Question No.	Questions
1.	Which one of the following high spin complexes has the largest CSFE Crystal field stabilization energy
	(1) $[Cr(H_2O)_6]^{2+}$ (2) $[Mn(H_2O)_6]^{2+}$
1	(3) $[Fe(H_2O)_6]^{2+}$ (4) $[Co(H_2O)_6]^{2+}$
2.	The number of 3c, 2e BHB and B-B bonds present in B ₄ H ₁₀ respectively are (1) 2, 4 (2) 3, 2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3.	The most unstable species among the following is (1) $Ti(C_2H_5)_4$ (2) $Ti(CH_2Ph)_4$
	(3) $Pb(CH_3)_4$ (2) $Pb(C_2H_6)_4$
4.	The acid catalyzed hydrolysis of trans-[Co(en) ₂ AX) ⁿ⁺ can give cis-product also due to the formation of
	(1) Square pyramidal intermediate (2) Trigonal bipyramidal intermediate
	(3) Pentagonal bipyramidal intermediate (4) Face capped octahedral intermediate
5	Total number of lines expected in ^{31}P NMR spectrum of HPF ₂ is (I = $1/2$ for both ^{19}F and ^{31}P)
g 8	(1) Six (2) Four
3	(3) Five (4) Three

collegedunia

Question No.	Questions ————————————————————————————————————
6.	The number of faces, vertices and edges in IF, polyhedron are, respectivel
	(1) 15, 7 and 15 (2) 10, 7 and 15
	(3) 10, 8 and 12 (4) 12, 6 and 9
7.	The light pink colour of $[Co(H_2O)_6]^{2+}$ and the deep blue colour of $[CoC\ell_4]^{-2}$ are due to
	(1) MLCT transition in the first and d-d transition in the second
	(2) LMCT transitions in both
	(3) d-d transitions in both
8 8	(4) d-d transition in the first and MLCT transition in the second
8.	In $[Mo_2(S_2)_6]^{2-}$ cluster the number of bridging S atoms and coordination number of Mo respectively, are
9	(1) 2 and 8 (2) 2 and 6
	(3) 1 and 8 (4) 1 and 6
9.	The number of possible isomers of $[Ru(PPh_3)_2(acac)]$ (acac = acetylacetonate) is
	(1) 2
٠	(3) 4 (4) 3
10.	Which ones among CO ₃ ² -, XeO ₃ , SO ₃ , PO ₃ ³ - and NO ₃ ⁻ have plana structure?
3	(1) CO_3^{2-} , PO_3^{3-} and XeO_3 (2) CO_3^{2-} , XeO_3 and NO_3^{-}
	(3) SO ₃ , PO ₃ ³ - and NO ₃ ⁻ (4) CO ₃ ² -, SO ₃ and NO ₃ ⁻
PHD/URS	(3) SO_3 , PO_3^3 and NO_3^- (4) CO_3^2 , SO_3 and NO_3^- EE-2019-Chemistry-Code-A (2)

No.	Questions
11.	The molecule $(OC)_5M = CPh(OCH_3)$ obeys 18 electron rule. The two 'M satisfying the condition are
	(1) Cr, Re ⁺ (2) Mo, V
	(3) V, Re ⁺ (4) Cr, V
12.	The number of lines exhibited by a high resolution EPR spectrum of the species $[Cu(ethylenediamine)_2]^{2+}$ is $[Nuclear spin (I) of copper is 3/2 and of N = 1]$
9	(1) 12 (2) 15
55	(3) 20 (4) 36
13.	Complexes of general formula, fac- $[Mo(CO)_3 \text{ (phosphine)}_3]$ have the C-(stretching bands as given below: Phosphine: PF_3 (i); $PC\ell_3$ (ii); $P(C\ell)Ph_2$ (iii); PMe_3 (iv)
, pag	v(CO): in cm ⁻¹ : 2090 (a); 2040 (b); 1977 (c); 1945 (d)
	The correct combination of the phosphine and the stretching frequency
	The correct combination of the phosphine and the stretching frequencis,
14.	The correct combination of the phosphine and the stretching frequency is, (1) (i-a) (ii-b) (iii-c) (iv-d) (2) (i-b) (ii-a) (iii-d) (iv-c)
14,	The correct combination of the phosphine and the stretching frequencis, (1) (i-a) (ii-b) (iii-c) (iv-d) (2) (i-b) (ii-a) (iii-d) (iv-c) (3) (i-d) (ii-c) (iii-b) (iv-a) (4) (i-c) (ii-d) (iii-a) (iv-b) Which one of the following will NOT undergo oxidative addition by methy

collegedunia

Question No.	Questions
15.	C ₆₀ has
	(1) 14 pentagon rings and 18 Hexagon rings
	(2) 12 pentagon rings and 20 Hexagon rings
	(3) 12 pentagon rings and 18 Hexagon rings
S. S.	(4) 14 pentagon rings and 20 Hexagon rings
16.	In 'carbon-dating' application of radioisotopes, 14C emits
	(1) Positron (2) y particle
100	(3) β particle (4) α particle
17.	The product of the reaction of propene, CO and H ₂ in the presence of Co ₂ (CO) ₈ as catalyst is
	(1) butanoic acid (2) butanal
la l	(3) 2-butanone (4) methylpropanoate
18.	Reductive elimination step in hydrogenation of alkenes by Wilkinson catalyst results in (neglecting solvent in coordination sphere of Rh)
	(1) T-shaped [Rh(PPh ₃) ₂ CI] (2) Trigonal-planar [Rh(PPh ₃) ₂ Cl]
i e	(3) T-shaped [Rh(H)(PPh ₃) ₂] (4) Trigonal-planar [Rh(H)(PPh ₃) ₂]
19.	The correct statement with respect to the bonding of the ligands, Mc ₃ N and Mc ₃ P with the metal ions Be ²⁺ and Pd ²⁺ is,
	(1) the ligands bind equally strong with both the metal ions as they are dicationic
	(2) the ligands bind equally strong with both the metal ions as both the ligands are pyramidal
	(3) the binding is stronger for Me ₃ N with Be ²⁺ and Me ₃ P with Pd ²⁺
	(4) the binding is stronger for Me ₃ N with Pd ²⁺ and Me ₃ P with Be ²⁺

Question No.	Questions		
20.	In the iodometric titration of sodium thiosulfate (Na ₂ S ₂ O ₃) with aci dichromate solution, 25 mL of 0.1 M dichromate requires 50 mL of 'x' thiosulfate. The value of 'x' is		
	(1) 0.6 (2) 0.3		
	(3) 0.1 (4) 0.4		
21.	The room temperature magnetic moment (μ_{eff} in BM) for a monomeric Cu(II) complex is greater than 1.73. This may be explained using the expression		
	(1) $\mu_{\text{eff}} = \mu_{\text{e}} (1 - \alpha \lambda / \Delta)$ (2) $\mu_{\text{eff}} = [n (n + 2)]^{\frac{1}{2}}$		
	(1) $\mu_{\text{eff}} = \mu_{\text{e}} (1 - \alpha \lambda / \Delta)$ (2) $\mu_{\text{eff}} = [n (n + 2)]^{\frac{1}{2}}$ (3) $\mu_{\text{eff}} = [4s (s + 1) + L (L + 1)]^{\frac{1}{2}}$ (4) $\mu_{\text{eff}} = g [J (J + 1)]^{\frac{1}{2}}$		
22.	The numbers of P–S and P–P bonds in the compound P_4S_3 are, respectively,		
	(1) 3 and 6 (2) 4 and 3		
	(3) 6 and 3 (4) 6 and 2		
23.	In the absence of bound globin chain, heme group on exposure to ${\rm O_2}$ gives the iron-oxgen species		
a ii	(1) Fe(III) –O– Fe(III) (2) Fe(III) –O–O		
	(3) Fe(III) -O-O- Fe(III) (4) Fe(IV) -O-		
24.	The complex [Cr(bipyridyl) ₃] ²⁺ , shows a red phosphorescence due to transition		
	(1) ${}^{4}\Gamma_{1g} \leftarrow {}^{4}A_{2g}$ (2) ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$		
	(1) ${}^{4}\Gamma_{1g} \leftarrow {}^{4}A_{2g}$ (2) ${}^{2}E_{g} \leftarrow {}^{4}A_{2g}$ (3) ${}^{4}\Gamma_{2g} \leftarrow {}^{4}A_{2g}$ (4) ${}^{4}A_{2g} \leftarrow {}^{2}E_{g}$		

(5)

uestion No.	Questions		
25.	Consider the following reactions in N ₂ O ₄		N ₂ O ₄
ş	i. NOCℓ+Sn	ii.	NOCl + AgNO ₈
,	iii. $NOC\ell + BrF_3$	iv.	$NOC\ell + SbC\ell_5$
10	Reactions which will give [NO]+	នេ ឧ	major product are :
	(1) i and ii	(2)	iii and iv
2	(3) i and iv	(4)	ii and iv
26.	The number of 3c–2e bonds prese	ent	in $A\ell(BH_4)_3$ is
		(2)	three
	(3) six	(4)	zero
27.	The role of copper salt as co-cata	lys	t in Wacker process is
59 59	(1) Oxidation of Pd(0) by Cu(II)		(2) Oxidation of Pd(0) by Cu(I)
	(3) Oxidation of Pd(II) by Cu(I)		(4) Oxidation of Pd(II) by Cu(II)
28.	For the oxidation state/s of sulph	ur	atoms in S ₂ O, consider the following
Xeersesserve	i) -2 and $+4$	ii)	0 and + 2
**	iii) + 4 and 0	iv)	+ 2 and + 2
	The correct answer is/are		# F
V. 8:	(1) i and ii	(2)	i and iii
	(3) ii and iv	(4)	iii and iv
29.	The geometries of $[C\ell F_4]^+$ and $[I]$	F ₄]-	respectively are
	(1) Tetrahedral and tetrahedra		
	(2) Tetrahedral and trigonal big	yra	imidal
`	(3) Tetrahedral and Square pla	nar	
	(4) Tetrahedral and Octahedral	10	
HD/URS	EE-2019-Chemistry-Code-A (6	,	
* ************************************			

collegedunia

Question No.	Questions
30.	Among the complexes (i) $K_4[(Cr(CN)_6], (ii) K_4[(Fe(CN)_6], (iii) K_3[(Co(CN)_6], and (iv) K_4[(Mn(CN)_6], Jahn Teller distortion is expected in$
\$E	(1) i, ii and iii (2) ii, iii and iv
	(3) i and iv (4) ii and iii
31.	The complex $[Fe(Phen)_2(NCS)_2](Phen-1, 10$ -phnanthroline) shows spin crossover behaviour. CFSE and μ_{eff} at 250 and 150 K, respectively will be:
	(1) $0.4 \Delta_0$, 4.90 BM and $2.4 \Delta_0$, 0.00 BM
8	(2) $2.4 \Delta_0$, 2.90 BM and $0.4 \Delta_0$, 1.77 BM
	(3) $2.4 \Delta_0$, 0.00 BM and $0.4 \Delta_0$, 4.90 BM
6	(4) $1-2\Delta_0$, 4.90 BM and $2.4\Delta_0$, 0.00 BM
32.	[Ni ^{II} L_6] ^{n+orn-} show absorption bands at 8500, 15400 and 26000 cm ⁻¹ whereas [Ni ^{II} L_6] ^{n+orn-} at 10750, 17500 and 28200 cm ⁻¹ , L and L' are respectively
	(1) OH^- and N_3^- (2) $C\ell^-$ and I^-
	(3) NCS- and RCOO- (4) H ₂ O and NH ₃
33.	The rate of exchange of $\mathrm{OH_2}$ present in the coordination sphere by $^{18}\mathrm{OH_2}$ of
*	i. $[Cu(H_2O)_6]^{2+}$; ii) $[Mn(H_2O)_6]^{2+}$; iii) $[Fe(H_2O)_6]^{2+}$; iv) $[Ni(H_2O)_6]^{2+}$, follows the order
, x:	(1) $i) > iv) > iii) > ii)$ (2) $i) > iii) > iv)$
	(3) $ii) > iii) > iv) > i$ (4) $iii) > iv) > ii)$

(7)

Question	Questions	* 1
No.	to the	reaction
34.	On addition of an inert gas at constant volume to the	
	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ at equilibrium	12 12 12 12 12 12 12 12 12 12 12 12 12 1
	(1) The reaction remains unaffected	
	(2) Forward reaction is favoured	,
	(3) The reaction halts	
e e	(4) Backward reaction is favoured	
. 35.	The transition zone for Raman spectra is	*
	(1) Between vibrational and rotational levels	(# + +
18	(2) Between electronic levels	
	(3) Between magnetic levels of nuclei	
ius s	(4) Between magnetic levels of unpaired electrons	
36.	Polarisation of the electron cloud by the cation forms	
•	(1) Ionic bond (2) Covalent bond	**
- BRN	(3) Coordinate bond (4) Metallic bond	
37.	Activation energy of a chemical reaction can be determined by	
22	(1) determining the rate constant at standard temperature	
n 3• 0	(2) determining the rate constants at two temperatures	
	(3) determining probability of collision	*
	(4) using catalyst	8

(8)

Question No.	Questions	
38.	Due to Frenkel defect, the density of the ionic solids	
	(1) increases (2) decreases	
	(3) does not change (4) none of the above	
39.	What is the simplest formula of a solid whose cubic unit cell has the atom A at each corner, the atom B at each face centre and a C atom at the body centre	
8		
	(1) $AB_{2}C$ (2) $A_{2}BC$ (3) $AB_{3}C$ (4) ABC_{3}	
40.	Which of the following thermodynamic function is called as the arrow of "time"	
	(1) Enthalpy (2) Gibbs free energy	
	(3) Entropy (4) Helmholtz free energy	
41.	For a potentiometric titration in the curve of emf (E) v/s volume (V) of the titrant added, the equivalence point is indicated by	
	(1) $ dE/dV = 0$, $ d^2E/dV^2 = 0$ (2) $ dE/dV = 0$, $ d^2E/dV^2 > 0$	
	(3) $ dE/dV > 0$, $ d^2E/dV^2 = 0$ (4) $ dE/dV > 0$, $ d^2E/dV^2 > 0$	
42.	If the concentration (c) is increased to 4 times its original value (c), the change in molar conductivity for strong electrolytes is (where b is kohlrausch's constant).	
	(1) 0 (2) b√c	
	(3) 2b√c (4) 4b√c	

(9)

Question No.	Questions			
43.	are $\varepsilon_v = \text{nhv for } n = 0, 1, 2 \dots$ Assuming $hv = R_B 1/3$, the parts			
j	(1) e (2) $e^{1/3} (e^{1/3} - 1)$			
	(3) $1/3e$ (4) $3e/(3e^3-1)$	8 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E		
44.	The ground state of hydrogen atom is -13.598 e' of kinetic energy $<$ T $>$ and potential energy, $<$ V $>$,			
	(1) $\langle T \rangle = 13.598. \langle V \rangle = -27.196$ (2) $\langle T \rangle = -27.196$	= 27.196, < > = 10.000		
	(3) $<$ T>==6.799, $<$ V>=-6.799 (4) $<$ T>=	= 6.799, <v> = -20.397</v>		
45.	The correct expression for the product ((M _n).(M _w) the number average and weight average molar molymer] is) [where M_{p} and M_{w} are		
	(1) $N^{-1} \sum_{i} N_{i} M_{i}$ (2) $N^{-1} \sum_{i} N_{i} M_{i}$	(<mark>2</mark> '		
	(3) $N/\sum_{i} N_{i} M_{i}$ (4) $N/\sum_{i} N_{i} M_{i}^{2}$			
46.	Match the following columns:			
	Column-1	Column-2		
(4.)	A. Energy of the ground state of He+	1. -6.04 ev		
	B. Potential energy of 1st orbit of H- atom	2. -27.2 ev		
	C. Kinetic energy of II excited state of He+	3. 8.68 * 10 ⁻¹⁸ J		
	D. Ionisation potential of He+	4. -54.4 ev		
	Codes.			
	A B C D	\$ \$		
	(1) 1 2 3 4	n = " E n		
il.	(2) 4 3 2 1			
	(3) 4 2 1 3			
	(4) 2 3 1 4			
DUDAID	S-EE-2019-Chemistry-Code-A (10)			

Code-A

Question No.	Questions		
47.	The protecting power of lyophilic colloidal sol is expressed in terms of		
	(1) Critical miscelle concentration (2) Oxidation number		
	(3) Coagulation value (4) Gold number		
48.	Which one of the following is an example for homogenous catalysis?		
	(1) Hydrogenation of oil		
×	(2) Manufacture of ammonia by Haber's process		
	(3) Manufacture of sulphuric acid by Contact process		
	(4) Hydrolysis of sucrose in presence of dilute hydrochloric acid		
49.	The energy of a hydrogen atom in a state is ($-hcR_H/25$), where $R_H=Rydberg$ Constant). The degeneracy of the state will be -		
	(1) 25^1 (2) 25^2		
	(3) 25 ³ (4) 25 ⁴		
50.	The value of the commutator [x, p ² _x] is		
	(1) 2i (2) 2 i h p _x		
	(3) $2ixp_x$ (4) $h i p_x/\pi$		
51.	The number of the lines in the ESR spectrum of CD ₃ is (the spin of D is 1		
	(1) 1 (2) 3		
er	(3) 4 (4) 7		
52.	Colligative properties are used for the determination of		
	(1) molar mass (2) equivalent weight		
	(3) arrangement of molecules (4) melting and boiling point		

PHD/URS-EE-2019-Chemistry-Code-A

(11)

Question No.	n Questions	
53.	Which of the following does not contain a C ₃ axis?	
00.	(1) POC ₄ (2) NH ₄ ⁺	
20	(3) H_3O^+ (4) $C\ell F_3$	
54.	Franck Condon principle is related to	
	(1) time required for electronic transition to occur	
	(2) absorption of light	
137	(3) time of electronic transition and change in internuclear distance	
	(4) symmetry of molecules	
55.	Which pairing of molecule and point group is correct?	
	(1) $\mathrm{BC}\ell_3$, $\mathrm{C}_{3\mathrm{v}}$ (2) $\mathrm{SiC}\ell_4$, $\mathrm{D}_{4\mathrm{h}}$	
	(3) H_2S , C_{2v} (4) SF_4 , C_{4v}	
56.	The symmetric stretching mode of the SiF ₄ molecule:	
	(1) IR active	
	(2) IR inactive	
	(3) generates a change in molecular dipole moment	
	(4) gives rise to a strong absorption in IR spectrum	
57.	Match the following columns:	
	LIST-1 LIST-2	
:	1. Sol A. Liquid dispersed in solid	
ā	2. Gel B. gas dispersed in liquid	
	3. Emulsion C. Solid dispersed in liquid	
	4. Foam D. liquid dispersed in liquid	
	Codes	
	(1) 1-A 2-B 3-C 4-D	
*	(2) 1-B 2-C 3-D 4-A	
	(3) 1-C 2-A 3-D 4-B	
343	(4) 1-B 2-D 3-A 4-C	

Question No.	The Complete Company of the Company	Questions		
58.	A heat engine operates between the boiling point of water and a room temperature of 25°C. The efficiency of the engine is largest, if water is allowed to boil at a pressure of			
	(1) 1 atm.	(2) 10 atms		
	(3) 25 atms	(4) 1.01 * 10 ⁶ Nm ⁻²		
59.	Monomer of Orlon is			
	(1) $CH_2 = CH - OCH_3$	(2) $CF_2 = CF_2$		
	(3) $CH_2 = CH - CN$	(4) $CH_2 = CH - C\ell$		
60.	Chloroprene is obtained by the addition of HCl to			
	(1) ethylene	(2) acetylene		
14	(3) vinylacetylene	(4) phenylacetylene		
61.	The normality of 2.3 M H ₂ SO ₄ solution is			
	(1) 2.3 N	(2) 4.6 N		
	(3) 6.9 N	(4) 7.9 N		
62.	Crystal cannot posses			
	(1) 1 fold axis of symmetry	(2) 3 fold axis of symmetry		
	(3) 5 fold axis of symmetry	(4) 6 fold axis of symmetry		
63.	Number of sigma bonds in P ₄ O) ₁₀ is		
0	(1) 6	(2) 7		
18.	(3) 17	(4) 16		

(13)

Question No.	Questions
64.	2 mol of an ideal gas at 27° C is expanded reversibly from 2 lit. To 20 lit Find entropy change (R = 2 cal / mol K)
	(1) 92.1 (2) 0
e.	(3) 4 (4) 9.2
65.	An adiabatic process is
	(1) isoenthalpic (2) isoentropic
	(3) isochoric (4) isobaric
66.	At a certain temperature, the following observations were made for the reaction
·	$A \longrightarrow Products$
	Time [A]
28	(From the start)
	2 minutes 5*10 ⁻³
	5 minutes 4*10 ⁻³
ŀ	8 minutes 3*10 ⁻³
	11 minutes 2*10 ⁻³
	The order of the reaction is
· .	(1) 1 (2) 2
20	(3) 3 (4) Zero

Question No.	Questions			
67.	How many stereoisomers does have 2, 3-dichloropentane?			
	(1) 2 (2) 4			
. 9	(3) 3 (4) 5			
68.	Which statement about benzene is incorrect?			
	(1) The C ₆ ring is planar			
	(2) The C-Cπ-bonding is delocalised.			
340	(3) The reactivity of the benzene reflects the presence of carbon-carbon double bond.			
	(4) Each C atom is sp ² hybridized.			
69.	Which of the following is not a Huckel (4n + 2) aromatic system?			
	(1) [18]-Annulene (C ₁₈ H ₁₈) (2) Cyclooctatetraene (C ₈ H ₈)			
	(3) Benzene (C_6H_6) (4) Cyclopentadienyl anion (C_5H_5)			
	Çℓ			
70.	The IUPAC name of $\bigcirc_{\operatorname{Br}}$ is :			
	(1) 1-bromo-3-chlorocyclohexene			
	(2) 2-bromo-6-chlorocyclohex-1-ene			
	(3) 6-bromo-2-chlorocyclohexene			
	(4) 3-bromo-1-chlorocyclohexene			
71.	Which of the following is a correct name for the following compound?			
	$\frac{C\ell}{H_3C}C = C < \frac{CH_2CH_3}{I}$			
	(1) cis-2-chloro-3-iodo-2-pentene			
2	(2) trans-2-chloro-3-ido-2-pentene			
	(3) trans-3-iodo-4chloro-3-pentene			
0	(4) cis-3-iodo-4-chloro-3-pentene			

(15)

Question No.	Questions		
72.	Keto-enol tautomerism is observed in :		
la l	O O O $ $ (1) C_6H_5 -C-CH $_2$ -C-CH $_3$ (2) C_6H_5 -C-C $_6H_5$		
	O (3) CH,CH,C–OH (4) C,H,–C–H		
73.	Which of the following gases is mainly responsible for acid rain?		
	(1) NO ₂ and CO ₂ (2) CO ₂ and SO ₂		
13	(3) SO ₂ and NO ₂ (4) None of these		
74.	Which of the following compound displays two singlets at $\delta_{2.3}$ an 7.1 ppm.		
	(1) 1, 2-dimethylbenzene (2) 1, 3-dimethyl benzene		
	(3) 1, 4-dimethyl benzene (4) methyl benzene		
75.	A single strong and sharp absorption near 1650 cm ⁻¹ in IR spectra indicate the presence of		
	(1) Acid chlorides (2) Amides		
	(3) Anhydrides (4) Aldehydes		
76.	The proteins in which prosthetic group is carbohydrate are know as		
9	(1) Lipo-protein (2) Mucoprotein		
	(3) Chromoprotein (4) Nucleoprotein		
	EE-2019-Chemistry-Code-A (16)		

Question No.	Questions
77.	Match the List I and List II and select the correct answer using codes given below:
	List I List II
ine	1 Nerol A Lemon grass oil
	2 Citral B Geraniol
	3 Pinol C Amyrin
#E	4 Lupeol D α-pinene
	Correct answer is:
	(1) 1-C, 2-B, 3-A, 4-D (2) 1-B, 2-A, 3-D, 4-C
201	(3) 1-D, 2-C, 3-A, 4-D (4) 1-A, 2-D, 3-B, 4-D
78.	Hydrolysis product of sucrose is:
	(1) Fructose (2) Glucose + Galactose
1 5	(3) Glucose (4) Glucose + Fructose
79.	The mass spectrum of primary amides shows a moderate molecular ion and an Intense peak at $m/z = 44$ due to :
	(1) Loss of an alkyl radical (2) Loss of HCN
	(3) Loss of CO (4) Loss of methyl radical
80.	Which one of the following is bacteriostatic drug?
	(1) Chloramphenicol (2) Penicillin
	(3) Streptomycin (4) Phenacetin
81.	Heating 1, 4-dicarbonyl compounds in the presence of phosphorus pentoxide (P ₂ O ₅) gives:
gar in	(1) Pyrrole (2) Furan
	(3) Thiophene (4) Quinoline
82.	The Acetylation of thiophene occurs at:
58	(1) C ₃ -position (2) C ₄ -position
	(3) C ₂ -position (4) both at C ₂ and C ₄ -positions

Question No.	Questions		
83.	Pyridine is basic in nature having		
u a i	(1) $pKa = 5.21$ (2) $pKa = -0.27$		
	(1) $pKa = 5.21$ (2) $pKa = -0.27$ (3) $pKa = 5.81$ (4) $pKa = -0.35$		
84.	Least stable carbocation among the following is		
al al	(1) $(CH_3)_3C^+$ (2) $(CH_3)_2CH^+$		
	(3) CH ₃ CH ₂ ⁺ (4) CH ₃ ⁺		
85.	Due to the presence of an unpaired electron, free radicals are		
	(1) Anions (2) Cations		
	(3) Chemically reactive (4) Chemically inreactive		
86.	Benzoyl peroxide undergoes hamolytic cleavage to produce		
	(1) Phenyl radical (2) Methyl radical		
	(3) Phenyl chloride (4) Methyl chloride		
87.	SN ¹ mechanism for the hydrolysis of an alkyl halide involves the formation of intermediate		
• •	(1) Free radical (2) Carbanion		
	(3) Carbocation (4) None of these		
88.	Which of the following is NOT polar protic solvent?		
	(1) H ₂ O (2) C ₂ H ₅ OH		
·	(3) Fumaric acid (4) Acetone		
89.	A new carbon-carbon bond formation is possible in		
14	(1) Clemmensen reduction (2) Wurtz reduction		
	(3) Friedel-Craft alkylation (4) Oppenauer oxidation		

(18)

Question	
No.	Questions
90.	Give the name of reaction given below: $ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $
	(1) Perkin reaction (2) Pechmann condensation (3) Benzoin condensation (4) Claisen-Schmidt reaction
91.	What is meant by a reaction going in 94% enantiomeric excess? (1) The product contains 94% of one enantiomer and 6% of other enantiomer (2) The product contains an enantiomer which is 94% pure
8.	 (3) The product contains 94% of one enantiomer and 6% of the products (4) The product contains 97% of one enantiomer and 3% of other enantiomer
92.	Which of the following functional group is not reduced by sodium borohydride (NaBH ₄)
	(1) $\searrow_{C=O}$ (2) $-C-C\ell$
,	(3) -C-H II O
93.	The given reaction is the example of: $ 7 + = \rightarrow \bigcirc$ (1) 2 + 4 cycloaddition (2) 2 + 2 cycloaddition
	(3) 2+2+2 cycloaddition (4) 2S+2S cycloaddition
94.	A photo chemical reaction is: (1) catalysed by light (2) Initiated by light (3) accompanied with the emission of light (4) used to convert heat energy into light
L	(19)

	on		
No.		Questions	
95.	Which of the fall :		
	Which of the following so	vents is unacceptable	on large scale?
	- Methoxy ethane	(2) Xylene	
	(3) Diethyl ether	(4) Heptane	
96.	For the reaction given be	w. which reaction co	dition are not suitable
	0	w, william reaction to	idicion are not suitable
10. 10.	1 !!		*7
)	er e
W.	(1) LiAlH ₄ /Et ₃ O	/0\ TT 313777 /	
	4 2	(2) H2N NH2/	
			$_{2}$ CH $_{2}$ SH / H $^{+}$, H $_{2}$ / Ni
97.	Which of the following sta	ements is <u>not</u> correct	?
21 ^{1.5}	(1) The molecule to be sy		
- 1	(2) Synthetic equivalent	11 VIII VIII VIII VIII VIII VIII VIII V	
	disconnection	, ,	
1	(3) Regioselective reaction	does not produce	one of several possib
	structural isomers	a doos not produce	one or coverar possis
		as a second	
	(A) Synthon is an idealise	fragment (usually ca	tion or anion) resultin
		fragment (usually ca	ition or anion) resultin
	from a disconnection.	30 89	
98. 1	from a disconnection. How many oxygen atoms lin	30 89	
98. 1	from a disconnection.	d up in a row would f	
98. I	from a disconnection. How many oxygen atoms lin	30 89	
98. I	from a disconnection. How many oxygen atoms line space? 1) Seventy	ed up in a row would f	
98. I	from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven	ed up in a row would f (2) One (4) None	
98.] s (from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic	ed up in a row would f (2) One (4) None eal reaction is	
98. I	from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemical contents and catalyst in chemical contents.	ed up in a row would f (2) One (4) None eal reaction is ergy	
98. I s (from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic 1) Lowers the activation expression of processing the catalyst of the catalyst of processing the catalyst of the cataly	ed up in a row would for (2) One (4) None eal reaction is ergy educts	
98. I s ((((((((((((((((((from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemical chemical control of catalyst in chemical control of process of the amount of the am	ed up in a row would for (2) One (4) None eal reaction is ergy educts	
98. I s ((((((((((((((((((from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic Lowers the activation expenses the amount of property of Alters and the forward of the catalyst of Forward of Alters and the forward of the catalyst of Forward of Alters and the forward of the catalyst of Forward of Alters and the forward of Alters and the forward of Alters and the forward of the catalyst of Forward of Alters and the forward of the catalyst of Forward of Alters and the catalyst of Forward of Alter	ed up in a row would for (2) One (4) None cal reaction is ergy educts reaction	
98. I s ((((((((((((((((((from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic 1) Lowers the activation expenses the amount of property in the control of the catalyst in the control of the catalyst in the ca	ed up in a row would for (2) One (4) None cal reaction is ergy educts reaction	
98. I s ((((((((((((((((((from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic 1) Lowers the activation expenses the amount of property in the control of the catalyst in the control of the catalyst in the ca	ed up in a row would for (2) One (4) None eal reaction is ergy educts reaction ard reaction	
98.] (3) (4) (5) (6) (7) (7) (8) (9) (1) (1) (2) (4) (4) (4)	from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic) Lowers the activation e) Alters the amount of property Increases AH of Forwar Decreases of AH of Forwar condary pollutant is	ed up in a row would for (2) One (4) None cal reaction is reaction ard reaction (2) CO	
98. I s (1) 99. T (1) (2) (3) (4) 0. Sec (1)	from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic) Lowers the activation e) Alters the amount of property Increases ΔH of Forwar Decreases of ΔH of Forwar condary pollutant is SO ₂	ed up in a row would for (2) One (4) None eal reaction is ergy educts reaction ard reaction	it in a one nanomateri
98. I s (1) 99. T (1) (2) (3) (4) 0. Sec (1)	from a disconnection. How many oxygen atoms linguage? 1) Seventy 3) Seven he role of catalyst in chemic) Lowers the activation e) Alters the amount of property Increases AH of Forwar Decreases of AH of Forwar condary pollutant is	d up in a row would f (2) One (4) None eal reaction is ergy ducts reaction ard reaction (2) CO	

