UGC NET PAPER 2 JULY 08, 2018 SHIFT 1 ELECTRONIC SCIENCE QUESTION PAPER ### ELECTRONIC SCIENCE ### PAPER - II Note: This paper contains hundred (100) objective type questions of two (2) marks each. All questions are compulsory. 1. The simple one dimensional diffusion process can be given by: (1) $$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial c}{\partial x}(x,t)$$ (1) $$\frac{\partial c(x,t)}{\partial t} = D \frac{\partial c}{\partial x}(x,t)$$ (2) $\frac{\partial^2 c(x,t)}{\partial t^2} = D \frac{\partial^2 c}{\partial x^2}(x,t)$ (3) $$\frac{\partial c(x, t)}{\partial t} = D \frac{\partial^2 c}{\partial x^2}(x, t)$$ (4) $\frac{\partial^2 c(x, t)}{\partial t^2} = D \frac{\partial c}{\partial x}(x, t)$ (4) $$\frac{\partial^2 c(x, t)}{\partial t^2} = D \frac{\partial c}{\partial x}(x, t)$$ In an intrinsic semiconductor, the intrinsic carrier density is: 2. $$(1) \quad \frac{-Eg}{N_c N_v e^{2kT}}$$ $$(2) \qquad \sqrt{N_c N_v} e^{\frac{-E_g}{kT}}$$ (1) $$N_c N_v e^{\frac{-Eg}{2kT}}$$ (2) $\sqrt{N_c N_v} e^{\frac{-Eg}{kT}}$ (3) $\sqrt{N_c N_v} e^{\frac{-Eg}{2kT}}$ (4) $\sqrt{N_c N_v} e^{\frac{+Eg}{kT}}$ $$(4) \qquad \sqrt{N_c N_v} e^{\frac{+E_g}{kT}}$$ The frequency at which the transfer function $|H(\omega)|$ of the following RC network is $\frac{1}{2}$, will 3. be: - (1) 50 Hz - The Laplace transform of a signal f(t) is given as; $F(s) = \frac{5s+3}{s(s+1)}$. The signal will be: - (1) $2u(t) + 3e^{-t}$ - (2) $3u(t) 2e^{-t}$ (3) $3u(t) + 2e^{-t}$ (4) - $2u(t) 3e^{-t}$ 5. In a circuit shown below, the base current I_B is: - (1) 18.58 µA - (2) 19.73 µA - (3) 60.10 μA (2) (4) 2.63 μA 6. The unity follower circuit is: - 7. The advantage/disadvantage of Schottky TTL logic circuit over Standard TTL logic circuit is that: - (1)It provides low power consumption - (2) It virtually eliminates saturation delay time - (3) It provides simple circuitary - (4) It gives low switching speed In a J-K flip-flop we have $J=\overline{Q}$ and K=1 (shown in figure). Assuming the flip-flop was initially cleared and clocked for 6 pulses, the sequence at the Q output will be : - (1) 010000 - (2) 011001 - (3) 010010 - 010101 (4) - In which of the following number systems, AC flag is used in $8085 \mu p$? 9. - (1) Octal - (2) BCD - (3) Binary - Hexadecimal - JMP 2034H in 8085 up is an example of 10. - (1) 1 byte instruction - 2 byte instruction (2) - 3 byte instruction - (4) None of the above - Which of the following is the correct output for the 'C' program given below: 11. ``` #include<stdio.h> void afun(char *); int main() char ch[10]; ch[0]='X'; ch[1]='Y'; ch[2]='Z'; ch[3]='W'; afun (& ch[0]); return 0; void afun (char *c) c++; printf("%c", *c); c++; printf("%c\n", *c); ``` - Correct output is: YZ (2) (1) XY (3) ZW None of the above | 10 | ~ · 1 | .1 / 11 | | | | 10 | |-----|----------|----------|--------|------------|-----|----| | 12. | Consider | the foll | lowing | expression | III | - | 8+9/3*3-4+9%6; which evaluates to: - (1) 10 - (2) 8 - (3) 14 - (4)16 #### Which of the following statements in FORTRAN is non-executable statement? 13. - DO (1) - FORMAT - \mathbf{IF} (3) - READ #### A TRAPATT diode has the following parameters: 14. Doping concentration = 2×10^{15} cm⁻³ Current density = 20 KA/cm^2 The avalanche zone velocity of carriers is given by: $2.25 \times 10^5 \text{ m/s}$ (2) 6.25×10^7 cm/s (3) 6.25×10^3 m/s (4) 2.35×10^8 m/s #### 15. The Loading is sometimes used with an antenna in order to increase the: Bandwidth (1) Beam width Effective height (4) Input capacitance #### 16. Thermal noise is passed through an ideal low-pass filter having cut-off at $f_c = \omega$ Hz. The auto-correlation value of the noise at the output of the filter is given as: - (1)A delta function at t=0 - Gaussian over the range $-\infty \le t \le \infty$ - Sinc function over the range $-\infty \le t \le \infty$ (4) Triangular function over the range $$-\frac{1}{2} \omega \le t \le \frac{1}{2} \omega$$ #### Which of the following statement is **correct**? 17. - MF radio frequency waves are called long waves and HF are called short waves. - VLF and LF radio frequency waves are called long waves while HF waves are called short waves. - ELF radio waves are called long waves and HF are called short waves. - LF radio waves are called long waves and VHF are called short waves. (4) #### A single mode fiber with radius of 4.2 μ m, with core-refractive index = 1.48 and that of 18. cladding = 1.475, the cut-off wavelength is given by: - (1) $\lambda_C = 1334 \text{ nm}$ (2) $\lambda_C = 1525 \text{ nm}$ (3) $\lambda_C = 990 \text{ nm}$ - $\lambda_{\rm C} = 1290 \text{ nm}$ - 19. A thermostatic cut-out works on the principle of: - Thermal expansion of fluids - Expansion due to air pressure - Variation of resistance with temperature (3) - (4) Thermal expansion of metals - If h is the Hydrogen ion concentration in gm/l, the pH value is given as: - (1) log h - -logh (2) - (3) $\log (1+h)$ (4) $\log \frac{1}{(1+h)}$ - In a JFET, the maximum value of transconductance g_m is: - The cut-off frequency of TEM wave is: 22. - (1) Zero - (2)11.0 GHz - Moderate - Limiter circuit is not needed in the following detector: 23. - (1) Foster - Seeley discriminator - Balanced slope (3)Ratio detector - (4)None - Which of the following is used to analyze all kind of matters? 24. - Spectrophotometers (1) - Electron Microscope (2) - X-ray diffractometer (3) - (4)Spectrum analyzer - In a Silicon oxidation model, if h_G is the gas phase mass transfer co-efficient, C_G is the oxidant 25. concentration in the bulk of the gas and Cs is the oxidant concentration adjacent to the oxide surface, then for steady state, the gas phase flux can be expressed as: - - $\frac{(C_G C_S)}{h_G} \qquad (c) \quad h_G (C_G C_S)$ - (d) $h_G (C_S C_G)$ of these statements. - (a) and (c) are correct (1) - (b) is correct but (d) is wrong (2) - (c) is correct but (a) is wrong (3) - (a), (b) and (c) are correct but (d) is wrong When acceptor impurities of concentration NA are added to a semiconductor crystal, when n is the electron density in the conduction band and p is the hole density in the valence band, the ionised acceptors are given as: (a) $$\frac{N_A}{1+4\exp\left(\frac{E_A-E_F}{kT}\right)}$$ (b) $$\frac{N_A}{1-4 \exp\left(\frac{E_A - E_F}{kT}\right)}$$ (c) $$\frac{N_A}{1+4 \exp\left(\frac{E_D-E_F}{kT}\right)}$$ $$(d) \quad \frac{N_A}{1 - 2\exp\left(\frac{E_D - E_F}{kT}\right)}$$ of these statements: - (a) and (b) are wrong - (2) (a) is correct but (c) is wrong - (c) is correct but (d) is wrong (3) - (4) (d) is correct but (c) is wrong - Which of the following statements are correct for the A/D converters: 27. - The advantage of using a dual slope A/D converter in a digital voltmeter is that its accuracy is high. - The number of comparators in a 4-bit flash A/D converters is 15. (b) - The minimum number of comparators required to built an 8-bit flash A/D converter is 256. - The number of comparators required in a 3-bit comparator type A/D converters is 8. (d) ### Options: - (a), (c) and (d) are correct - (b) and (c) are correct (2) - (3)(a) and (b) are correct - (a), (b), (c) and (d) are correct - Which of the following statements are **correct**? 28. - CMOS has higher speed and smaller power than BJT. - CMOS ICs inputs should never be left unconnected as it may damage the device. (b) - CMOS ICs with Schmitt trigger inputs are useful for better noise immunity. - CMOS is most popular logic family in VLSI Technology. ### Options: - (a), (c) and (d) are correct - (b), (c) and (d) are correct (2) - (a), (b) and (c) are correct (3) - (a), (b) and (d) are correct J-08818 | 29. | Which of the following statements are correct in respect to 8086 μp ? | | | | | | | | | | | | |---|--|--|---------|---------------|--------|---------|--------------|----------|-------------|--|--|--| | (a) The instruction queue size is 8 bytes | | | | | | | | | | | | | | | (b) | Segment register size is 16 bit while physical address size is 20 bits | | | | | | | | | | | | | (c) | (c) Segments are disjoint | | | | | | | | | | | | | (d) Beginning address of a segment must be divisible by (16) ₁₀ | | | | | | | | | | | | | | The | The correct answer is: | | | | | | | | | | | | | (1) | (a) and (b) are co | orrect | | | | | | | | | | | | (2) | (b) and (d) are o | orrect | | | | | | | | | | | | (3) | (3) (b) and (c) are correct | | | | | | | | | | | | | (4) | | | | | | | | | | | | | 30. | Wha | t happens when l | RET st | tatement is e | execut | ed in | 8085 µp ? | | | | | | | | (a) | Program counte | | | | | | | | | | | | | (b) | 0. アレースのよう (1955-1955-1955-1956-1956-1956-1956-1956- | | | | | | | | | | | | | (c) | Returning address is loaded into the accumulator | | | | | | | | | | | | | (d) | | | | | | | | | | | | | | The correct answer is: | | | | | | | | | | | | | | (1) | (a) and (c) | (2) | (b) and (d) | | (3) | (a) and (b) | (4) | (b) and (c) | | | | | | | | | | | | | | | | | | | 31. | If 'a' | is declared as one | e-dim | ensional arra | y in | C' the | en | | | | | | | | (a) | *(a + i) is same a | s *(&z | ca[i]) | | | | | | | | | | | (b) | b) *(a+i) is same as *a+i | | | | | | | | | | | | | (c) | (a) &a[i] is same as $a+i-1$ | | | | | | | | | | | | | (d) | (d) *(a + i) is same as a[i] | | | | | | | | | | | | | Whi | Which of the above statements are incorrect? | | | | | | | | | | | | | (1) | (a) and (b) | (2) | (a) and (d) | | (3) | (b) and (c) | (4) | (c) and (d) | | | | | 32. | Whi | ch of the following | g spec | ifiers in C++ | need | l not b | e honored by | the comp | iler? | | | | | | (a) | static | (b) | inline | | (c) | extern | (d) | register | | | | | | Whi | ch of the following | g is co | rrect? | | | | | | | | | | | (1) | (b) and (d) | | | (2) | (a) a | nd (b) | | | | | | | | (3) | (c) and (d) | | | (4) | (a) a | and (d) | | | | | | | J-08 | 818 | | 1 | | 8 | .ts | | | Paper-II | | | | | , 50 | | | | | 90 | | | | Tuy-II | | | | - Which of the following statements are true in case of Pulse Code Modulation (PCM)? 33. - If the number of bits per sample is increased from n to n+1; the $\frac{S}{N_q}$ ratio would be (a) 6 dB - The quantization noise depends on sampling rate (b) - The main advantage of PCM is that it possesses better performance in presence of noise (c) - If the number of quantization levels increases from 4 to 64, the bandwidth increase by a factor of 4 ### Options: - (1)(a) and (b) are correct - (a) and (c) are correct - (a) and (d) are correct (3) - (b) and (c) are correct - The following statements are correct for DSB-SC signal: 34. - It is a low pass filter (a) - It needs minimum transmitted power - It is a result of product modulator (c) - Bandwidth of DSB-SC is twice the maximum frequency ### Options: - (a), (b) and (c) are correct (1) - (b) and (d) are correct - (a), (b) and (d) are correct - (a), (c) and (d) are correct (4) - In an abrupt p-n junction if $N_A \ll N_D$, then the barrier potential is: 35. - $\frac{qN_D}{2\epsilon_s}W$ (b) $\frac{qN_A}{2\epsilon_s}W^2$ (c) $\frac{qN_D}{2\epsilon_s}W^2$ (d) $\frac{q(N_A)}{2\epsilon_s}W$ of these statements: - (a) is correct but (c) is wrong (1) - (2)(b) is correct but (d) is wrong - (c) is correct but (a) is wrong (3) - (d) is correct but (b) is wrong (4) - In a voltage series feedback amplifier with load R₁, if R₁ is the input resistance without feedback, then the input resistance with feedback is: - $R_i (1 + \beta A v)$ - (b) $R_i (1-\beta Av)$ of these statements: - (a) and (c) are correct - (b) and (d) are wrong (2) - (a) and (d) are wrong - (c) and (a) are wrong (4) - 37. Magnetron is a: - (a) O-type tube - (b) a low power device - (c) a high power device - (d) an oscillator Out of the above following is correct option: - (1) (a) and (b) - 2) (b) and (d) - (3) (c) and (d) - (4) (a), (c) and (d) - 38. A Travelling Wave Tube Amplifier (TWTA) has the following properties: - (a) It provides an octave Bandwidth - (b) It provides an approximate gain of 40dB and more - (c) It has a low noise figure - (d) It has a very high noise figure Out of the above statements following is correct: - (1) (a), (b) and (d) only - (2) (a) and (d) only - (3) (a) and (b) only - (4) (a) and (b) and (c) only - 39. The block diagram of a feedback compensated system is given below: Which of the following statements are correct? - (a) When $K_t = 0$, the feedback compensation is in-effective and the system is uncompensated - (b) When $K_t = 0$, the feedback compensation is most effective and system is compensated - (c) The performance of the compensated system depends on K_t and T - (d) The performance of the compensated system does not depend on T Options: - (1) (a) and (c) - (2) (b) and (c) - (3) (a) and (d) - (4) (b) and (d) | | (b) | Excellent lineari | ty | | | | | | | | |---------------------------------|--|--|--------------------------------------|--|-------------|---------------------------------------|------------|--|--|--| | | | | | | | | | | | | | Which of the above are correct? | | | | | | | | | | | | | (1) | (a) and (b) only | (2) | (a) and (c) only | (3) | (b) and (c) only | (4) | (a), (b) and (c) | | | | 41. | with
10 ⁻⁷ | a post detection
Amp. The opera
APD is given by | n band
ating | dwidth of 50 MF
temperature is 18 | Iz. T | The photocurrent
The value of Load | before | nt and is operating
e gain is given by
tor to be connected | | | | | (1) | 536.5 ohm | (2) | 635.5 ohm | (3) | 835.5 ohm | (4) | 83.5 ohm | | | | 42. | For | optical sources, fo | llowii | ng statements are | given | : | | | | | | | (a) | They should have | ve larg | ge spectral bandw | ridth | | | | | | | | (b) | They should have | ve ver | y narrow spectral | line v | width | | | | | | | (c) | They should acc | urate | ly track the electri | ical in | put signal | | | | | | | (d) | The source shou | ld ha | ve linearity prope | rty | | | | | | | | Out of the above, following are correct: | | | | | | | | | | | | (1) | (a), (b), (c) only | | (2) | (b), | (c) and (d) only | | | | | | | (3) | (b) and (c) only | | (4) | 100 | (c) and (d) only | | | | | | 43. | 15 k inter (a) (b) (c) (d) | m. Following da
ference :
The maximum p
The dispersion p
The maximum p | oossib
oossib
oossib
unit l | estimated by using
le Bandwidth is 5
it length is 6.67 no
le B.W. is 10 MHz
ength is 3.37 ns/k | MHz
s/km | concept of that | . 그렇게 병하하는 | s over a distance of is no inter-symbol (a) and (b) | | | | 44. | Con | sider the followin | g stat | ements regarding | z-tra | nsform: | | | | | | | (a) | | | ces the Laplace tr | | 37 | 78 | | | | | | (b) | | | ces the Laplace to | | | | AND THE STREET STREET | | | | | (c) | The z-transform state errors, stab | - | ides direct paralle
tc. | ls to t | he s-plane analys | is of tr | ansients, steady | | | | | (d) | | | s on s-plane to po | ints o | n z-plane | | | | | | | Whi | ch of the above st | ateme | nts are correct? | | | | | | | | | (1) | (a) and (c) only | | (2) | (a) a | ind (d) only | | | | | | | (3) | (b), (c) and (d) o | nly | (4) | (a), | (b) and (d) only | | | | | | J-088 | 818 | | | 11 | | | | Paper-II | | | | | | | | | | | | | | | 40. The capacitor microphone is most widely used for precision measurements because it has: (a) Good frequency response - 45. Consider the following statements regarding poles and zeros of network function. - (a) The total number of poles is equal to the total number of zeros in a rational network function - (b) The poles and zeros of a network function determine the magnitude of the response - (c) The poles of a network function determine the waveform of the time variation of the response Which of the above statements are correct? (1) (a) and (b) only (2) (a) and (c) only (3) (b) and (c) only (4) (a), (b) and (c) # 46. Match the following: (a) Ambipolar Diffusion Constant - (i) $\sqrt{\frac{\mu_n D_n}{\mu_p D_p}}$ - (b) Ambipolar Diffusion Constant of the excess carriers - (ii) $\frac{(n+p)D_nD_p}{nD_n+pD_p}$ (c) Diffusion Constant for holes (iii) $\frac{2D_nD_p}{D_n+D_p}$ (d) Constant γ (iv) $\frac{D_a(1+\gamma)}{2\gamma}$ - (a) (b) (c) (d) - (1) (ii) (iii) (iv) (i - (2) (i) (ii) (iii) (iv) - (3) (iii) (iv) (i) (ii) - (4) (iv) (i) (ii) (iii) #### Match the following: 47. - P-N Junction diode - (i) - Zener diode (b) - (ii) - Schottky diode (c) - (iii) - Tunnel diode - (iv) # Code: - (b) (d) (a) (c) - (iii) (1) (iv) (ii) (i) - (2)(iii) (i) (ii) (iv) - (3)(ii) (i) (iii) (iv) - (4) (ii) (iii) (iv) (i) - Match the following: 48. - (a) JFET $\frac{\mu_n C_{ox} w}{2L} (V_{gs} - V_{in})^2$ (i) **MOSFET** (b) - (ii) - Gunn diode (c) - $q(n_l\mu_l+n_u\mu_u)$ (d) BJT (iv) - (a) (b) (d) (c) - (iii) (i) (ii) (iv) (1) - (iii) (2) (ii) (iv) - (i) (iv) (iii) (iii) (iv) (ii) (i) Match the following: 49. List-I - List-II - (a) Surface potential at the onset of strong inversion - $-\sqrt{2\epsilon_{\rm S} q N_{\rm A} [V(y)+2\psi_{\rm B}]}$ (i) - Charge in the inversion layer (b) - $V_D + 2 \psi_B$ - (c) Charge in the depletion region - $2\psi_{\rm B} + \frac{\sqrt{2\epsilon_{\rm s}}\,q\,N_{\rm A}\,(2\psi_{\rm B})}{C_{\rm i}}$ - Threshold voltage (d) - $-\left[V_{G}-\psi_{s}(y)\right]C_{i}+\sqrt{2\epsilon_{s}qN_{A}[V(y)+2\psi_{B}]}$ Code: - (c) (d) (a) (b) - (1)(i) (ii) (iii) (iv) - (i) (ii) (2) (iv) (iii) - (3)(iii) (i) (ii) (iv) - (4)(iii) (ii) (i) (iv) Match the following in the context of 8257 programmable DMA controller: 50. List-I List-II (The most significant two bits of count register) (Operations in memory mapped I/O) - (a) 00 - (i) - (b) 01 DMA write cycle (ii) Illegal 10 (c) DMA verify cycle (iii) 11 (d) DMA read cycle (iv) Correct code are: Code: - (a) - (b) (c) - (i) (1) - (ii) (iv) - (2) - (iv) (iii) - (iii) - (ii) - (iv) - (i) (iv) - (ii) (4) (iii) (iii) (ii) (d) List - I List-II (a) No. of Parallel Ports in 8051 - (i) 2 - (b) No. of Registers in each DMA channel of 8257 - (ii) 3 - (c) Type of hardware interrupts in 8085 - (iii) 4 (d) No. of priority modes in 8259 (iv) 5 Correct code are: Code: - (a) (b) (c) (d) - (1) (iii) (i) (iv) (ii) - (2) (ii) (iii) (i) (iv) - (3) (i) (iv) (iii) (ii) - (4) (iv) (ii) (iii) (i) - 52. Match the following Lists if you execute a command-line program "test" in 'C' as below: test string 1 string 2. List-II List-II - (a) argc (i) base address of 'test' - (b) argv[0] (ii) number of arguments+1 - (c) argv[1] (iii) base address of string 2 - (d) argv[2] (iv) base address of string 1 Correct code are: Code: - (a) (b) (c) (d) - (1) (ii) (i) (iv) (iii) - (2) (i) (ii) (iv) (iii) - (3) (ii) (i) (iii) (iv) - (4) (iv) (iii) (ii) (i J-08818 Paper-II ### Match the following Lists in FORTRAN: ### List-I #### **RETURN** (a) - STOP - PAUSE (c) - END (d) ### List-II - (i) Physical end of program - Temporarily halt the execution (ii) - Value is received by the calling sub-program (iii) - Terminates execution (iv) ### Correct code are: ### Code: (b) - (c) (d) (a) (b) - (ii) (i) (iii) (iv) (1) - (2) (iv) (ii) (i) (iii) - (i) (iv) (ii) (3)(iii) - (iii) (ii) (i) (4) (iv) #### Match the following Lists: 54. #### List-I - LVDT (a) - Capacitive Type Transducer (b) - Piezo-Electric Transducer (c) - Electromechanical Type Transducer - List-II - Displacement sensitive (i) - Motion transducers (ii) - Magnetic coupling (iii) - Crystalline material (iv) #### Correct code are: ### Code: - (a) (b) (d) (c) - (iii) (ii) (iv) (i) - (iii) (i) (iv) (ii) - (ii) (iii) (iv) (i) - (iii) (iv) J-08818 List - I List - II (i) Stable but oscillatory system (ii) Stable and well damped system (iii) Unstable system (iv) Marginally unstable system - (a) (b) (c) (d) - (1) (ii) (i) (iv) (iii) - (2) (ii) (iii) (i) (iv) - (3) (iv) (iii) (i) (ii) - (4) (iv) (i) (ii) (iii) List - I List - II (b) $$\begin{array}{c|c} 1 & \\ \hline 0 & t \rightarrow \end{array}$$ # Correct codes are: - (a) (b) (c) (d) - (1) (iii) (iv) (ii) (i) - (2) (ii) (i) (iii) (iv) - (3) (ii) (i) (iv) (iii) - (4) (iv) (iii) (ii) (i List-I List-II - (a) Open circuit parameters - (i) $\begin{bmatrix} \frac{I_1}{V_1} & \frac{I_1}{V_2} \\ \frac{I_2}{V_1} & \frac{I_2}{V_2} \end{bmatrix}$ - (b) Short circuit parameters - (ii) $\begin{bmatrix} \frac{V_1}{I_1} & \frac{V_1}{V_2} \\ \frac{I_2}{I_1} & \frac{I_2}{V_2} \end{bmatrix}$ - (c) Hybrid parameters - (iii) $\begin{bmatrix} \frac{v_1}{V_2} & \frac{v_1}{-I_2} \\ \frac{I_1}{V_2} & \frac{I_1}{-I_2} \end{bmatrix}$ - (d) Transmission parameters - (iv) $\begin{vmatrix} \frac{V_1}{I_1} & \frac{V_1}{I_2} \\ \frac{V_2}{I_1} & \frac{V_2}{I_2} \end{vmatrix}$ ### Correct codes are: - (a) (b) (c) (d) - (1) (iv) (i) (ii) (iii - (2) (iv) (ii) (iii) (i) - (3) (ii) (iii) (i) (iv) - (4) (ii) (iv) (iii) (i In following lists, there are materials and their band gap energies. 58. Match the following Lists: List-I ### List-II ### Material # Band gap Energies (eV) - GaAs (a) - 0.73-1.35 eV (i) - GaAlAs (b) - 0.96-1.24 eV (ii) - InGaAs (c) - 1.4-1.55 eV (iii) - InGaAsP (d) - 1.4 eV (iv) Correct codes are: ### Code: - (a) - (b) (c) (d) - **(1)** (i) - (iv) (ii) (iii) - (iv) - (2) (ii) - (i) (iii) - (3)(iv) - (i) (iii) - (ii) - (4)(i) - (iii) (iv) (ii) - Following are the inductances for different Geometries used in Microwaves: 59. Match the following Lists: List-I #### List-II #### Inductor Inductance in(pH/mil) Wire inductor (a) - $L = 31.25 \text{ N}^2D$ (i) - Circular Loop inductor (b) - $L = 8.5 \sqrt{A} (N)^{\frac{5}{3}} \times 10^{3}$ (ii) - Square Spiral inductor (c) - (iii) $L = 5.08 l \left[ln \left(\frac{t}{w+t} \right) 1.76 \right]$ - Circular Spiral inductor (d) - (iv) $L = 5.08 l \left[ln \left(\frac{l}{d} \right) + 0.386 \right]$ Correct codes are: - (a) - (c) (d) - (1) (iv) - (iii) (ii) - (2) (i) - (iii) (iv) (b) - (ii) - (iii) (iv) - (iv) (i) (ii) 60. Match the following lists in terms of Electrical and Magnetic circuits: List-I ### List-II # (Magnetic circuits) (Electrical circuits) (a) $\frac{N.i}{\phi}$ (i) $\sum_{\mathbf{m}} V_{\mathbf{n}}$ (b) $\sum_{m} N_{m}.i_{m}$ (ii) $\sum_{\mathbf{k}} \mathbf{i}_{\mathbf{k}} = 0$ (c) $\sum \phi_k = 0$ (iii) $\frac{1}{9}$ (d) μ (iv) $\frac{V}{i}$ Correct code are: Code: - (a) (b) (c) (d) - (1) (iv) (i) (ii) (iii) - (2) (i) (iii) (iv) (ii) - (3) (ii) (i) (iii) (iv) - (4) (i) (iv) (ii) (iii) - 61. Match the following Lists: ### List-I ### List-II - (a) Directive Gain - (i) radiated power total input power - (b) Directivity - (ii) $\frac{\lambda^2}{4\pi}$.D - (c) Power Gain - (iii) $\frac{4\pi\psi}{P_{(radiated)}}$ - (d) Effective Area - (iv) $10 \log_{10}(g_d)_{max}$ Correct codes are: - (a) (b) (c) (d) - (1) (i) (ii) (iv) (iii) - (2) (iii) (iv) (i) (ii) - (3) (iv) (iii) (ii) (i) - (4) (ii) (iii) (iv) (i) ### List-I - ASK (a) - Matched filter (b) - **PSK** (c) - Correlation receiver (d) ### Correct code are: #### Code: - (b) (a) (c) (d) - (1) (iii) (ii) (i) (iv) - (2)(iv) (ii) (iii) (i) - (3)(ii) (iii) (i) (iv) - (i) (4) (iv) (ii) (iii) #### Match the following Lists: 63. ### List-I - AM wave (a) - (b) FSK - FM wave (c) - **BPSK** (d) #### Correct code are: ### Code: - (d) (a) (b) (c) - (1) (i) (iv) (ii) (iii) - (2)(i) (iii) (ii) (iv) - (3)(i) (iii) (iv) (ii) - (ii) (4) (iv) (i) (iii) List-II List-II (i) (ii) (iii) (iv) - $V_c \cos \left[\omega_c t + m\cos(\omega_m t)\right]$ (i) - A cos $[\omega_0 t + \phi(t)]$ (ii) - $V_c \cos \left[2\pi (f_c + V_m(t)\Delta f)t\right]$ - $[1 + \text{m.sin}(2\pi f_{\text{m}}t)] [E_{\text{c}} \sin (2\pi f_{\text{c}}t)]$ Multiplier and an integrator Digital to digital encoding Maximum probability of error Minimizes SNR at the detection instant #### Match the following Lists: 64. ### List-I - RAM (a) - **EPROM** (b) - E²PROM (c) - Cache (d) ## Correct code are: # Code: - (a) (b) (d) (c) - (1) (iii) (i) (iv) (ii) - (iv) (i) (iv) (ii) (2) (ii) (iii) - (3) (iii) - (4) (iii) (iv) #### List-II - all data is wiped out of the stored contents (i) - act as adjunct to slower main memory (ii) - Read-write memory (iii) - It can be used to change certain bytes from the stored data (iv) List - I List - II # Correct codes are: - (a) (b) (c) (d) - (1) (ii) (i) (iv) (iii) - (2) (iii) (iv) (ii) (i) - (3) (ii) (iv) (i) (iii) - (4) (iii) (iv) (i) (ii) (d) InP | | Opt | ions : | | | | | | | | | |----------|-------------|----------------------------------|--------|----------------|-------------|----------|------------|------------|-------|-----------------| | | (1) | (a), (b), (c), (d) | | | | | | | | | | | (2) | (b), (c), (d), (a) | | | | | | | | | | | (3) | (c), (d), (a), (b) | | | | | | | | | | | (4) | (d), (c), (b), (a) | | | | | | | | | | 67. | Arra | inge the following | ampl | ifier in the i | ncreasing o | order o | of their C | urrent G | ain. | | | | (a) | Common-emitter | amp | lifier | | | | | | | | | (b) | Common-base ar | nplifi | er | | | | | | | | | (c) | Darlington ampli | fier i | n common- | emitter cor | ıfigura | ition | | | | | | (d) | Common-collecto | or am | plifier | | | | | | | | | Opt | ions : | | | | | | | | | | | (1) | (b), (a), (d), (c) | | | | | | | | | | | (2) | (a), (b), (c), (d) | | | | | | | | | | | (3) | (c), (d), (a), (b) | | | | | | | | | | | (4) | (d), (c), (b), (a) | | | | | | | | | | 68. | Arra | ange the following | pins (| of 8086 µp i | n the desce | ending | order : | | | | | | (a) | INTR | (b) | ADo | (c) | MN | / MX | (d) | LOC | CK | | | The | correct sequence is | : | | | | | | | | | | (1) | (b), (c), (a), (d) | | | | | | | | | | | (2) | (c), (d), (a), (b) | | | | | | | | | | | (3) | (d), (b), (c), (a) | | | | | | | | | | | (4) | (a), (d), (b), (c) | | | | | | | | | | 69. | Wha
orde | nt is the correct sequer? | ience | of the follov | ving operal | ors in ' | 'C' from l | nighest to | lowes | st precedence | | | (a) | | (b) | %= | | (c) | % | | (d) | <= | | | The | correct sequence is | i: | | | | | | | | | | (1) | (c), (b), (a), (d) | | | | | | | | | | | (2) | (c), (a), (d), (b) | | | | | | | | | | | (3) | (c), (d), (a), (b) | | | | | | | | | | | (4) | (a), (b), (d), (c) | | | | | | | | | | <u> </u> | | | | | 177.5466- | | | | | (200-00-00-00-0 | | J-08 | 818 | | | | 24 | | | | | Paper-II | | | | | | | | | | | | | (c) GaAs 66. The following semiconductor material are given (b) Si Arrange the above in the increasing order of their Hole Mobility at 300 K. (a) C | | Arra | ange them in term | s of a | scending o | order : | | | | | | | |-----|--|---|---------|-------------|-----------|---------|----------------|-----|------|--|--| | | (a) | GaP | (b) | Si | | (c) | InAs | (d) | GaAs | | | | | The | correct sequence | in asc | ending or | der of th | eir val | lues are : | | | | | | | (1) | (b), (a), (c), (d) | | | | | | | | | | | | (2) | (d), (b), (a), (c) | | | | | | | | | | | | (3) | (a), (b), (c), (d) | | | | | | | | | | | | (4) | (c), (b), (a), (d) | 71. | Follo | owing transmissio | n me | dia are giv | en: | | | | | | | | | (a) | Twisted pair cal | oles | | (b) | Optio | cal fiber cabl | es | | | | | | (c) | Coaxial cables | | | (d) | Micr | owaves | | | | | | | For high rate data transmission systems, arrange the above in terms of their Losses in ascending orders. | | | | | | | | | | | | | The | correct sequence | is give | en by: | | | | | | | | | | (1) | (b), (c), (a), (d) | | | | | | | | | | | | (2) | (d), (c), (a), (b) | | | | | | | | | | | | (3) | (a), (b), (c), (d) | | | | | | | | | | | | (4) | (b), (d), (c), (a) | 72. | Con | sider the followin | g circ | uits : | | | | | | | | | | (a) Integrating circuit | | | | | | | | | | | | | (b) | (b) Active differentiation circuit | | | | | | | | | | | | (c) Notch type electrical filter | | | | | | | | | | | | | Arra | Arrange the above circuit models in decreasing order of their complexity. | | | | | | | | | | | | (1) | (a), (b), (c) | | | | | | | | | | | | (2) | (a), (c), (b) | | | | | | | | | | | | (3) | (b), (c), (a) | | | | | | | | | | | | (4) | (c), (b), (a) | | | | | | | | | | ### 73. Consider the following network: - (a) Power dissipated in resistor R₁ is P₁ - (b) Power dissipated in resistor R₂ is P₂ - (c) Power dissipated in resistor R₃ is P₃ Arrange the above in increasing order of the dissipated power: - (1) (a), (c), (b) - (2) (a), (b), (c) - (3) (b), (c), (a) - (4) (c), (a), (b) ### 74. Consider the following systems: - (a) Satellite - (b) Conventional Public Address System - (c) Conventional Radio Receiver - (d) Laser detector Arrange the above systems in order of their increasing order of operational frequency: - (1) (c), (b), (a), (d) - (2) (b), (c), (d), (a) - (3) (a), (b), (c), (d) - (4) (b), (c), (a), (d) ### 75. Consider the following logic families: - (a) Standard TTL logic family - (b) ECL logic family - (c) RTL logic family - (d) CMOS logic family Arrange the above logic families in order of their decreasing power dissipation: - (1) (b), (c), (d) and (a) - (2) (b), (c), (a) and (d) - (3) (c), (b), (a) and (d) - (4) (c), (b), (d) and (a) J-08818 Directions: Questions 76 to 95. The following items consist of two statements, one labelled as "Assertion(A)" and the other labelled as "Reason(R)". You are to examine the two statements carefully and decide if the Assertion(A) and the Reason(R) are individually true and if so whether the reason is a correct explanation of the assertion. Select your answer to these items using the codes given below and mark your answer accordingly. #### Code: - (1) Both (A) and (R) are true and (R) is the correct explanation of (A). - (2) Both (A) and (R) are true, but (R) is not the correct explanation of (A). - (3) (A) is true, but (R) is false. - (4) (A) is false, but (R) is true. - 76. Assertion (A): In a p-n junction the electron crossing the junction from right to left constitute a current in the same direction as hole crossing the junction from left to right. - Reason (R): In a p-n junction the low value of depletion region capacitance can be obtained with reverse biasing. - 77. Assertion (A): For integrated circuit production the line width limit of optical Lithography lies near 0.4 μm, although 0.2 μm feature may eventually be printed under carefully controlled conditions. - **Reason (R):** A negative resist on exposure to light becomes less soluble in a developer solution, while a positive resist becomes more soluble. - 78. Assertion (A): The total gain of a cascaded system is determined by the product of the gains of each stage. - **Reason (R):** The gain of each stage must be determined under loaded conditions. - 79. Assertion (A): The tunnel diode shows the negative differential resistance between peak voltage and valley voltage. - Reason (R): In a tunnel diode, for a voltage larger than valley voltage, the current increases exponentially. - **80.** Assertion (A): A two byte instruction of 8085 has an operation code in first byte and operand/address in the second byte. - Reason (R): Source and destination addresses are made implicit in order to reduce the length of an instruction. J-08818 27 81. Assertion (A): In 8086 μ p, ALE is provided by the processor to latch the address into the 8282/8283 address latch. Reason (R): Whenever the processor sends a valid address on the multiplexed AD₀-AD₁₅ lines, it also makes the ALE high. 82. Assertion (A): In 'C', bit fields cannot be used in a union. Reason (R): If one element of union is initialized then it also initializes other elements of the union. 83. Assertion (A): Encapsulation is implemented by a 'class' in C++. Reason (R): Private, public and protected access specifiers are used. 84. Assertion (A): The magnetic flux per unit length through a loop of small length is called the magnetic flux density. **Reason (R):** The direction of magnetic flux density is taken as the normal to the plane of the loop when oriented to enclose maximum flux. 85. Assertion (A): For transmission lines, having their length equal to odd multiples of $\left(\frac{\lambda}{4}\right)$, the following expressions are given $\sin\beta L = \pm 1 \text{ and } \cos\beta L = 0.$ Reason (R): Under the above conditions, i.e. for odd multiples of Quarter wavelengths the input impedance becomes equal to $Z = \frac{Z_0 \cdot \cosh{(\alpha L)}}{\sinh{(\alpha L)}}$. **86.** Assertion (A): The z-parameters are open circuit parameters. **Reason (R):** The z-parameters may be measured at one terminal while the other terminal is open. 87. Assertion (A): All the mesh currents are necessarily the loop currents but all the loop currents may not be the mesh current. **Reason (R):** The mesh current is the current which flows only around the perimeter of a mesh. 88. Assertion (A): Vestigial side band gives rise to frequencies very close to the carrier frequency. **Reason (R):** It is not possible to go to extreme and suppress one complete side band by physically realizable filters. 89. Assertion (A): Lesser number of bits per code are required due to less number of quantization levels in DPCM. **Reason (R):** In this case, the difference between two successive samples is quantized which do not differ much in amplitude. 90. Assertion (A): The hexadecimal numbers are first converted into binary numbers and operations are performed using binary representation of hexadecimal numbers using rules of binary numbers. Reason (R): The information can be handled in hexadecimal form in digital circuits but it is easier to enter information using binary numbers. 91. Assertion (A): Emitter - Coupled Logic (ECL) is the fastest of all logic families and used in applications where very high speed is essential. **Reason (R):** High speed in ECL is because the transistors are used in difference amplifier configuration in which they are never driven into saturation and the storage time is eliminated. **92.** Assertion (A): The synchronous speed of an induction motor can be varied by varying the frequency of the applied voltage. **Reason (R):** With smaller frequency of operation, there is a large value of slip and motor rotates non-linearly with the frequency f' of the applied voltage. **93. Assertion (A):** The diameter of SMF is selected in such a way that single fundamental ray travels straight along the axis of the core of the fiber. Reason (R): The diameter of core of SMF is more than 10 μ m and outer diameter is less than 125 μ m. 94. Assertion (A): The stability analysis of systems with dead time can be conducted easily using the Bode plots. **Reason (R):** The magnitude plot of a system is unaffected by the presence of dead time. 95. Assertion (A): A Non-Return to Zero (NRZ) type digital recording system is more common and efficient. Reason (R): It is possible to record twice the number of digits for the same number of pulses. ### Based on the following para, answer Q.No. 96 to 100. Sensitivity considerations often are important in the design of Control Systems. Because all physical elements have properties that change with environment and age, we cannot always consider the parameters of the Control System to be completely stationary over the entire operating life of the system. For instance, the winding resistance of an electric motor changes as the temperature of the motor rises during operation. Control systems with electric components may not operate normally when first turned on because of the still-changing system parameters during warmup. This phenomenon is sometimes called "morning sickness". Most duplicating machines have a warmup period during which time operation is blocked out when first turn on. - 96. Which of the following statements is correct? - A feedback can only increase the sensitivity of a system - (2) A feedback can increase or decrease the sensitivity of a system - (3) A feedback can only decrease the sensitivity of a system - (4) A feedback never affects the sensitivity of a system - 97. A good Control System should be : - (a) Very sensitive to parameter variations - (b) Insensitive to parameter variations - (c) Insensitive to input commands - (d) Sensitive to input commands Which of the above are correct? (1) (a) and (b) (2) (b) and (c) (3) (b) and (d) - (4) (a) and (d) - 98. The open-loop transfer function of a Unity Feedback Control System is given by $G(s) = \frac{25}{s(s+5)}$. The steady state error will be: - (1) 0.1 rad - (2) 0.2 rad - (3) 0.3 rad - (4) 0.5 rad 99. The sensitivity of the overall (closed-loop) transfer function for the system shown below, with respect to forward path transfer function at $\omega = 1$ rad/sec will be: - (1) 0.938 - (2) 0.583 - (3) 0.25 - (4) 0.398 - 100. For an open-loop control system, sensitivity of overall transfer function M(s) with respect to forward path transfer function G(s) will be: - (1) 1 - (2) 0 - (3) -1 - (4) • -0 O o - Space For Rough Work