	Question Booklet No	
To be filled up by the can-		
words)		

***************************************		vioilator)
	words)	Question Booklet No

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated,
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिखे गये हैं।]

Total No. of Printed Pages: 20

FOR ROUGH WORK / रफ कार्य के लिए

No. of Questions: 120

Time: 2 Hours]

Time	: 2 H	lours]				[Full Marks : 360
Note	: (i)	Questions in	ultip. Secti	le Choice Qu ion-B compri	estions in Section-A, ising 32 questions of	ection-A and Section-B and 96 Multiple Choice Biology, 32 questions of te has to attempt all 120
	(ii)	marks. One	mark	will be dedi	us you can. Each que cucted for each incor- empted question.	rect answer. Zero mark
٠	(iii		one a	alternative an	swers seem to be ap	proximate to the correct
		*		SEAT	^	
1.	TA/L	ah a Cala Can			ON – A	
		ich of the follo	wing	is not a keyv	vord ?	
	(1)	class	(2)	void	(3) true	(4) public
2.	Whi	ich of the follow	wing	is not a toker	1 ?	
	(1)	keywords		identifiers	(3) statement	(4) operators
3.	The as:	function call is	n wh	ich the data i	in actual parameters	get changed is known
	(1)	call by value			(2) call by refere	enco ·
	(3)	return by value	9		(4) return by ref	
4.	Whie date	ch package sho and time?	ould	be imported	in a Java program	for obtaining system
	(1) J	ava.IO	(2)	java.date	(3) java.util	(4) java.calendar
				(1)	
						P. T. O.

(1) continue

6.	Which of	the follo	wing is no	ot a jump	stateme	ent?			
	(1) contin	nue	(2) ret	urn	(3)	system.or	at (4) brea	ak
7.	Through	which ac	cess spec	ifier, a cl	ass make	s its elem	ent visib	le to a	11 ?
	(1) public		(2) pri			protected		4) frie	10.04
8.	Java resol	ves dup	licate vari	able nan	ne to :				
	(1) globa	l variabl	e		(2)	loca! vari	able		
	(3) most	local sco	pe variab	le	(4)	all of the	above		
9.	If mean o	f followi	ng freque	ency dist	ribution	is 7.5,			
		χ	3	5	7	9	11	13	3
		y	6	8	15	р	. 8	4	1
	then valu	e of p wi	ill be:						
	(1) 3		(2) 5		(3)	7	(4) 1	
10.	If 24 is th	e mediat	n of 11, 12	, 14, 18,	x + 2, x +	4, 30, 32,	35 and 4	1, ther	x will be:
	(1) 5		(2) 7			21	(4) 25	
11.	The mean will be:	n of 8 nu	imbers is	15. lí ea	ch numb	er is mul	tiplied b	y 2 th	e new mean
	(1) 40		(2) 20	ı	(3)	25	((4) 30	
12.	The prob	ability o	of having	53 Sunda	ay in a le	ap year is	:		
	(1) $\frac{2}{7}$							(4) $\frac{3}{7}$	
13.	There ar	e m pers	sons sittir the two so	ng in a re elected p	ow. Two ersons at	of them a	re select	ed at	random. The
	(1) $\frac{2}{m}$		(2)	$1-\frac{2}{m}$	(3	$\frac{m(m)}{(m+1)(n+1)}$	$\frac{-1}{m+2}$	(4) (1	$\frac{m}{m-1}$
					(2)				

5. Absence of which statement causes a fall-through in a switch statement?

(3) stop

(4) fall

(2) break

14. The variance of the first n natural number is:

(1)
$$\frac{(n+1)}{2}$$

$$(2) \quad \frac{n(n+1)}{2}$$

(3)
$$\frac{(n^3-1)^2}{8}$$

(1)
$$\frac{(n+1)}{2}$$
 (2) $\frac{n(n+1)}{2}$ (3) $\frac{(n^3-1)}{8}$ (4) $\frac{(n^2-1)}{12}$

15. The standard deviation for the following data:

x_i	3	8	13	18	23
f_i	7	10	15	10	6

will be:

The mode of following distribution:

Marks obtained	10-24	25-39	40-54	55-69	70-84	85-99
Number of students	25	29	23	19	14	10

will be:

- (1) 30.6 marks
- (2) 30 marks
- (3) 30.5 marks
- (4) 30.4 marks

17. If $x + iy = \frac{a + ib}{a - ib}$, then:

(1)
$$x^2 + y^2 = 1$$

(2)
$$x^2 + y^2 = a^2$$

(1)
$$x^2 + y^2 = 1$$
 (2) $x^2 + y^2 = a^2$ (3) $x^2 + y^2 = b^2$ (4) $x^2 + y^2 = 0$

(4)
$$x^2 + y^2 = 0$$

18. Which term of the sequence :

19. Number of solution of the equation:

tanx + secx = 2cosx, lying in the interval $[0, 2\pi]$ is

20. Value of $\int_{0}^{\frac{\pi}{2}} \frac{dx}{(1 + \tan^{3} x)}$, is:

$$(3) \frac{\pi}{2}$$

$$(3) \quad \frac{\pi}{2} \qquad \qquad (4) \quad \frac{\pi}{4}$$

(3)

P.T.O.

21. If vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent and $|\tilde{c}| = \sqrt{3}$, then

 $(1) \ (\alpha = 1, \, \beta = -1) \quad (2) \ (\alpha = 1, \, \beta = \pm \, 1) \quad (3) \ (\alpha = \pm \, 1, \, \beta = 1) \quad (4) \ (\alpha = 1, \, \beta = \pm \, 1)$

22. If $f(x) = \frac{(x^2 - 1)}{(x^2 + 1)}$, for every real number x, then minimum value of f will be:

(1) does not exist because f is unbounded

(2) is not attained even though f is bounded

(3) is equal to 1

(4) is equal to (-1)

23. If $f(x) = \begin{vmatrix} 1 & x & (x+1) \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & x(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix}$, then value of f(100) will be

equal to:

(1) 0

(2) 1

(3) 100

(4) 99

If vertices of $\triangle ABC$ are A(1, 4) B(2, -3), C(-1, -2), then equation of the median through A will be: (1) 3x - y + 1 = 0 (2) 13x - y - 9 = 0 (3) x + y + 1 = 0 (4) x + 13y + 9 = 0

SECTION - B [BIOLOGY]

Which metal acts as cofactor in nitrogenase?

(1) Zn

(2) Mo

(3) Mg

(4) Te

Suicidal bags are also called:

(1) Lysosomes

(2) Golgibodies

(3) Mitochondria

(4) Ribosomes

27. Which of the following is not a six-carbon sugar?

(1) Fructose

(2) Mannose

(3) Deoxyribose

(4) Galactose

Coralloid root is present in:

(1) Zamia

(2) Taxus

(3) Gnetum

(4) Pintus

(4)

29	W	hich of the follo	wing	is an example	of isc	zyme?		
	(1)	Urease			(2)	Lactic dehydi	ase	
	(3)	Acetylcholine	ester	ase	(4)		U	
30.	Ha	aemocyanin is p	resen	it in the blood r	olasm	a of :		
	70.000	Annelids		Haman		Birds	(4)	Molluscus
31.	He	eterotrichous for	m is	;				
	(1)	Volvox	(2)	Fritschiella	(3)	Oedogonium	(4)	Alternaria
32.	Ho	mosporous ferr	is:					
	(1)	Equisetum	(2)	Isoetes	(3)	Selaginella	(4)	Marsilea
33.	Ox	yntic glands are	pres	ent in :				
٠	(1)	Stomach	(2)	Oesophagus	(3)	Pancrease	(4)	Small intestine
34.	The	e elevated red co	il co	unt is called :				
	(1)	Anaemia			(2)	Thalassemia		4
	(3)	Polycythemia				Hypoglycemia	1	
35.	Co	lumella is absen	in:					
		Funaria		Riccia	(3)	Pogonatum	(4)	Anthoceros
36.	Ecto	oparasite is:						
		Phytophthora	(2)	Agaricus	(3)	Erysiphe	(4)	Puccinia
37.	Wh	ich of the follow	ing o	loes not occur o	durin	g DNA replicat	ie 2	
	(1)	Unwinding of t	he pa	rent double he	lix	a sourcepinear	1011	
		Complementary						
		Polymerization			n 3′ ti	0.51		
	(4)	Formation of sh	ort p	ieces that are u	nited	by DNA ligase		
18.		ch plant is sourc						
		Ginkgo		Artemisia		Taxus	(4) (Catharanthus
				151				
				(5)				P.T.O.

39.	In I	generation phe	noty	pic ratio 9 : 7 is	resu	lt of :		
	(1)	Duplicate gene	actio	n	(2)	Inhibitory gene	actio	on
		Complementary			(4)	Gene mutation	P	
40.	Gre	een ear disease of	bajı	a is caused by :			*	
	(1)	Phytophthora info	estan	5	(2)	Sclerospora gran	ninico	ola
		Erysiphe pisi			(4)	Helminthospori	ım or	yzae
41.		nich of the follow od cells?	ing s	stimulates stem	cells	in the bone ma		*
	(1)	Erythropoietin	(2)	Fibrinogen	(3)	Plasminogen	(4)	Platelets
42.	The	e AIDS virus is :						
	(1)	Bacterial virus	(2)	Myxovirus	(3)	Retrovirus	(4)	Pox virus
43.	W	nich of the follow	ing	forms the higher	st fra	ction of irrumur	oglo	bulins?
		l_gA		I_gG		l_gM		I_gD
44.	Pla	int of medicinal s	alue	e belongs to fam	ily A	canthaceae is:		
		Argemone mexic		0	(2)	Adhatoda vasika	7	
	100	Cuscuta reflexa			(4)	Polygonum bar	batun	1
45.	My	ycorrhiza helps ii	n:					
	(1)	Phosphate solu	bilis	ation	(2)	Transpiration		
		Photosynthesis			(4)	N ₂ -fixation		
46.	Th	ne vagus nerve fil	ores	inhibit the heart	rate	by releasing:		
40.		adrenaline		noradrenaline			(4)	sympathin
47.	Ex	cretion in amphi	biar	ns is:				
•••) Ammonotelic			(3)	Ureotelic	(4)	Uricotelic
10	TA	hich of the follow	ving	layer is formed	at la	st during gastr	ulatio	on?
48.) Ectoderm	(2)) Mesoderm	(3)	Endoderm	(4)) Epidermis
40	Г	NA aberration is	cau	sed by:			30000	
49.		I) UV) EMS	(3) X-ray	(4) ABA
				(6)			

	2				
50	. Golden rice is ri	ch with:			
	(1) β-carotene		(2) L-I	Lysine	
	(3) Iron			vanocobalamine	
51.	. Which of the foll	lowing hormor	ie increases Na-r	reabsorption in th	a kidaau 2
	(1) Thyroxine	8		dosterone	ie kluney :
	(3) ADH			rial natriuretic pe	entide
52.	Which of the foll	lowing hormon			pilac
	 Which of the foll (1) 2, 4-D 	(2) BAP	The second secon		
53.	STORE SCHOOLS		(3) 18/	(-/	ABA
33.	- JPicar Hall			e cell is dominate	ed by:
	(1) Potassium	(2) Sodiun	(3) Ch	loride (4)	Iron
54.	produ	ced by :		7	
	(1) Testes	(2) Ovary	(3) Liv	ver (4)	Kidney
55.	Trisomy is denot	ed by :			,
	(1) $2n-1$	•	(3) 2n-	-1-1 (4)	2n + 2
56.	Which hormone	regulates spern	natogenesis?		
	(1) FSH	(2) Oxytoci		drogen (4)	Thyrotropin
		[C	HEMISTRY]		
57.	Rank the followir			anding agidie.	
	СООН	OH	2.2.23	aiding acidity:	
	1		ОН	QН	
	CH ₃				
	(A)	SO ₃ H (B)	OCH,	CF ₃	
	. A		(C)	1131	
	(1) A>B>C>D			100 ACA 150	D>C>A>B
58.	Which of the follow	wing compund	s aré aromatic ?		
		· .			
	(1)	(2)		S S	
	(1)	(2)	(3)	(4)	
			(7)		
					P.T.O.

59. Which of the following compounds have Z-configuration?

- 60. Arrage the following in increasing order of their basicity:
 - (IV)HCOOT (II) $C_6H_5O^*$ (III) CH_3O^- (I) OH
 - (2) IV < III < II < I (1) 1 < 11 < 111 < 1V(4) 11 < 111 < 1 < 1V(3) 1V < 1I < I < 111
- 61. Arrange the following alcohols in order of their reactivity toward acidcatalyzed dehydration:
 - 1-Pentanol 2-Methyl-2-butanol 3-Methyl-2-butanol (C) (B) (A) (1) B > C > A (2) C > B > A (3) B > A > C (4) C > A > B
- In the reaction sequence shown, the product 'Y' is: 62.

$$(CH_3)_2CO \xrightarrow{HCN} X \xrightarrow{CH_3OH} Y$$
 H_2SO_4

- $(CH_3)_2CO \xrightarrow{HCN} X \xrightarrow{CH_3OH} Y$ H_2SO_4 (1) $(CH_3)_2C$ (OH) COOH
 (2) $CH_2 = C$ (CH₃) COOH
- (4) CH₃ CH = CH COOH (3) $CH_2 = C (CH_3) COOCH_3$
- Which of the following proposed reactions would take place quickly under 63. mild conditions?
 - (1) CH₃CONH₂ + NaCl → CH₃COCl + NaNH₂
 - (2) C_6H_5 COCI + CH_3 $NH_2 \rightarrow C_6H_5$ CONHCH₃ + HCI
 - (3) CH₃CH₂COCI + CH₃ COOH → CH₃CH₂ COCCH₃ + HCI
 - (4) (CH₃)₂ CHCONH₂ + CH₃OH → (CH₃)₂ CHCOOCH₃ + NH₃
- Which of the following compounds reduces Tollens' reagent?
 - (4) Glucose (3) Sucrose (2) Acetic acid (1) Methanol (8)

65. In the following transformation, the reagent (R) is:

$$CH_3O$$
 $CHO \xrightarrow{CH_3COONa} CH_3O$ $CH = CHCOOH$

- (1) CH₃COOH
- (2) CH₂ (COOH)₂ (3) (CH₃ CO)₂O

- 66. Which common analytical method will most clearly and rapidly distinguish (A) from (B)?
- (1) IR spectroscopy

- (2) Chromatography
- (3) NMR spectroscopy
- (4) UV spectroscopy
- 67. Which one of the following compounds will show a doublet as part of its ¹H NMR spectrum?
 - (1) CH₃CH₂CI

(2) (CH₃)₂ CHC1

(3) CH₃CH₂CH₃

- $(4) \mid CH \mid C \mid Br$
- In the UV spectrum of cyclohex-2-enone, the absorption at λ_{max} 215 nm is due to the transition:
 - σ → σ*

- (2) $n \rightarrow \sigma^*$ (3) $\pi \rightarrow \pi^*$ (4) $n \rightarrow \pi^*$
- 69. Which of the following compouds has a vibration that is infrared inactive?
 - (1) Acetone
- (2) Water
- (3) 1-Butyne
- (4) 2-Butyne
- The 1H NMR spectrum of an unknown compound shows absorptions at (multiplicities not given) δ = 7.3 (5H), 2.3 (1H) and 0.9 (6H) ppm. Which one of the following structures satisfies these data?

$$(4) \bigcirc CH_3$$

$$CH_2CH_2$$

P.T.O.

71.	When NII ₃ reacts w	with $B\Gamma_3$, the resulting	g bond i	s called :		
	(1) dative bond		(2) ion	nic bond		
	(3) hydrogen bond	l	(4) di	pole-dipole in	iterac	tion
72.	The number of unp	paired electrons in N	i(CO), is	s:		
	(1) Zero	(2) One	(3) Th	nree	(4) H	Five
73.	The covalent radii	of Nb and Ta are all	nost the	same because	of:	
	(1) their similar ele	ectronic configurati	on			
	(2) their being pre	sence in 4 <u>d</u> and 5 <u>d</u> :	series			
	(3) lanthanide con	traction effect				
	(4) their being tran	nsition elements				
74.	The wave characte	r of electrons was e	perimer	ntally verified	by:	
	(1) Einstein		(2) D	avisson and C	Germe	r
	(3) Max Planck		(4) Lo	ouis de Brogli	e	
75.	The shape of ClF ₃ i	molecule is :				
	(1) T-shaped		(2) To	etrahedral		
	(3) Square planar		(4) Ti	rigonal planar	r	
76.	Which one among	the following mole	cules wil	ll show dipole	mon	ent?
	(1) BF_3	(2) CO ₂	(3) B	$leCl_2$	(4)	NH_3
77.	The ionization ene	ergies of F, N, O and	C decrea	ase in the ord	er:	
	(1) F>N>O>C	(2) $C > N > F > C$	(3) N	N>C>O>F	(4)	O > C > N > f
78.	The transition met	tal complex used in	homoge	neous catalysi	is is :	
	(1) Ru(CO) ₆	(2) $Cu(PPli_3)_3 Br$	(3) R	$RhCI(PPh_3)_3$	(4)	$(Cp)_2$ Fe
79.	Which one has ve	ry similar chemistry	to that	of Al3+?		
13.	(1) Mg ²¹	(2) Be ²⁺	(3) E	B ^{3.}	(4)	Ga ³⁺
	Alberta Alberta	, ,	0.)			

 80. Which of the following statements is false (1) Helium is less soluble in water than (2) The electron affinity of inert gases is (3) Argon was discovered by Rayleigh (4) Compounds of Xenon are less stable 81. Which one of the following metal ion 	and Ramsay. e than those of other inert gases. s is important for the photosynthesis in
plants? (1) Li ⁺ (2) Mg ²⁺ 82. First law of thermodynamics is a state (1) Conservation of heat	(5)
(3) Conservation of momentum 83. A process is spontaneous at all temper (1) $\Delta H > 0$ and $\Delta S < 0$ (3) $\Delta H = 0$ and $\Delta S = 0$	eratures when: (2) $\Delta H < 0$ and $\Delta S > 0$ (4) $\Delta H < 0$ and $\Delta S = 0$
 84. In a zero-order reaction: (1) the concentrations of the reactan (2) the rate is affected by concentrat (3) the reactants do not react (4) one of the reactants is in large expression. 	uon e
(1) the rate of fastest intermediate (2) sum total of the rates of all intermediate (3) the average of the slowest intermediate	step ermediate steps rmediate step ediate step
(1) more energy is stored in the cataly (2) positive charge is required (3) more surface area is available (4) negative charge is required	
(1)	(†1) P.T.O.

87. $k = Ae^{-\Gamma/RT}$ is known as:

(1) Eyring equation

88.	(3) Lindemann equation Hydrolysis constant K by: (1) $K_h = \frac{K_w}{K_n}$ (2)	for a salt made from	Arrhenius equation Gibbs equation weak acid and strong base is given $K_b = \frac{K_w}{K_b}$ (4) $K_b = \frac{K_w}{K_w}$
00		[PHYSICS]	
89. j	For overlap interacts $\Phi(r) = B \exp\left(-\frac{r}{\rho}\right), B \text{ and } \beta$ and ρ is:	ion, between neares	st neighbours, of the type quilibrium spacing, r_0 in terms of
(1	1) $\rho \log B$ (2)	O/B (3) B/C	
	(2) 2	.5Å (3) 25Å	/d: *= }
100		ring charge q and mas volts, the de-Broglie wa	es m is accelerated through a ave length associated with the
(1) 92 . The	$\frac{h}{\sqrt{2meV}} \qquad (2) \overline{\sqrt{2}}$	$\frac{h}{2mqV} \qquad (3) \frac{h}{\sqrt{2qV}}$	$\frac{7}{\sqrt{2mV}}$

(4) 2 Bohr-magneton **93.** The distance between (100) planes in a simple cubic crystal with unit cell side *a* (2) $\frac{a}{\sqrt{2}}$ (3) $\frac{a}{\sqrt{3}}$ (4) $\frac{a}{2}$

The magnetic moment associated with electron in first orbit of H-atom is:

(1) $9.27 \times 10^{-24} \text{ amp-m}^2$

(3) $9.27 \times 10^{-20} \text{ amp-m}^2$

92.

$$(3) \ \frac{a}{\sqrt{3}}$$

(2) $5 \times 10^{-22} \text{ amp-m}^2$

(4)
$$\frac{a}{2}$$

(12)

94	. The term value o	f a state is given by	' :	
		$(2) -\frac{E}{hC}$		$(4) -\frac{E}{2\pi Ch}$
95	. Which of the fo	llowing best descriptions	ribes the relation be metic moment of elec-	tween orbital angular
	$(1) \vec{p}_i = -\frac{2m}{e} \vec{\mu}_i$	$(2) \vec{p}_I = \frac{2m}{e} \vec{\mu}_I$	$(3) \vec{p}_1 = \frac{2m}{\hbar} \vec{\mu}_1$	$(4) \vec{p}_{l} = -\frac{2m}{\hbar} \vec{\mu}_{l}$
96	. Larmor frequency	is given by:		
		7-2-2	(3) $v_L = \frac{eB}{4\pi mh}$	(4) $v_L = \frac{eB}{m}$
97,	μ-mesons are pro-	duced, if y-ray ener	zv is above ·	
	(1) 1.02 MeV	(2) 10 MeV	(3) 150 MeV	(4) 50 MeV
98.	If one state is occorber particles, the	cupied (or allowed particles are :	d) for one microparti	cle and is denied for
		(2) Fermions	(3) Phonons	(4) Photons,
99.		ent responsible for		RC-coupled amplifier
	(1) The active dev		(2) Stray shunt ca	macitanas
	(3) Coupling capa	citance C _C	(4) The grid-leak	
100.	Compared to a CB	amplifier, the CE :		
	(1) Lower input re	esistance	(2) Higher outpu	t =00int
	(3) Lower current		(4) Higher curren	
101.	The activity of or approximately be:	ne g _m radium 226 88	Ra, whose half life	is 1622 years will
	(1) 1 Curie	(2) 4 Curie	(3) 1 m Curie	(4) 1.66 Curie
102.	Nuclei with even m	ass number have :		
	(1) Zero or integra	spin	(2) Half integral s	nin
	(3) Imaginary spin		(4) None of these	
		(13)	P.T.O.

103.	r K series	is:									
	(1) 1	(2) 7.4		(3) 1	19.6	(4)	16				
104.	For crystal having two atoms of masses m_1 and m_2 per primitive cell, square of angular frequency of lattice vibration given by $w^2 = \frac{c/2}{m_1 + m_2}$. $K^2 a^2$ corresponds:										
	 to optical br to acoustical 										
	(3) to both acoustical and optical branches										
	(4) magnetic vibrations										
105.	An ideal revercible heat engine exhausting heat at 27°C is to have 25% efficiency. It must take heat at :										
	(1) 127°C	(2) 22	7°C	(3)	327°C	(4)	673°C				
106.	If the radius of a black body radiation enclosure is halved, temperature will become (assuming adiabatic process):										
	(1) Four times			(3)	Doubled	(4)	Sixteen times	\$			
107.	In an electromagnetic field, which one of the following remains invariant under Lorentz transformation?										
	(1) $\vec{E} \times \vec{B}$	(2) E ²	C^2B^2	(3)	B^2	(4)	E ²				
108.	A copper wire of uniform corss-sectional area, $1.0 \times 10^{-6} m^2$ carries a current of 1A. Assuming that each copper atom contributes one electron to the electron gas, the drift velocity of the free electrons (density of copper is $8.94 \times 10^3 \text{kg/m}^3$ and its atomic mass is $1.05 \times 10^{-25} \text{kg}$) is :										
	(1) 7.4×10^{-4} n	n/s (2) 7	$4 \times 10^{-4} \mathrm{m/s}$	(3)							
109.	9. The temperature of the surface of the sun is approximately 6000 K. If we big lens and focus the sun rays and produce a temperature of 8000 K. The violate which law of thermodynamics?										
	(1) zeroth law (3) second law			(2)	first law		10				
				(4)	third law						
	(14)										

110. For a thermodynamic system, work done in a process depends upon:

(1) The path

(2) State of the system

(3) External pressure

(4) Nature of the system

111. Boyle's law can be expressed in differential form as:

(1) $\frac{dv}{dp} = 1$ (2) $\frac{dv}{dp} = \frac{v}{p}$

(3) $\frac{dv}{dp} = \frac{p}{v}$ (4) $\frac{dv}{dp} = -\frac{v}{n}$

112. The equation of state of a dilute gas at very high temperature is described by $\frac{PV}{KT} = 1 + \frac{B(T)}{V}$, where, V is the volume per particle and B(T) is a negative quantity. One can conclude that this is a property of:

(1) a Van der waals gas (2) an ideal Fermi-gas

(3) an ideal Bose gas (4) an ideal inert gas

113. A system of N non-interacting classical point particle is constrained to move on the two-dimensional surface of a sphere. The internal energy of the system is:

(1) $\frac{3}{2}NK_BT$ (2) $\frac{1}{2}NK_BT$ (3) NK_BT (4) $\frac{5}{2}NK_BT$

114. Which of the following relations between the particle number density n and temperature T must hold good for a gas consisting of non-interacting particles to be described by quantum statistics?

(1) $\frac{n}{T^{1/2}} << 1$ (2) $\frac{n}{T^{3/2}} << 1$

(3) $\frac{n}{T^{3/2}} >> 1$ (4) $\frac{n}{T^{1/2}}$ and $\frac{n}{T^{3/2}}$ can have any value

115. At room temperature, molar heat capacity of solids is approximately equal to :

(1) 10 J mole⁻¹ K⁻¹ (2) 20 J mole⁻¹ K⁻¹

(3) 25 J mole⁻¹ K⁻¹ (4) 8.31 J mole⁻¹ K⁻¹

(15) P.T.O.

116.	Which one of the following is a first order phase transition?									
	(1) Vaporization of a liquid at its boiling point									
	(2) Ferromagnetic to paramagnetic transition									
	(3) Normal liquid He to super fluid He transition									
	(4) Superconducting to normal state transition									
117.	The increase in entropy when 10 kg water at 100°C is converted to water vapour is approximately:									
	(1) 14,500 Joule/K			2) 14,500 Cal/K						
	(3) $14.5 \times 10^6 \text{ Cal/K}$			$14.5 \times 10^6 \text{ K}$	06 K Cal/K					
118.	A Carnot engine has an efficiency of 30% when the temperature of the sink is 27°C. What must be the approximate change in temperature of the source to make its efficiency 50%?									
	(1) 600 K	(2) 171 K	(3)	428 K	(4)	155°C				
119.	At what temperature, pressure remaining unchanged, will the molecular velocity (rms) of hydrogen atom will be double of its value at NTP?									
	(1) 819°C	(2) 819 K	(3)	1092°C	(4)	82 K				
120.	The mean free path of molecules of a certain gas at pressure P and temperature T is 2×10^{-5} cm. The mean free path at pressure $P \times 10^{-6}$ and temperature T will									
	be: (1) 2 cm	(2) 20 cm	(3)	2 m	(4)	20 m				

FOR ROUGH WORK / रफ कार्य के लिए

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ट पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्टों पर केवल *नीली।काली बाल-पाइंट पेन* से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर तें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ -जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आ२० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ट पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का जत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुस्तिका के मुखपृष्ट के अंदर वाला पृष्ट तथा अंतिम खाली पृष्ट का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुवित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।

