Navik GD Physics Paper 20 March 2021 Shift (2+3)

20 Questions

,	
Que.	
1.	an amplifier
2.	a rectifier
3.	a oscillator
4.	a voltage regulator
	Solution Correct Option - 4
Que. 2	2 Which of the following statement is INCORRECT about necessary conditions for a geostationary satellite?
1.	It should revolve in an orbit concentric and coplanar with the equatorial plane of the earth.
2.	Its direction of rotation is from east to west.
3.	Its period of revolution around the earth should be exactly same as that of the earth about its own axis is., 24 hours.
4.	It should revolve at a height of nearly 36,000 km above the earth's surface.
	Solution Correct Option - 2
1. 2. 3. 4.	Capacitance decreases Capacitance increases by two times Capacitance remains unchanged Insufficient data Solution Correct Option - 2
Que. 4	If a liquid is heated in space under no gravity, the transfer of heat will take place by process of
1.	Conduction
2.	Convection
3.	Radiation
4.	Cannot be heated in the absence of gravity
	Solution Correct Option - 3
Que. :	The heat exchanged between the system and the surrounding is $+60$ J and the internal energy change is -180 J. Find the work done by/on the system.
1.	150 J
1. 2.	150 J 200 J

Solution Correct Option - 4

Que. (
	5 If a wire of resistance R is stretched to double of its length, then the new resistance will be
1.	R/2
2.	2R
3.	4R
4.	16R
	Solution Correct Option - 3
Que. '	If we increase the current in an inductor, self inductance of the inductor will
1.	decrease
2.	increase
3.	remains same
4.	first decrease then increase
	Solution Correct Option - 1
Que. 8	For a series LCR circuit at resonance, the statement which is not true is
1.	Peak energy stored by a capacitor = peak energy stored by an inductor
2.	Average power = apparent power
3.	Wattles current is zero
4.	Power factor is zero
4.	Power factor is zero Solution Correct Option - 4
4. Que. 9	Solution Correct Option - 4
r	Solution Correct Option - 4In photo electric effect intensity of incidence light is made double, then energy of emitted photo
Que. 9	 Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will:
Que. 9 1.	 Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase
Que. 1. 2.	 Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease
Que. 9	Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease remain same
Que. 9 1. 2. 3. 4.	Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease remain same none of these Solution Correct Option - 3
Que. 1. 2. 3. 4.	Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease remain same none of these Solution Correct Option - 3
Que. 9 1. 2. 3. 4. Que. 1	 Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease remain same none of these Solution Correct Option - 3 A Vernier caliper has a least count of
Que. 9 1. 2. 3. 4. Que. 1 1.	 Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease remain same none of these Solution Correct Option - 3 A Vernier caliper has a least count of 0.1 cm
Que. 9 1. 2. 3. 4. Que. 1 1. 2. 2.	Solution Correct Option - 4 In photo electric effect intensity of incidence light is made double, then energy of emitted photo electrons will: increase decrease remain same none of these Solution Correct Option - 3 IO A Vernier caliper has a least count of 0.1 cm 0.001 cm

Que. 11 A person runs on a 300m circular track and comes back to the starting point in 200s. Calculate the average speed and average velocity.

1. 1.5m/s, 0

2. 2.5m/s, 2

3. 3 m/s, 3

4. 4 m/s, 5

Solution Correct Option - 1

Que. 1	
2	2 Two moles of oxygen is mixed with one moles of helium. The effective specific heat of the mixture at constant volume is:
1.	1.7 R
2.	2.17 R
3.	2.7 R
4.	3 R
	Solution Correct Option - 2
Que. 1	3 The last point on the stress-strain curve that occurs after the ultimate stress point is the
1.	Elastic point
2.	Upper yield point
3.	Lower yield point
4.	Fracture point
	Solution Correct Option - 4
Que. 1	4 When three identical capacitors are connected in series their equivalent capacitance is 12 μ F. Then the capacitance of each capacitor is:
1.	20 μF
	20 μF 36 μF
2.	36 μF
2. 3.	36 μF 4 μF
2. 3.	36 μF
2. 3.	36 μF 4 μF 5 μF
2. 3. 4.	36 μF 4 μF 5 μF Solution Correct Option - 2
2. 3. 4. Que. 1	 36 μF 4 μF 5 μF Solution Correct Option - 2 5 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a
2. 3. 4. Que. 1 1.	 36 μF 4 μF 5 μF Solution Correct Option - 2 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center:
2. 3. 4. Que. 1 1. 2.	 36 μF 4 μF 5 μF Solution Correct Option - 2 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R
2. 3. 4. Que. 1 1. 2. 3.	 36 μF 4 μF 5 μF 5 Solution Correct Option - 2 5 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases from r < R, decreases as r increases from r > R
2. 3. 4. Que. 1 1. 2. 3.	 36 μF 4 μF 5 μF Solution Correct Option - 2 5 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases for r < R increases as r increases for r > R
2. 3. 4. Que. 1 1. 2. 3. 4.	 36 μF 4 μF 5 μF Solution Correct Option - 2 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases for r < R, decreases as r increases for r > R Zero as r increases for r < R and for r > R Decreases as r increases for r < R and for r > R Solution Correct Option - 2
2. 3. 4. Que. 1 1. 2. 3. 4.	 36 μF 4 μF 5 μF Solution Correct Option - 2 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases for r < R, decreases as r increases for r > R Zero as r increases for r < R and for r > R Decreases as r increases for r < R and for r > R Solution Correct Option - 2
2. 3. 4. Que. 1 1. 2. 3. 4. Que. 1 1.	 36 μF 4 μF 5 μF Solution Correct Option - 2 5 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases for r < R, decreases as r increases for r > R Zero as r increases for r < R and for r > R Decreases as r increases for r < R and for r > R Solution Correct Option - 2 6 Magnetism at the center of a bar magnet is?
2. 3. 4. Que. 1 1. 2. 3. 4. Que. 1 1. 2. 3. 4.	 36 μF 4 μF 5 μF Solution Correct Option - 2 5 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases from r < R, decreases as r increases from r > R Zero as r increases for r < R increases as r increases for r > R Decreases as r increases for r < R and for r > R Solution Correct Option - 2 6 Magnetism at the center of a bar magnet is? Half of the poles
2. 3. 4. Que. 1 1. 2. 3. 4. Que. 1 1. 2. 3.	 36 μF 4 μF 5 μF Solution Correct Option - 2 A hollow metal sphere of radius R is uniformly charged. The electric field due to the sphere at a distance r from the center: Increases as r increases from r < R and for r > R Zero as r increases from r < R, decreases as r increases from r > R Zero as r increases for r < R increases as r increases for r > R Decreases as r increases for r < R and for r > R Solution Correct Option - 2 Magnetism at the center of a bar magnet is? Half of the poles

Que. 17

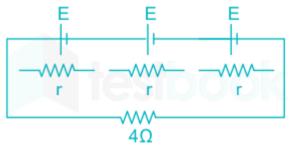
Two charges +2 coulomb each are placed 2 m apart in vacuum, force of repulsion between them will be:

- $1. \quad 9\times 10^9 \ \mathrm{N}$
- 2. 9×10^9 dyne
- 3. 9×10^9 kgf
- 4. 9×10^9 kN

```
Solution Correct Option - 1
```

Que. 18 In a moving coil galvanometer, if the current flowing through it is increased, then the deflection in the coil will

- 1. increase
- 2. decrease
- 3. remains the same
- 4. None of the above


Solution Correct Option - 1

Que. 19 What is the maximum height a body can reach if the body is thrown vertically upwards with a velocity of 15 m/s? (Take g=10m/s²)

- 1. 22.5m
- 2. 11.25m
- 3. 33.75m
- 4. 45m

Solution Correct Option - 2

Que. 20 Find the equivalent internal resistance and potential of the given circuit.

- 1. r and E
- 2. r/3 and E/3
- 3. 3r and 3E
- 4. r/3 and 3E
 - Solution Correct Option 3