distinct $x, y \in X$,

$$
d\left(f^{k}(x), f^{k}(y)\right)<c \cdot d(x, y)
$$

for some real number $c<1$ and an integer $k>1$. Show that f has a unique fixed point.
(Here f^{r} denotes the r-fold composition of f with itself.)

