UGC NET PAPER 3 JANUARY 03, 2017 SHIFT 1 1 ENVIRONMENTAL SCIENCES QUESTION PAPER

Note: This paper contains seventy five (75) objective type questions of two (2) marks each. All questions are compulsory.

- Given below are two statements. One labelled as Assertion (A) and the other labelled as Reason (R):
- **Assertion** (A): Vertical velocity often equals or exceeds horizontal velocity in mesoscale meteorological systems.
- **Reason** (R): Rising thermals are susceptible to undergo non-hydrostatic processes such as buoyant acceleration or acceleration through a narrow mountain pass.

Choose the correct answer:

1.

2.

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) (A) is true, but (R) is false.
- (4) (A) is false and (R) is true.
- Given below are two statements. One labelled as Assertion (A) and the other labelled as Reason (R):

Assertion (A): Geostrophic wind velocity is independent of latitude.

Reason (R): Geostrophic wind velocity is determined by pressure gradient force only.

Choose the correct answer:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) (A) is true, but (R) is false.
- (4) (A) is false and (R) is true.
- 3. Mixing height during night is typically in the range
 - (1) < few hundred metres
- (2) 1 km 2 km

(3) 2 km - 3 km

- (4) 3 km -4 km
- 4. At a given urban location, the temperature at an elevation of 25 m above ground is 15 °C. If the inversion conditions prevail and the environmental lapse rate is 1.25 °C per 100 m, the temperature at an elevation of 200 m will be
 - (1) 12.5 °C

(2) 17.5 °C

(3) 12.75 °C

- (4) 17.25 °C
- 5. When the temperature of the atmosphere falls at a rate greater than the dry adiabatic lapse rate, the atmosphere is
 - (1) stable

(2) highly stable

(3) unstable

(4) conditionally unstable

	(1)	net ra	ite of	carbo	n ga	ain by the plant	after	r respiration losses.
	(2)					convert the sug		
	(3)					30 56 ST	S	eric carbon dioxide.
	(4)	**	70					ration of a plant.
7.		oxyge he phot					with	water to form hydroxyl radical, is produced
	(1)	O_2					(2)	O_3
	(3)	NO_2					(4)	H_2O
}.	Mat	ch the l	List –	- I and	d Lis	st – II given bel	ow:	:
		List -	– I			List – II		
		(Elem	ent)		((Classification)	
	a.	Sodiu	m	i.	. 1	Chalcogen		
	b.	Calciu	ım	ii		Alkali Metal		
	c.	Chron	nium	ii	i	Alkaline Earth	Elen	ment
	d.	Sulfur	53	iv	/.	Transition Eler	nent	
	Cho	ose the	corre	ect ans	swer	г:		
	Cod	les:						
		a	b	С	d			
	(1)	ii	iii	iv	i			
	(2)	i	ii	iii	iv			
	(3)	iii	i	ii	iv			
	(4)	iv	ii	i	iii			
).	Iden	itify the	e inco	rrect s	state	ement about car	bon	isotopes:
	(1)					nt in vegetation	than	n in oceans.
	(2)	C-12	is mo	ost abı	ında	unt in nature.		
	(3)	C-14	is ab	sent ii	ı fos	ssil fuels.		
	(4)	C-13	is us	ed for	carb	bon-dating.		
0.	Ame	ong the	follo	wing	inse	cticides, which	one	e is relatively more soluble in water ?
	(1)	Aldic	earb	1571			(2)	Carbaryl
	(3)	Mala	thion				(4)	Aldrin
11.	At 2	.5 °C. ⊦	ivdro	gen io	n co	oncentration in	an ei	environmental aqueous solution is found to be
			2777	0.8		plies that the co		

 $1 \times 10^{-7} \text{ mol L}^{-1}$

 $2\times10^{-19}\,mol\;L^{-1}$

(2)

(4)

 $2\times10^{-3}~mol~L^{-1}$

 $2\times10^{-11}~mol~L^{-1}$

(1)

12.	Iden	tify the inc	orrect	statement about	humus.			
	(1)	Humus ac	ets as a	reservoir of nit	rogen fo	r plants	5 .	
	(2)	By decay	ing, hu	mus supplies ni	trogen t	o plants	ş.	
	(3)	Its rate of	decay	and rate of nitre	ogen rel	ease fol	llow plant growth.	
	(4)	Rate of r	iitroge	n release to pla	ants is s	slow du	iring warm growing season a	nd fast
		during wi	nter m	onths.				
13	3.1	1 1 1 .	0 1 0 0000001		۱, ۵	ANDRONAL STATE AND THE	S. J.	1
13.	Mat		– Land		5 7 (3)	orrect a	nswer from the codes given be	low:
		List – I		List -		4		
		(Terms)		(Chromatogra	•	:tion)		
	a.	Effluent	i.					
	b.	Eluate	ii. iii.	3.5±6	3000			
	c. Eluent		111.			phase	mixture	
	d. Eluite		30.	which exits th			a a a luman	
			iV.	The stream flo	owing or	it of the	: corumn	
	Cod	2000 W000	0	a				
	(1)	a b i iii	c ii	d iv				
	(2)	ii iv	iii	i				
	(3)	iii i						
	(4)	iv iii	ii	i				
	7.3			. .				
14.	A te	xtile indust	rv effli	ient containing	1×10^{-6}	mol L	¹ of an organic dye has 0.6 abso	orbance
***							coefficient of the dye is	or ounce
		$6 \times 10^4 \mathrm{L}$		37.55			0^{-7} L mol ⁻¹ cm ⁻¹	
	30.3	1.66×10^{-1}			10 50		10 ⁶ L mol ⁻¹ cm ⁻¹	
	(3)	1.00 × 10	Lm	or cm	(4)	0.0 ×	10 L moi cm	
15.	Cha	racteristics	of succ	cessful invasive	plant sp	ecies ar	re:	
	a.			nd early flowering	350. XI			
	b.	370 M		e plasticity				
	c.	700 B	7007	rge number of s	seeds			
	Cho	ose the corr	rect and	swer:				
	(1)	a only			(2)	a and	b only	
	(3)	b and c or	nly		(4)	a, b ar	nd c	
	2000	200		Mark 1994		Total a		
16.				formation of b	· · · · · · · · · · · · · · · · · · ·			
	(1)	Quinolon			(2)		lactams	
	(3)	Tetracycl	ines		(4)	Amin	oglycocides	
17.	As a	result of I	El Nine	o, it has been o	bserved	that ph	ytoplankton productivity incre	eases in
						J. J. T. J.	exico. This increase is probably	
	(a)	Increased					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	(b)	More nut						
	(c)			urface waters				
	Cod							
	(1)	(a) and (b	only)		(2)	(b) an	id (c) only	
	(3)	(a) and (c	š		(4)		and (c)	

8.	Veri	mi composting process depends on	1										
	(a)	Quality of organic resources											
	(b)	Types of earthworms											
	(c)	Moisture content of the organic	wastes										
	Cho	ose the correct answer:											
	(1)	(a) only	(2)	(a) and (b) only									
	(3)	(b) and (c) only	(4)	(a), (b) and (c)									
9.	Phot	tosynthesis in plants is associated v	with										
	(a)	decrease in entropy											
	(b)												
	(c)	increase in Gibbs free energy											
	Cho	ose the correct answer:											
	(1)	(a) only	(2)	(b) only									
	(3)	(b) and (c) only	(4)	(a), (b) and (c)									
20.	The	predominant bioparticulate allerge	ens in tl	ne air are									
	(1)	Insect debris and house dust mite											
	(1) Insect debris and nouse dust mites (2) Pollen grains and fungal spores												
	(3)	Animal dander and house dust											
	(4)	Wool particles and cockroach ca	llyx										
21.	The	enhancement of the fitness of	a rec	ipient individual by acts that reduce the									
		utionary fitness of the donor indiv											
	(1)	Amensalism	(2)	Altruism									
	(3)	Commonsalism	(4)	Parasitism									
22.	The	greater proportion of the edges in	a natio	nal park indicates a									
	(a)	less functional habitat											
	(b)	highly functional habitat											
	(c)	degraded habitat											
	Cho	ose the correct answer:											
	(1)	(a) only	(2)	(a) and (c) only									
	(3)	(b) and (c) only	(4)	(a), (b) and (c)									
3.	The	change in species composition	that is	imposed by factors external to the biotic									
	com	munity is known as											
	(1)	Autogenic succession	(2)	Allogenic succession									
	(3)	Xerarch	(4)	Hydrarch									
4.	Whi	ch ecosystem type produces maxii	mum lit	ter mass ?									
	(1)	Tropical rain forest	(2)	Tropical seasonal forest									

(4)

(3)

Temperate deciduous forest

Boreal forest

		erally a			000			zotor					
	(a) (b)					cance.	riables of v	vater.					
	(e)				() - 1		den geneti	e change					
		les:	/III, IC	produ	ction a	ina sua	den geneu	c change					
	(1)		nd (c)	only			(2)	(b) and (c)	only				
	(3)		nd (b)				(4)	(a), (b) and					
26.	Mic	robes i	n the	enviro	nment	t are lik	cely to be						
	I.	livin	g in b	iofilm	s on st	ırfaces							
	II.	non-	- cultur	able									
	III.	III. living solitary and planktonic lines											
	Cho	ose the	e corre	ect coo	de:								
	(1)	I onl	У				(2)	II and III or	nly				
	(3)	Lanc	Шош	ıly			(4)	I and II onl	у				
27.	Wh	ich ma	gma t	уре со	ntains	the gre	eatest amo	unt of silica '	?				
	(1)	Basa	Itic				(2) Andesitic						
	(3)	Rhy	olitic				(4)	Peridotic					
28.	Mat	ch the	List –	Land	List –	II and	choose the	e correct ansv	wer from the codes given below:				
			List.	– I			List – II						
		(Strat	igrap	hic U	nit)		(Deposi	ts)					
	a.	Baila	dila G	roup		i.	Mn						
		Nalla	malai	Group)	ii.	Phospho	rite					
	b.	and the second					Banded I	ron Formatic	on				
	b. c.	Udair	Jul Cil			iv.	Pb-Zn						
		Udaip Sansa		0.54		IV.							
	c. d.			0.54		1 V .							
	c. d.	Sansa		0.54	d	ıv.							
	c. d.	Sansa les :	ır Gro	up	d i	IV.							
	c. d. Coc	Sansa les :	ır Gro b	up c		IV.							
	c. d. Coc	Sansa les : a iii iv i	b iv i i ii	c ii iii iv	i ii iii	IV.							
	c. d. Coc (1) (2)	Sansa les : a iii iv	tr Gro b iv i	up c ii iii	i ii								
29.	 c. d. Coc (1) (2) (3) (4) 	Sansa les: a iii iv i i	b iv i ii iii	c ii iii iv i	i ii iii iv			he discharge	of a stream ?				
29.	 c. d. Coc (1) (2) (3) (4) 	Sansa les: a iii iv i ii	b iv i ii iii	c ii iii iv i	i ii iii iv	ctors d		40.00 case - 100.00 case - 100.00	of a stream ? gth and velocity				

(2)

(4)

Potamon

Sediment transforming zone

Head water

Mouth

(1)

04000	.e	500°) 87 (*35 39975) 8005 97	28 12 00	
31.		ne decreasing order of hardness on Nowing:	Moh's	scale, choose the correct sequence from the
	(1)	Quartz, Feldspar, Calcite, Talc	(2)	Feldspar, Calcite, Talc, Quartz
	(3)	Tale, Quartz, Feldspar, Calcite	(4)	Quartz, Calcite, Feldspar, Talc
32.	Win	d transport of materials entails the fo	ollowi	ng processes :
	I.	Saltation	II.	Reptation
	III.	Suspension	IV.	Creep
	Cho	ose the correct answer:		5.5
	(1)	I, II, III, IV	(2)	II, III and IV only
	(3)	III and IV only	(4)	I and II only
33.	Acco	ording to Darcy's law for ground wa	iter m	ovement, velocity is proportional to
	(1)	Hydraulic gradient.	(2)	The second secon
	(3)	Square root of hydraulic gradient,		
34.	Whi	ch of the following types of coal has	s maxi	imum ash content (%) 9
6 8.81	(1)	Anthracite	(2)	Sub-Bituminous
	(3)	Lignite	(4)	High volatile Bituminous
	~			
35.		en below are two statements. One is son (R):	abelle	d as Assertion (A) and the other labelled as
	Asse	ertion (A): The amount of energy a to a fission event.	vailab	ole in a single fusion event is small compared
	Reas	$\operatorname{son}\left(\mathbb{R}\right)$: Isotopes of hydrogen are r	nuch l	ighter than uranium.
	Cho	ose the correct answer:		
	(1)	Both (A) and (R) are correct and (R) is t	he correct explanation of (A).
	(2)	Both (A) and (R) are correct and (R) is r	not the correct explanation of (A).
	(3)	(A) is true, but (R) is false.		
	(4)	(A) is false and (R) is true.		
36.		en below are two statements. One lason (R):	abelle	d as Assertion (A) and the other labelled as
	Asse	ertion (A): The thermal efficiency fuelled steam plants.	y of r	nuclear reactors is lower than that of fossil
	Reas	son (R): Temperature of water generature values compared to fossil fu		ng stream in a nuclear reactor has relatively steam plants.

Both (A) and (R) are correct and (R) is the correct explanation of (A).

Both (A) and (R) are correct and (R) is not the correct explanation of (A).

(4) (A) is false and (R) is true.

(A) is true, but (R) is false.

Choose the correct answer:

(1)

(2)

37. Given below are two statements. One labelled as Assertion (A) and the other labelled as Reason (R):

Assertion (A): Natural gas contributes less to smog formation than gasoline.

Reason (R): Unburnt CH₄ molecules are considerably less reactive with respect to the free radical chemistry for smog than the hydrocarbon molecules with more than one C atom.

Choose the correct answer:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) (A) is true, but (R) is false.
- (4) (A) is false and (R) is true.

38. Consider ocean waves of amplitude 2.0 m and wavelength 200 m. Assuming the gravity to be the only active force, the power available per metre perpendicular to the propagation of the wave is

(1) 86.24 kW m^{-1}

(2) 172.48 kW m^{-1}

(3) 344.90 kW m^{-1}

(4) 800.00 kW m⁻¹

39. A wind mill has cross-sectional area 25.0 m². The wind speed is 6.0 m/s. What will be the power generated by the wind mill in the Betz limit?

 $(1) \sim 2.064 \text{ kW}$

 $(2) \sim 3.483 \text{ kW}$

 $(3) \sim 11.162 \text{ kW}$

 $(4) \sim 18.321 \text{ kW}$

40. Given below are two statements. One labelled as Assertion (A) and the other labelled as Reason (R):

Assertion (A): The power output from an OTEC system installed at a tropical site is steady.

Reason (R): At tropical sites, the temperatures of warm surface water and cold water in the depth of ocean hardly vary from season to season.

Choose the correct answer:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
- (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A).
- (3) (A) is true, but (R) is false.
- (4) (A) is false and (R) is true.

41. An electric power plant based on solar energy uses collectors with concentrators which can achieve temperature of about 700 °C to operate a heat engine to generate electricity. If the solar insolation is 1 kW/m², how much total collector area will be required to supply on average 10 MW of electricity? (Take ambient air temperature to be 25 °C)

(1) $5.15 \times 10^3 \text{ m}^2$

(2) $1.44 \times 10^3 \text{ m}^2$

(3) $3.18 \times 10^3 \text{ m}^2$

(4) $10.61 \times 10^3 \text{ m}^2$

42.	The	potenc	y fac	tor of	CHC/ ₂ i	is 6.1 × 1	10 ⁻³ kg	g-day/	mg. Th	e cor	icentra	ition i	in dri	nking	z wate	er
		would				risk for		•								
		11.4	μg/L				(2)	20.	6 μg/L							
	(3)	6 µg/	L				(4)	25	μg/L							
43.		ch of ared <i>in</i>			ng com	pounds	used f	for di	sinfecti	on o	f watc	r is	not s	table	but	is
	(1)	Cl_2					(2)	Ca	$(OCl)_2$							
	(3)	NaO	C/				(4)	HC)Cl							
44.	Ider meta (1) (2) (3) (4)	als : Soils Hum Hum	act a ic ma ic ma	s a sir terials terials	ik for he s have gr s extract	ent from avy meta reat affin heavy m umic aci	als. nity for netals f	r heav from s	y metal soil wat	catio	ons. r formi	ng co			heav	УУ
45.			easur 3			uces a so re of 40 i		at will 54	be its v dB			f 10	m fro	om it.	. If th	ie
46.	Ider (1) (2) (3) (4)	Partic Suspe Suspe	eles s endec endec	uspen I parti I parti	ded in w cles carr cles due	nt with revater are by a position to similar	in coll tive ch ar char	loidal iarge, rge re	form. pel eacl			coagu	latio	n.		
47.	wate	er parai ch the l	meter List –	s and I and List –	their per List – I	source w missible I. Identif	e value: fy the c	es are correc	given ir	the er fro I	lists g m the	iven b	pelow	/ :		n,
	a.	Total per 10			ganism	MPN	i.	6.5 –	8.5							
	b.	рΗ					ii.	< 50	per 100	mL						
	c.	DO					iii.	2 mg/	/L or les	SS						
	d.	BOD	(5 day	ys, 20	°C)		iv.	6 mg	L or m	ore						
	Cod	les:	late and the second		(alleman)											
	/ • •	a 	b	.c	d 											
	(1)	11	1 :	ív 	111											
	(2)	11 :::	i	iii	iv :											
	(3)	iii	iv ::	ii :::	i i											
	(4)	IV	11	111	1											

48.		en belo son (R		e two	stater	nents	One labelled as Assertion (A) and the other labelled as								
	Ass		(A):		e dep	letion	is much less over arctic stratosphere than over Antarctic								
	Rea	00 1 00	R): A osphe:		tic atr	nospł	nere is on an average about 10 °C cooler than the arctic								
	Cho	ose the	50		swer :										
	(1)						et and (R) is the correct explanation of (A).								
	(2)						et and (R) is not the correct explanation of (A).								
	33.36500	3) (A) is true, but (R) is false.													
	(4)	80 00		3 100	(R) is										
	()	(1.1)	Tellion	e are	(11) 1.7	creio.									
49.	Mat	ch the	List –	- I and	List -	- II. I	lentify the correct answer from the codes given below:								
		Li	ist – I				List – II								
		(Wat	er typ	oe)			(Conductivity (µS cm ⁻¹))								
	a.	Fresh	water	r			i. > 500								
	b. Clean tap water						ii. < 300								
	c.	Clear	ı uplaı	nd riv	er		iii. $60 - 100$								
	d.	Orgai	nically	y enric	ched r	iver	iv. $2-4$								
	Coc	les:													
		a	b	c	d										
	(1)	iv	iii	ii	i										
	(2)	i	iv	iii	ii										
	(3)	ii	i	iv	iii										
	(4)	iii	ii	i	iv										
50.	Mat	ch the	List –	- I and	List -	- II. I	dentify the correct answer from the codes given below:								
			List -	- I			List – II								
		(Auc	liting	types	s)		(Set of terms)								
	a.	Imple	ementa	ation a	audit	i.	External review of the procedures used								
	b.	Perfo	rmanc	e aud	it	ii.	Compare actual with predicted impacts								
	c.	Proje	et imp	act au	ıdit	iii.	To cover full operation								
	d.	Proce	dures	audit		iv.	To cover a start-up								
	Coc	les:													
		a	b	C	d										
	(1)	iii	iv	i	ii										
	(2)	iv	iii	ii	i										
	(3)	i	ii	iii	iv										

ii

(4)

iii

iv

i

Given below are two statements. One labelled as Assertion (A) and the other labelled as 51. Reason (R): Assertion (A): The ecological restoration is a difficult proposition both in principle and in practice. Reason (R): Identity and population sizes of plants and animals once present at a particular site are largely unknown. Choose the correct answer: Both (A) and (R) are correct and (R) is the correct explanation of (A). (1)Both (A) and (R) are correct and (R) is not the correct explanation of (A). (2) (A) is true, but (R) is false. (3) (A) is false and (R) is true. (4) 52. During the EIA process under the EIA notification of September 14, 2006, no public hearing is required for all A' category projects (a) all 'B₁' category projects (b) all 'B2' category projects (c) Choose the correct code: (a) only (a) and (b) only (1)(2) (c) only (b) and (c) only (3)(4)53. Given below are two statements. One labelled as Assertion (A) and the other labelled as Reason (R): Assertion (A): Evaporation of surface water is reduced due to black carbon in atmosphere. **Reason** (**R**): Presence of aerosols having black carbon is responsible for dimming effect. Choose the correct answer: Both (A) and (R) are correct and (R) is the correct explanation of (A). (1)Both (A) and (R) are correct and (R) is not the correct explanation of (A). (2)(A) is true, but (R) is false. (3) (A) is false and (R) is true. (4)Match the List – I and List – II. Identify the correct answer from the codes given below: 54. List - I List – II (Methods) (Description) Network Method Possible impacts by composite environmental parameters. a. Overlays Method Structured approaches by involving scaling-weighing b. techniques. Checklists Method iii. Environmental systems as a complex web of relationships. C. Spatial distribution of environmental impacts using GIS. Adhoc Method d. Codes: b d a C iii ii i (1)iV i iii iv ii (2)

(3)

(4)

i

iv

iv iii iii

ii

ii

i

55.	In er	nvironmental Impact Ass	sessm	ent, the base	eline studies describe the	
	(1)	socio-economic mappi	ng of	the area.		
	(2)	consequences of the de	velo	oment activi	ty.	
	(3)	assessment of the risk	invol	ved during p	roject implementation.	
	(4)	environmental setting of	existi	ng in the pro	oject area.	
56.	An e	cosystem restoration pro	oject	should have	the outcomes which are	
	I.	Specific	II.	Measurable		
	III.	General	IV.	Realistic		
	V.	Time bound				
	Cho	ose the correct code:				
	(1)	I, II, III, V		(2)	I, II, IV, V	
	(3)	II, III, IV, V		(4)	I, II, III, IV	
57.	Whe	n applied to field popula	ations	: Lotka-Volt	terra equations suffer from the following:	
	I.	Competition coefficien				
	II.	Carrying capacity is as				
	III.	There are no time lags.				
	IV.	Maximal rate of increa		assumed to l	be constant.	
	Cho	ose the correct answer:				
	(1)	I and II only				
	(2)	II and III only				
	(3)	II, III and IV only				
	(4)	I, II, III and IV				
58.	days	마르마스 아이트 아이 아이지는 아이를 있었다. 이 전경 있는 사람들이 있는 아이트 아이들이 있다면 아이들이 있다면 아이들이 다른 것이다. 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들			values of contaminated air over a period of 5 y. The sample mean with standard deviation	
	(1)	6.2 ± 0.02		(2)	6.2 ± 0.23	
	(3)	6.0 ± 0.15		(4)	6.2 ± 0.18	
59.	The	population (N) of fish in	ı a po	nd follows t	he logistic equation	
	$\frac{dN}{dt} =$	$= 0.1 \text{ N} - 0.001 \text{ N}^2$.				
	Wha	t is the maximum sustai	nable	yield?		

50

200

(2)

(4)

(1)

(3)

100

25

60.	Give	en below are two statements. (One labelle	ed as Assertion (A) and the other labelled as								
	Rea	son (R):										
	Asse	$\operatorname{ertion}\left(\mathbf{A}\right) :$ For power stations	and pollut	ing industries, tall stacks are installed.								
	Rea	son (R): The maximum grous stack is inversely proportion		concentration of a pollutant released from a ht of the stack.								
	Cho	ose the correct answer:										
	(1)	Both (A) and (R) are correct	and (R) is	the correct explanation of (A).								
	(2)	Both (A) and (R) are correct	and (R) is	not the correct explanation of (A).								
	(3)	(3) (A) is true, but (R) is false.										
	(4)	(A) is false and (R) is true.										
61.	of a km a	Consider a box model for an airshed over a city and assume that the initial concentration of a pollutant is zero and that the air entering the box is clean. If the length of the box is 10km and the wind speed along the length of the box is 5m/s , what is the time taken for the pollutant concentration to reach $\sim 95\%$ of its final value?										
	(1)	1 h 40 minutes	(2)	1 h 7 minutes								
	(3)	33 minutes 20 seconds	(4)	2 h 13 minutes 20 seconds								
	For a sample size $n = 16$, the mean (\overline{X}) value and standard deviation (S) are found to be 5.667 and 0.934, respectively. If the population mean is $\mu = 5.2$, then $t - \text{statistic}$ is											
52.		그렇게 하면 하는 그렇지 않는데 되었다. 그런 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		에 가게 봤으면 하면 가장이 되었다. 그래요								
52.		그렇게 하면 하는 그렇지 않는데 되었다. 그런 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		에 가게 봤으면 하면 가장이 되었다. 그래요								
52.	5.66	67 and 0.934, respectively. If th	e populatio	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is								
	5.66 (1) (3)	of and 0.934, respectively. If the 0.5	e populatio (2) (4)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0								
	5.66 (1) (3)	o7 and 0.934, respectively. If the 0.5 1.76	e populatio (2) (4)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0								
	5.66 (1) (3) Whi	of and 0.934, respectively. If the 0.5 1.76 ch of the following are sources	e population (2) (4) sof the gree	on mean is $\mu = 5.2$, then t – statistic is 0.47 2.0 enhouse gas methane (CH ₄) ?								
	5.66 (1) (3) Whi (a) (c)	7 and 0.934, respectively. If th 0.5 1.76 ch of the following are sources Coal mining areas	e population (2) (4) s of the green (b)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants								
	5.66 (1) (3) Whi (a) (c)	ond 0.934, respectively. If the 0.5 and 0.934, respectively. If the 1.76 ch of the following are sources Coal mining areas Wetlands	e population (2) (4) s of the green (b)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants								
	5.66 (1) (3) Whi (a) (c) Cho	ond 0.934, respectively. If the 0.5 and 0.934, respectively. If the 1.76 ch of the following are sources Coal mining areas Wetlands ose the correct answer:	e population (2) (4) s of the gree (b) (d)	on mean is $\mu = 5.2$, then t – statistic is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants Low land paddy								
63.	5.66 (1) (3) Whi (a) (c) Cho (1) (3)	of and 0.934, respectively. If the 0.5 and 0.934 are sources of the following are sources. Coal mining areas. Wetlands ose the correct answer: (a), (b) and (c) only (b), (c) and (d) only	e population (2) (4) s of the gree (b) (d) (2) (4)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants Low land paddy (b) and (c) only								
63.	5.66 (1) (3) Whi (a) (c) Cho (1) (3)	of and 0.934, respectively. If the 0.5 and 0.934 are sources of the following are sources. Coal mining areas. Wetlands ose the correct answer: (a), (b) and (c) only (b), (c) and (d) only	e population (2) (4) s of the gree (b) (d) (2) (4)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants Low land paddy (b) and (c) only (a), (b), (c) and (d)								
52. 53.	5.66 (1) (3) Whi (a) (c) Cho (1) (3) Whi cour	of and 0.934, respectively. If the 0.5 and 0.934, respectively. If the 0.5 are sources of the following are sources. Coal mining areas. Wetlands are sometimes where the correct answer: (a), (b) and (c) only (b), (c) and (d) only (c) of the following convention tries?	e population (2) (4) s of the gree (b) (d) (2) (4) on/protocols	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants Low land paddy (b) and (c) only (a), (b), (c) and (d) s/treaties is legally binding on the signatory								
63.	5.66 (1) (3) Whi (a) (c) Cho (1) (3) Whi cour (1) (3)	on of the following are sources Coal mining areas Wetlands ose the correct answer: (a), (b) and (c) only (b), (c) and (d) only The following convention Basel Convention	e population (2) (4) s of the gree (b) (d) (2) (4) on/protocols (2) (4)	on mean is $\mu = 5.2$, then $t - \text{statistic}$ is 0.47 2.0 enhouse gas methane (CH ₄)? Ruminants Low land paddy (b) and (c) only (a), (b), (c) and (d) s/treaties is legally binding on the signatory Montreal Protocol Paris Agreement								

(4)

> 10

3.0 - 6.5

66.	Orga	anic wetland soils have										
	I.	High porosity	II.	Low density								
	III.	High Ion exchange capacity	IV.	Low nutrient availability								
	Cho	ose the right answer:		5.								
	(1)	I, II, III, IV	(2)	II, III, IV only								
	(3)	III, IV only	(4)	I, II only								
67.	Cons	sider following statements about the	ozon	e hole ?								
	I.	Ozone formation and destruction keeps on happening.										
	II.	Ozone destruction rate is higher th	an its	formation rate.								
	III.	Ozone destruction rate is equal to	its for	mation rate.								
	Cho	ose the correct answer:										
	(1)	I only	(2)	I and II only								
	(3)	I and III only	(4)	III only								
68.	Con	sider following statements about an	estuar	y:								
	I.	Estuary is the ecotonal region between	veen f	resh water and oceanic water.								
	II.	This area is highly productive.										
	III.	This area is highly unproductive.										
	Cho	ose the correct answer:										
	(1)	I only	(2)	I and II only								
	(3)	III only	(4)	I and III only								
69.	The	ionic species, O^+ , O_2^+ and N_2^+ are f	ound	generally in								
	(1)	Troposphere	(2)	Stratosphere								
	(3)	Mesosphere	(4)	Heterosphere								
70.		part of recently signed intern ofluorocarbons (HFCs), India will s		l agreement on phasing out synthetic nasing them out from the year								
	(1)	2019	(2)	2024								
	(3)	2028	(4)	2032								
71.		ne tropospheric ozone formation realies does not act as a catalyst?	nction	sequence, which of the following chemical								
	(1)	ОН	(2)	HO_2								
	(3)	NO_2	(4)	O_2								

72.	Whi	ich of t	he fol	lowin	g are usef	iul inc	licators c	of pollution potential of organic effluents?						
	(a)				arbon (TO			- Paristra Paristra						
	(b)				gen Dema		OD)							
	(c)		idity	<i>.</i>		· · · · · · · · · · · · · · · · · · ·	•							
	(d)	Cond	ductiv	ity										
	Cho	ose the	e corre	ect co	de:									
	(1)	(a) a	nd (b)	only			(2)	(a) and (c) only						
	(3)	(b) a	nd (d)	only			(4)	(a), (b), (c) and (d)						
73.	Whi	Which of the following power plants releases radioactive materials as well as hazardous												
	met	metals such as lead and arsenic under normal operating conditions?												
	(1)	Nucl	lear po	wer p	olant		(2)	Solar power installations						
	(3)	Hydi	ro pov	ver			(4)	Coal based thermal power plants						
74.	Mat	ch the	List-I	and I	.ist-II. Ide	entify	the corre	ct answer from the codes given below:						
			List	t - I				List – II						
		(Conv	entior	n)			(Purpose)						
	a.	Paris	Conv	ention	1992	i.	Transbo	oundary Movement of Waste						
	b.	Vienr	ia Coi	iventi	on 1985	ii.	Protecti	on of Marine Environment						
	c.	Bama	iko Co	nven	tion 1998	iii.	Protecti	on of ozone layer						
	d.	Basel	conv	ention	1992	iv.	Ban on	import of hazardous waste to Africa						
	Cod	les:												
		a	b	C	d									
	(1)	ii	iii	iv	i									
	(2)	iii	iv	i	ii									
	(3)	iv	i	ii	iii									
	(4)	i	ii	iii	iv									
75.	Mat			and I	.ist-II. Ide	entify		ct answer from the codes given below:						
			st – I					st - II						
		(Color		100		8	200 State 1	tal Wastes)						
	a.		w Baş	3S		i.		l metal sharps						
	b.	Red F	25			ii.		ed Medicine bottles						
	c.	Blue				iii.								
	d.		: Carb	oy		iV.	Infectio	us waste placenta						
	Coc	les:	1		97 100									
	/15	a	b	c 	d :									
	(1)	IV :::	iii ::	ii :	1 f									
	(2)	iii ::	ii :	i :	1V									
	(3)	ii	i	i v	111									
	(4)	ì	iv	111	11									

Space For Rough Work