Manipal School of Information Sciences

Manipal Academy of Higher Education, Manipal

Outcome Based Education (OBE) Framework

Two Year full time Postgraduate Program

Master of Engineering - ME (Automotive Embedded Systems)

TABLE OF CONTENTS

Contents

NATURE AND EXTENT OF THE PROGRAM	3
PROGRAM EDUCATION OBJECTICE (PEO)	4
GRADUATE ATTRIBUTES	5
QUALIFICATIONS DESCRIPTORS	7
PROGRAM OUTCOMES	9
COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, A	
PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPP	'ING75

NATURE AND EXTENT OF THE PROGRAM

An engineering graduate skillset requirement is changing with invent of the new technologies. In particular the impact of Embedded Systems & Instrumentation provide a high employability in the industry. Master of Engineering - ME (Automotive Embedded Systems), seeks to equip students with the relevant knowledge, professional skills, practical experience and basic management skills, for industry or for research. Students will learn how to design, develop systems and equipment in the aeronautic, space, automobile and electronics sectors. The mandatory internship gives students hands-on experience, in an international setting. Our graduates find job opportunities as developers, project managers, consultants or researchers. The multicultural environment at ESIGELEC allows students to discover new cultures and languages.

Master of Engineering - ME (Automotive Embedded Systems) Program is a comprehensive two-year postgraduate program, which aims to provide hands-on experience to prepare industry-ready ESI professionals. The program Master of Engineering - ME (Automotive Embedded Systems) helps engineering graduates to specialize in the field of electronics, instrumentation and enables them to learn how embedded devices can be programmed, regulating, networked for the data communication and its analysis. Students will also understand the security issues, validation, debugging. This two year masters program will cover various domain like communication, sensors and actuators, cloud, data analytics.

Master of Engineering - ME (Automotive Embedded Systems) postgraduate degree would welcome graduates from any discipline with 50% mark in qualifying exam. Students after successfully completing the program will get career opportunities such as automotive, aerospace and defence, industrial electronics, robotics, chip and circuit board design validation.

PROGRAM EDUCATION OBJECTIVE (PEO)

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for Master of Engineering - ME (Automotive Embedded Systems) program are as follows.

PEO No	Education Objective
PEO 1	Enable to draw upon fundamental and advanced knowledge in order to apply analytical and computational approach to solve technological problems in automotive embedded systems.
PEO 2	Introduce state of art technologies in the area of automotive embedded system and inculcate ethical practices to make industry ready professional.
PEO 3	Promote scientific and societal advancement through research and entrepreneurship.

GRADUATE ATTRIBUTES

S No.	Attribute	Description
1	Scholarship of Knowledge	Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.
2	Critical Thinking	Analyse complex engineering problems critically, apply independent judgement for synthesising information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.
3	Problem Solving	Think laterally and originally, conceptualise and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.
4	Research Skill	Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyse and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.
5	Usage of modern tools	Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.
6	Collaborative and Multidisciplinary work	Possess knowledge and understanding of group dynamics, recognise opportunities and contribute positively to collaborative- multidisciplinary scientific research, demonstrate a capacity for self- management and teamwork, decision-making based on open- mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.

		Demonstrate knowledge and understanding of engineering and				
	Project Management	management principles and apply the same to one's own work, as a				
7	7 and Finance	member and leader in a team, manage projects efficiently in				
		respective disciplines and multidisciplinary environments after				
		consideration of economical and financial factors.				
		Communicate with the engineering community, and with society at				
		large, regarding complex engineering activities confidently and				
8	Communication	effectively, such as, being able to comprehend and write effective				
0	Communication	reports and design documentation by adhering to appropriate				
		standards, make effective presentations, and give and receive clear				
		instructions.				
		Recognise the need for, and have the preparation and ability to				
9	Life-long Learning	engage in life-long learning independently, with a high level of				
	Life-long Learning	enthusiasm and commitment to improve knowledge and competence				
		continuously.				
		Acquire professional and intellectual integrity, professional code of				
	Ethical Practices and	conduct, ethics of research and scholarship, consideration of the				
10		impact of research outcomes on professional practices and an				
	Social Responsibility	understanding of responsibility to contribute to the community for				
		sustainable development of society.				
	Independent and	Observe and examine critically the outcomes of one's actions and				
11	Reflective Learning	make corrective measures subsequently, and learn from mistakes				
	Kenecuve Learning	without depending on external feedback.				

QUALIFICATIONS DESCRIPTORS

- 1. Demonstrate
 - (i) A systematic, extensive, coherent knowledge and understanding of an academic field of study as a whole, its applications, and links to related disciplinary areas/subjects of study; including a critical understanding of the established theories, concepts, and of a number of advanced and emerging issues in the field of Automotive Embedded Systems;
 - (ii) Procedural knowledge that creates different types of professionals related to the Automotive Embedded Systems, including research and development, teaching, government and public service;
 - (iii) Professional skills in the domain of embedded systems, automotive domain, communication protocols, sensors and transducers, web-services, Security protocols and architectures, data analytics including a critical understanding of the latest developments, and an ability to use established techniques in the domain of Embedded Systems and Instrumentation.
- 2. Demonstrate comprehensive knowledge about embedded systems, microcontrollers, Internet of Things, embedded programming including current research, scholarly, and/or professional literature, relating to essential and advanced learning areas pertaining to the Embedded Systems techniques and skills required for identifying problems and issues related.
- 3. Demonstrate skills in identifying information needs, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources, analysis and interpretation of data.
- 4. Methodologies as appropriate to the subject(s) for formulating evidence based solutions and arguments.
- 5. Use knowledge, understanding and skills for critical assessment of a wide range of ideas, complex problems and issues relating to the chosen field of study.

- 6. Communicate the results of studies undertaken in an academic field accurately in a range of different contexts using the main concepts, constructs and techniques of the automotive embedded systems studies.
- 7. Address one's own learning needs relating to current and emerging areas of study, making use of research, development and professional materials as appropriate, including those related to new frontiers of knowledge.
- 8. Apply one's disciplinary knowledge and transferable skills to new/unfamiliar contexts, to identify, analyse problems, issues, and seek solutions to real-life problems.

PROGRAM OUTCOMES

After successful completion of Master of Engineering - ME (Automotive Embedded Systems) Program, Students will be able to:

Attribute	Competency			
	Acquire in-depth knowledge of AES domain, with an ability to			
Scholarship of	discriminate, evaluate, analyze, synthesize the existing and new			
Knowledge	knowledge, and integration of the same for enhancement of			
	knowledge.			
	Analyze complex AES Eco System critically, apply			
Critical Thinking	independent judgement for synthesizing information to make			
Citical Tilliking	intellectual and/or creative advances for conducting research in			
	a wider theoretical, practical and policy context.			
	Think laterally and originally, conceptualize and solve AES			
	problems, evaluate a wide range of potential solutions for those			
PO 3 Problem Solving	problems and arrive at feasible, optimal solutions after			
	considering public health and safety, cultural, societal and			
	environmental factors in the core areas of expertise.			
	Extract information pertinent to unfamiliar problems through			
	literature survey and experiments, apply appropriate research			
	methodologies, techniques and tools, design, conduct			
Degeench Shill	experiments, analyze and interpret data, demonstrate higher			
Kesearch Skill	order skill and view things in a broader perspective, contribute			
	individually/in group(s) to the development of			
	scientific/technological knowledge in one or more domains of			
	engineering.			
	Create, select, learn and apply appropriate techniques,			
Usage of modern	resources, and modern engineering and IT tools, including			
tools	prediction and modelling, to complex engineering activities			
	with an understanding of the limitations.			
<i>a</i>	Possess knowledge and understanding of group dynamics,			
	recognize opportunities and contribute positively to			
and	collaborative-multidisciplinary scientific research, demonstrate			
	Scholarship of Knowledge Critical Thinking Problem Solving Research Skill Usage of modern tools			

	Multidisciplinary	a capacity for self-management and teamwork, decision-						
	work	making based on open-mindedness, objectivity and rational						
		analysis in order to achieve common goals and further the						
		learning of themselves as well as others.						
		Demonstrate knowledge and understanding of engineering a						
	Project	management principles and apply the same to one's own work,						
PO 7	Management and	as a member and leader in a team, manage projects efficiently						
	Finance	in respective disciplines and multidisciplinary environments						
		after consideration of economical and financial factors						
		Communicate with the engineering community, and with						
		society at large, regarding complex engineering activities						
DO 9	PO 8 Communication	confidently and effectively, such as, being able to comprehend						
PU 8		and write effective reports and design documentation by						
		adhering to appropriate standards, make effective presentations,						
		and give and receive clear instructions.						
		Recognize the need for and have the preparation and ability to						
PO 9	Life-long	engage in life-long learning independently, with a high level of						
109	Learning	enthusiasm and commitment to improve knowledge and						
		competence continuously.						
		Acquire professional and intellectual integrity, professional						
	Ethical Practices	code of conduct, ethics of research and scholarship,						
PO 10	and Social	consideration of the impact of research outcomes on						
PO 10		professional practices and an understanding of responsibility to						
	Responsibility	contribute to the community for sustainable development of						
		society.						
	Independent and	Observe and examine critically the outcomes of one's actions						
PO 11	Reflective	and make corrective measures subsequently and learn from						
	Learning	mistakes without depending on external feedback.						
	5							

COURSE STRUCTURE, COURSEWISE LEARNING OBJECTIVE, AND COURSE OUTCOMES (COS)

FIRST YEAR: ME (Automotive Embedded Systems)

Semester: 1 (Manipal, India)

Semester: 2 (ESIGELEC, France)

Subject Code	Subject Title	L	Т	Р	С	Subject Code	Subject Title	L	Т	Р	С
CSE 602	Real Time Operating Systems	3	-	-	3	AES 610	ADAS and Automotive Electronic Systems	3	-	-	3
ESD 605	Embedded Systems	3	-	-	3	AES 611	Vehicle Comm. Buses	3	-	-	3
AES 601	Sensors and Transducers	3	-	-	3	AES 612	Project Management	3	-	-	3
AES 602	Vehicular Adhoc Networks	3	-	-	3	AES 613	Embedded C Programming	3	-	-	3
	Elective – 1	3	-	-	3	AES 614	Robotics and Localization	3	-	-	3
CSE 602L	Real Time Operating Systems Lab	-	-	3	1	AES 615	Safety Systems and Automotive Constraints	3	-	-	3
ESD 605L	Embedded Systems Lab	-	-	3	1		Elective – 2	2	-	-	3
AES 601L	Sensors and Transducers Lab	-	-	3	1	AES 696	Minor Project - 2	-	3	3	4
AES 602L	Vehicular Adhoc Networks Lab	-	-	3	1	AES 698	Oral Communicatio n	2	-	1	3
	Elective - 1 Lab	-	-	3	1	AES 638	French Language – 2*	3	-	-	3
AES 695	Mini Project - 1	-	-	-	4	AES 640	Bibliographica 1 Studies*	-	1	-	-
AES 697	Seminar - 1	-	-	-	1						
ESI 609	French Language-1 *	5	-	I	-						
	Total	20	-	15	25	r	Fotal	25	4	3	25

* Audited and not considered for CGPA calculation

SECOND YEAR (FINAL YEAR): ME (Automotive Embedded Systems)

III and IV Semester						
ESI 799 Project Work 25						
Total Number of Cre	75					

List of Electives(Theory)

	Manipal, India	ESIGELEC, France			
	Elective - 1		Elective - 2		
Code	Subject	Code	Subject		
CSE-624	Linux Internals and Programming	AES 616.1	MicroC Real Time Application		
IOT-607	Internet of Things	AES 616.2	LabVIEW Programming		
ESD-602	Microcontrollers and its Applications	AES 616.3	Deep Learning and Autonomous Vehicle		
CSE-620	Linux and Scripting Languages	AES 616.4	Embedded Linux		
		AES 616.5	VHDL programming		
			EMC Automotive System		
		AES 616.7	Biomedical Imaging and Signal Processing		

List of Electives(Lab)

	Manipal, India	ESIGELEC, France			
	Elective - 1		Elective - 2		
Code	Subject	Code	Subject		
CSE-624L	Linux Internals and Programming Lab	AES 616.1L	MicroC Real Time Application Lab		
IOT-607L	Internet of Things Lab	AES 616.2L	LabVIEW Programming Lab		
ESD-602L	Microcontrollers and its Applications Lab	AES 616.3 L	Deep Learning and Autonomous Vehicle Lab		
CSE-620L	Linux and Scripting Languages Lab	AES 616.4 L	Embedded Linux Lab		
		AES 616.5 L	VHDL programming Lab		
		AES 616.6 L	EMC Automotive System Lab		
		AES 616.7 L	Biomedical Imaging and Signal Processing Lab		

Note:

- As per MAHE guidelines, credits earned from the partner university / institute is considered for the award of the degree but not for the calculation of GPA / CGPA. Thus, MAHE will issue a certificate for the credits earned from the partner university, but not a Grade Report for those credits.
- Exit policy:

For the students who are opting out of Study Abroad – Credit Transfer program and continuing II Semester in MSIS:

- 1. The exit policy is ME (Vehicular Embedded Systems)
- 2. For the subject French Language-I in I Semester
 - This credit will not be considered for the calculation of GPA/ CGPA.
- 3. Third & Fourth Semesters Internship:
 - Number of credits for project work / Internship is 25
 - Minimum duration of internship is 10 months

Name	of the	Program	n:		Mast	Master of Engineering - ME (Automotive Embedded							
					•	Systems)							
Course Title:						Real Time Operating Systems							
		: CSE 6				se Inst							
		ear: 202	20-2021	1				ear, Seme					
No of							s: Basi	ic Program	nming –	preferab	ly C		
Synop	sis:	 This Course provides insight on Basics of operating systems and real operating systems. 											
		2. Un	derstan	ding	the co	ncepts	of p	rocess m	anagem	ent, sch	eduling,		
		syn	chroniz	zation,	and dea	adlocks.							
		3. Thi	s cours	e helps	the stu	dents to) learn t	hread-bas	ed prog	ramming.			
		4. Stu	dents le	earn the	e conce	pt of me	emory r	nanageme	ent.				
		5. Stu	dents le	earn the	e salien	t feature	es of rea	al time op	erating s	ystems.			
Course	e												
Outco	mes	On suc	cessful	compl	etion of	f this co	urse, st	udents wi	ll be able	e to			
(COs):	:												
CO	1:	Exami	ne the e	evolutio	on of op	erating	system	s and real	time op	erating sy	stems.		
CO	2:	Design	progra	ıms bas	ed on t	hreads.							
CO	3.	Explain	Explain the concepts involved in process management, scheduling,										
co	5.	synthet	ynthetization of processes.										
СО	4:	Explain	n the co	oncepts	involv	ed in n	nemory	managen	nent , de	etecting, a	woiding		
00		and rec	over fr	om dea	d locks								
CO	5:	Explain	n the co	oncepts	of real	time sy	ystems a	and real ti	me oper	ating syst	ems		
Mappi	ing of (COs to 1	POs										
COs	PO 1	PO 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	<i>PO</i> 8	PO 9	PO 10	PO 11		
CO 1	*	*	*										
CO 2	*	*	*										
CO 3	*	*											
CO 4	*	*											
CO 5		* * *											
Course	e conte	ent and	outcom	nes:	-								

Name of the Institution / Department: Manipal School of Information Sciences (MSIS)

Content	Competencies							
Unit 1: Introduction to OS and RTOS								
Essential features of an OS, Single	1. Identify the features of OS and RTOS (C2)							
Processor Systems and Multiprocessor	2. Distinguish between single processor and							
Systems, Essential Features of	multi-processor systems (C2)							
Batch Processing, Time sharing,	3. Identify the features of batch processing, time							
Multiprogramming, Interactive	sharing, multi programming and interactive							
systems, User mode and Kernel Mode	systems (C2)							
operations, Distinction between	4. Distinguish between user and kernel modes							
function call and system call, Real time	(C2)							
operating system and real time	5. Distinguish between function and system calls							
embedded systems.	(C2)							
Unit 2: Process Management								
A process in memory, process state,	1. Describe a process, process state, process							
PCB, Process scheduling, scheduling	control block (C2)							
Queues, Types of schedulers,	2. Illustrate scheduling algorithms, scheduling							
Process system calls IDC using Shared	queues (C3)							
Process system calls - IPC using Shared	3. Examine process related system calls (C1)							
Memory, IPC using Sockets.	4. Illustrate methods for inter process							
	communication through share memory and							
	sockets (C3)							
Unit 3: Multithreaded Programming								
Introduction, benefits, multithreading	1. Summarize the benefits of multi-threading (C2)							
models, Pthreads, Win32 threads,	2. Discover threading issues (C2)							
Threading Issues, Thread pools Linux	3. Illustrate programs using p threads (C3)							
threads.	4. Examine the benefits of thread pools (C3)							
Unit 4: Process Scheduling								

Introduction, scheduling criteria,	1. Distinguish between scheduling algorithms
scheduling Algorithms – FCFS, SJF,	(C2)
PS, RR, Multilevel Queues, Multilevel	2. Examine the criteria for scheduling (C3)
	3. Explain FCFS, SJF, PS, RR, Multi-level
feedback Queue Scheduling,	queues, multi-level feedback queues
Scheduling evaluations.	scheduling algorithms (C2)
	4. Evaluate the scheduling algorithms (C5)
Unit 5: Synchronization	
Introduction, Critical Section Problem,	1. Define critical section problem (C1)
Petersons Solutions, synchronization	2. Demonstrate Software solutions to critical
hardware, Semaphores, usage,	section problems (C3)
implementations; Deadlocks and	3. Demonstrate hardware solution for process
starvation, Classical problem of	synchronization (C3)
synchronization – Bounded Buffer	4. Describe the usage and implementation of
problem, Reader's Writer's problem,	semaphores (C1)
Dining Philosophers problem, sleeping	5. Define dead locks and starvation (C1)
barbers problem; Monitors.	6. Illustrate solutions to classical synchanization
	problems like bounded buffer, readrs writers,
	dining philosephers and sleeping barbers (C3)
Unit 6: Deadlocks	
Introduction, deadlock,	1. Define dead locks (C2)
characterization, methods for handling	2. Examine methods for handling dead locks (C4)
deadlocks, deadlock prevention,	3. Illustrate various dead lock algorithms (C3)
deadlock avoidance, recovery from	
deadlock.	
Unit 7: Memory Management	
Memory Management Strategies,	1. Examine various memory management
Virtual Memory Management.	strategies(C4)
	2. Examine the evolution of memory
	management (C4)
	3. Illustrate the benefits of paging and
	segmentation(C3)

	4.	Examine	the imp	lementatior	n of demand	
		paging(C4)				
	5.	Examine the various virtual memory conce				
		(C4)				
Unit 8: Real Time Systems						
Overview of Real Time Systems, F	Real 1.	Examine t	he concep	ots involved	d in the design	
Time clocks and Real Time Schedu	ling	of real time	e systems	(C3)		
Algorithms	2.	Design of a	real time	clocks in va	arious real time	
		languages(C5)			
Learning strategies, contact hours	and stu	dent learnin	ig time			
Learning strategy		Contac	et hours	Stu	dent learning	
					time (Hrs)	
Lecture		3	0		60	
Quiz		С	2		04	
Small Group Discussion (SGD)		02			02	
Self-directed learning (SDL)		-			04	
Problem Based Learning (PBL)		02			04	
Case Based Learning (CBL)		-			-	
Revision		02			-	
Assessment		06			-	
TOTAL		44			74	
Assessment Methods:						
Formative:			Sum	mative:		
Internal practical Test		Sessional			examination	
Theory Assignments	End	End semester examination				
Lab Assignment & Viva		Viva				
Mapping of assessment with Cos						
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Sessional Examination 1	*	*				
Sessional Examination 2			*	*		
Assignment/Presentation				*	*	

End Semester Examin	nation	*	*	*	*	*				
Feedback Process	• End	End-Semester Feedback								
Reference Material	• '	Operating S	System princ	iples", S	eventh Edit	ion, Abraham				
	Sil	perschatz, Pe	eter Galvvin	, Grag						
	Ga	Gagne. John Wiley Publications								
	• "	• "Real – Time Systems and Programming Languages", Allan								
	Bu	Burns, Andy Wellings.								
	• "	Operating S	tems Concej	pts and D	esign", Mil	an Milenkovic				
	• "	Design of U	nix Operatin	ng Systen	n", Maurice	Bach (IPC)				
	• "	The C Prog	ramming La	inguage"	, Kerningha	n & Ritchie 5.				
	Ke	rninghan &	Ritchie, "	The C I	Programmin	g Language",				
	Sec	cond Edition	, Prentice-H	all, 1988	•					

Name of th	e Progran	1:			Master of Engineering - ME (Automotive Embedded							
					Systems)							
Course Tit					dded Sys							
Course Co					se Instru							
Academic Y		0 - 2021				First Year, S						
No of Cred				Archi	tecture, A	: Micropro Assembly 1						
Synopsis:	This C	Course p	orovides	s insigh	t on							
	1. Tł	nis cour	se pro	vides t	the kno	wledge o	f ARM	I Corte	x M3 P	rocessor		
	ar	chitectu	re									
	2. Tł	nis cour	se prov	vides th	e know	ledge of l	Microco	ontroller	r based o	n ARM		
	Pr	ocessor	archite	ecture	and its	Registers	and I	nstructi	on sets 1	to write		
	A	ssembly	and Er	nbedde	d C Prog	gramming	•					
			-		-	t of Interf	acing a	nd Prog	ramming	Sensors		
		•			ocontroll							
	4. Tł	nis cours	se provi	ides the	concept	t of Comm	nunicati	on Prote	ocols requ	uired for		
	m	ulti-proc	cessor c	commu	nication.							
	5. Tł	nis cour	rse pro	vides t	he conc	cept of R	eal tim	e opera	ating syst	ems on		
	Μ	icrocon	trollers.									
	6. Tł	nis cour	rse prov	vides tl	he conc	ept of De	esigning	g Real	Time En	nbedded		
	Sy	vstems u	sing Al	RM Mi	croconti	oller.						
Course												
Outcomes	On su	ccessful	compl	etion of	f this co	urse, stude	ents wil	l be able	e to			
(COs):												
CO 1:	-	•		0		trollers to			•			
CO 2:	Expla	in the co	oncept	of Prog	rammin	g ARM M	licroco	ntrollers	s using A	ssembly		
	and E	mbedde	d C.									
CO 3:	Desig	n a Real	l time E	Embedd	led Syste	ems by int	terfacin	g Senso	ors, Actua	tors and		
05.	portin	g Real t	ime op	erating	systems	•						
Mapping	of COs to	POs										
	1 PO 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11		
COs PC			1									
CO 1 *	*											
		*		*								

Course content and outcomes:	
Content	Competencies
Unit 1: Introduction to Embedded	Systems
Design Challenges, Processors	At the end of the topic student should be able to:
Technology, Design Technology	1. Describe the Design issues in designing the
	Embedded Systems.(C1)
	2. Discuss the design technology associated with
	Embedded Systems.(C2)
Unit 2: Introduction to ARM Cortex	processor
Variants of Cortex and ARM versions,	1. Explain about ARM Processor architecture
Comparison of M-series processor,	(C2)
Architecture, Programmers Model,	2. Describe ARM Cortex m3 processor data path,
APSR register, Memory Model,	Register set, Programming models and memory
Exception, Interrupts, Reset	map (C2)
	3. Describe about ARM Cortex M3 Processor
	Instruction set. (C2)
	4. Describe about ARM Processor system bus and
	Interrupt controller (C2)
	5. Describe about interrupt and Exception
	handling (C2)
	6. Describe ARM Microcontroller architecture.
	(C2)
Unit 3: Instruction Set Architecture	
More on Memory System, Exceptions	1. Describe ARM Cortex memory system.
and Interrupts, NVIC, Memory	2. Describe interrupt and Exception handling (C2)
Protection Unit, Assembly	3. Describe NVIC, Memory Protection Unit. (C2)
Programming, Embedded C	4. Discuss CMSIS implementation in ARM
programming, CMSIS, Startup Code	Cortex.(C2)
Unit 4: Introduction to LPC13/17xx	Microcontroller
Memory Mapping, Registers involved	1. Discuss Memory Mapping, Registers involved
and programming with GPIO, PWM	and programming with GPIO, PWM. (C3)

	2. Apply	knowledge of ARM Microcontroller					
		architecture to rig up Embedded system					
	circuit	ts(C3)					
Unit 5: Data Acquisition System							
ADC, Types of ADC, Choosing the	1. Identi	fying various types of ADC. (C1)					
ADC, DAC	2. Revie	w ADC and DAC selection criteria. (C2)					
Unit 6: Serial Communication	·						
UART, I2C, SPI, Interfacing	1. Discussing various types of Set						
	Communication mechanism. (C2)						
Unit 7: USB BUS	1						
Speed Identification on the bus, States	, Packets,	1. Identify USB types, Firewire					
Data flow types, Enumeration, Descrip	tors, USB	devices, ports, cables.					
Interface – C Programs		2. Describing Enumeration,					
		Descriptors mechanism in					
		USB.(C2)					
Unit 8: CAN BUS							
Introduction, Frames, Bit stuffing, Types	of errors,	1. Describe the nature of CAN and the					
Nominal Bit Timing, A simple applica	ation with	basic CAN protocol, and the basic					
CAN		structure of a CAN network. (C2)					
		2. Prepare a simple application with					
		CAN. (C3)					
Unit 9: Introduction to Multitaskin	ng in Micro						
Variants of RTOS, FreeRTOS, UCOS,	0	1. Describe about Real time operating					
FreeRTOS on Cortex based Microc		systems role in building real time					
TASK CREATION, QUEQUES, SEMA	,	systems (C3)					
MUTEX, Application development		2. Describe about Designing Real					
The LEA, Application development		Time Embedded systems by					
		interfacing peripherals and actuators					
		(C2)					
		3. Design a Real time Embedded					
		system by writing applications on					
		top of Real time operating systems					
		(C5)					

e stages involved in ital camera. (C2) Student learning time (Hrs) 60 04 02
Student learning time (Hrs) 60 04
<i>time (Hrs)</i> 60 04
<i>time (Hrs)</i> 60 04
60 04
04
-
02
02
04
04
-
-
-
74
ve:
examination
ster examination
CO 3
*
*
ARM Cortex-M3",

2. Frank Vahid, Tony Givargis, "Embedded System Design: A
Unified Hardware/Software Introduction", Wiley India, ISBN:81-265-
0837-X, 2007.
3. Richard Barry, "NXP Semiconductors, LPC13xx/17xx User
Manual", 2012.
4. NXP Semiconductors, "LPCzone Examples", 2012.
5. "FreeRTOS Reference Manual", Real Time Engineers Ltd., 2016.

Name of	the Pro	gram:					Engine Systems	-	- ME	(Auto	motive	
Course T	'itlo•				Embedded Systems) Sensors and Transducers							
Course C		ES 601				Course Instructor:						
Academi			2021				First Y	ear. Sei	nester 1			
No of Cr		3					tes: Basi					
						-	f Data			and	Signal	
						itionin		-			-	
Synopsis	•	1. 7	This cou	urse pro	ovides t	he kno	wledge c	of variet	y of ava	ilable se	ensors.	
		2. E	Based o	n need	designi	ing an	embedde	ed syste	ms usin	g senso	rs	
		3. 7	This co	urse pr	ovides	insigh	t into the	e sensoi	rs used	in autor	nobile	
		industry & their working.										
		4. F	Provide	s insigł	nt into t	he act	uators us	ed in au	tomotiv	ve indus	try.	
Course												
Outcome	S	On s	uccessf	ful com	pletion	of thi	s course,	student	s will b	e able to):	
(COs):												
CO	1:	Disc	uss the	workir	ng of di	fferen	t types of	sensors	s availa	ble.		
CO	2.	Desi	gn a D	Data Ac	equisitio	on Sys	stem for	a spec	fic application using			
CO	2:	sense	ors.									
CO	3:	Desc	ribe th	e senso	rs used	in Au	tomotive	Applic	ations.			
<u> </u>	4.	Dem	onstrat	e the w	vorking	of se	nsors in a	automo	tive app	application using		
CO	4.	simu	lation a	as well	as buile	ling h	ardware u	using br	eadboa	rd.		
Mapping	of COs	to POs	5									
COs	PO 1	<i>PO</i> 2	PO 3	PO 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11	
CO 1	*	*										
CO 2		*	*		*							
CO 3	*											
CO 4		*			*	*						
Course c	ontent a	nd out	comes:									
Content						(Competer	ncies				
Block I												
Introduc	tion:						At the en	d of the	e topic	student	should	
						1	be able to):				

Sensors/ Transducers – Principles – Classification1. Discuss the working principles of Sensors/ Transducers (C3).Characterization2. Classify the sensors based on the types (C3).Mechanical and Electromechanical Sensors: Resistive Potentiometer – Strain Gauge – Inductive Sensors – Capacitive Sensors – Force/3. List various characteristics of sensors (C2).Inductive Sensors – Capacitive Sensors – Force/4. Discuss the working principle of Stress Sensors using Quartz Resonators – Ultrasonic Sensors4. Discuss the working principle of Mechanical and Electromechanical sensors (C2).Thermal Sensors: Gas Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors – Hearnal Expansion Refractive Index Thermosenser – Magnetic Thermoeter – Resistance Change Type Thermometric Sensors – NQR Thermal Radiation Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermoetry – Heat Flux Sensors1. Explain the working principles of magnetic sensors – Hall Effect and Sensors – Bedby Current Sensors – SQUID SensorsBlock II1. Explain the working principles of magnetic sensors – SQUID Sensors Electroanalytical Sensors: Suitching Magnetic Sensors – SQUID Sensors1. Explain the working principles of magnetic sensors – SQUID Sensors Sensors (C3)Electroanalytical Sensors: Suitching Magnetic Sensors – SQUID Sensors1. Discuss below properties of Smart Sensors (C3)		
Characterization2. Classify the sensors based on the types (C3).Mechanical and Electromechanical Sensors:3. List various characteristics of sensors (C2).Inductive Sensors – Capacitive Sensors – Force/ Stress Sensors using Quartz Resonators – Ultrasonic Sensors4. Discuss the working principle of Mechanical and Electromechanical sensors (C3)Thermal Sensors:5. Explain the working principle of Thermal Sensors – Dielectric Constant and Refractive Index Thermo sensors – Helium Low Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors – Helium Low Thermometric Sensors – New Thermometric Sensors – Resistance Change Type Thermoeteric Sensors – Nugartz Crystal Thermoeteric Sensors – NQuartz Crystal Thermoeteric Sensors – NQuartz Crystal Thermoeteric Sensors – NQuartz Crystal Thermoeteric Sensors – Nugart Thermometry – Spectroscopic Thermometry – Noise Thermoeter – Resistance Change Type Sensors and the Principles Behind – Angular/ Rotary Movement Sensors – Educty Current Sensors – Hall Effect and Sensors – Hall Effect and Sensors – Liductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – SQUID Sensors Sensors – SQUID Sensors1. Explain the working principles of Electroanalytical Sensors: Sensors – SQUID SensorsBitchting Magnetic Sensors – SQUID Sensors3. Discuss below properties of Smart Sensors – SQUID SensorsBitchting Magnetic Sensors – SQUID Sensors3. Discuss below properties of Smart	Sensors/ Transducers – Principles – Classification	1. Discuss the working principles of
Mechanical and Electromechanical Sensors:types (C3).Resistive Potentiometer – Strain Gauge –.1. List various characteristics ofInductive Sensors – Capacitive Sensors – Force/.1. Discuss the working principle ofStress Sensors using Quartz Resonators –.1. Discuss the working principle ofUltrasonic Sensors.1. Explain the working principle ofThermal Sensors:.1. Explain the working principle ofThermometric Sensors – Thermal Expansion.1. Explain the working principle ofThermometric Sensors – Dielectric Constant andRefractive Index Thermo sensors - Helium LowThermometric Sensors – Dielectric Constant andRefractive Index Thermo sensors - Helium LowThermometric Sensors – Nermoeff – Sensors –.1. Explain the working principles ofJunction Semiconductor Types – Thermalsensors (C3)Block II1. Explain the working principles ofMagnetic Sensors:1. Explain the working principles ofSensors and the Principles Behind –1. Explain the working principles ofAngular/ Rotary Movement Sensors – Ededy2. Explain the working principles ofSensors – Electromangetic Flowmetr –.2. Explain the working principles ofAngular/ Rotary Movement Sensors – EdedyCell, Cell Potential, PolarisationSwitching Magnetic Sensors:.2. Discuss below properties of SmartSwitching Magnetic Sensors:.3. Discuss below properties of Smart	– Parameters – Environmental Parameters –	Sensors/ Transducers (C3).
Mechanical and Electromechanical Sensors:3. List various characteristics of sensors (C2).Inductive Sensors – Capacitive Sensors – Force/ Stress Sensors using Quartz Resonators – Ultrasonic Sensors4. Discuss the working principle of Mechanical and Electromechanical sensors (C3)Thermal Sensors: Gas Thermometric Sensors – Thermal Expansion Type Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors – Helium Low Temperature Thermometer – Magnetic Thermometric Sensors – Thermaler – Magnetic Thermometric Sensors – Thermometr – Magnetic Thermometric Sensors – Nermal Sensors – Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermoeter Lesnsors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux Sensors1. Explain the working principles of magnetic sensors (C3)Block II1. Explain the working principles of Sensors and the Principles Behind – Angular/ Rotary Movement Sensors – Eddy Current Sensors – SQUID Sensors1. Explain the working principles of Electroanalytical sensors – SQUID Sensors Sensors – SQUID SensorsElectroanalytical Sensors: Suitching Magnetic Sensors – SQUID Sensors3. Discuss below properties of Smart	Characterization	2. Classify the sensors based on the
Resistive Potentiometer – Strain Gauge – Inductive Sensors – Capacitive Sensors – Force/ Stress Sensors using Quartz Resonators – Ultrasonic Sensorssensors (C2).4. Discuss the working principle of Mechanical and Electromechanical sensors (C3) Thermal Sensors: Gas Thermometric Sensors – Thermal Expansion Type Thermometric Sensors – Acoustic Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors - Helium Low Thermometer – Resistance Change Type Thermometer – Resistance Change Type Thermometer – Resistance Change Type Thermometer Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux Sensors1. Explain the working principles of magnetic Sensors: Sensors and the Principles Behind – Magnetic Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Electromagnetic Flowmetr Angular/ Rotary Movement Sensors – SQUID Sensors1. Explain the working principles of magnetic Sensors – SQUID Sensors Cell, Cell Potential, Polarisation etc.(C3)Blectroanalytical Sensors: Suitching Magnetic Sensors – SQUID Sensors3. Discuss below properties of Smart		types (C3).
Inductive Sensors – Capacitive Sensors – Force/ Stress Sensors using Quartz Resonators – Ultrasonic Sensors4. Discuss the working principle of Mechanical and Electromechanical sensors (C3)Thermal Sensors: Gas Thermometric Sensors – Thermal Expansion Type Thermometric Sensors – Acoustic Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors - Helium Low Temperature Thermometer – Magnetic Thermometric Sensors – Thermometr – Magnetic Thermometric Sensors – Thermometr – Sensors – Junction Seniconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermometry – Heat Flux Sensors6. Identify the applications of thermal sensors (C3).Block II1. Explain the working principles of Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – SQUID Sensors1. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Bick IICell, Cell Potential, Polarisation etc.(C3)	Mechanical and Electromechanical Sensors:	3. List various characteristics of
Stress Sensors using Quartz ResonatorsMechanicalandUltrasonic SensorsElectromechanical sensors (C3)5. Explain the working principle ofThermal Sensors:Thermometric Sensors – Thermal Expansion6. Identify the applications of thermalType Thermometric Sensors – Dielectric Constant and8. sensors (C3).7. Discuss different types of thermalRefractive Index Thermo sensors – Helium Low8. sensors (C3).7. Discuss different types of thermalRefractive Index Thermometer – Magnetic8. sensors (C3).7. Discuss different types of thermalThermometer – Resistance Change Type5. explain the working principles of8. sensors (C3).Junction Semiconductor Types – Thermal8. sensors (C3).7. Discuss different types of thermalRadiation Sensors – Quartz Crystal1. explain the working principles ofThermometry – Heat Flux Sensors1. Explain the working principles ofSensors and the Principles Behind –1. Explain the working principles ofMagnetoresistive Sensors – Hall Effect and2. Explain the working principles ofSensors – Inductive and Eddy Current Sensors –2. Explain the working principles ofSensors – Inductive and Eddy Current Sensors –2. Explain the working principles ofCurrent Sensors – Electromagnetic Flowmeter –Switching Magnetic Sensors – SQUID SensorsSwitching Magnetic Sensors:3. Discuss below properties of Smart	Resistive Potentiometer – Strain Gauge –	sensors (C2).
Ultrasonic SensorsElectromechanical sensors (C3)Ultrasonic SensorsElectromechanical sensors (C3)Thermal Sensors:S. Explain the working principle of Thermal Sensors (C2).Gas Thermometric Sensors – Thermal Expansion Type Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors - Helium Low Temperature Thermometer – Magnetic Thermometric Sensors – Thermael Type Thermometric Sensors – Thermoeff – Sensors – Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermometry – Heat Flux Sensors7. Discuss different types of thermal sensors (C3).Block II1. Explain the working principles of magnetic Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors:1. Explain the working principles of Electroanalytical sensors and the Principles Behind – Angular/ Rotary Movement Sensors – Eddy Current Sensors – SQUID Sensors2. Explain the working principles of Electroanalytical Sensors: S. Electroanalytical Sensors: S. Discuss below properties of Smart	Inductive Sensors - Capacitive Sensors - Force/	4. Discuss the working principle of
 5. Explain the working principle of Thermal Sensors: Gas Thermometric Sensors – Thermal Expansion Type Thermometric Sensors – Acoustic Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors - Helium Low Temperature Thermometer – Magnetic Thermometer – Resistance Change Type Thermometric Sensors – Thermoelectric Sensors – Thermoelectric Sensors – Quartz Crystal Thermoelectric Sensors – Quartz Crystal Thermoelectric Sensors – Quartz Crystal Thermometry – Heat Flux Sensors Block II Magnetic Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Ededy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID Sensors Electroanalytical Sensors: 	Stress Sensors using Quartz Resonators -	Mechanical and
Thermal Sensors:Thermal Sensors (C2).Gas Thermometric Sensors – Thermal Expansion6. Identify the applications of thermalType Thermometric Sensors – Dielectric Constant and7. Discuss different types of thermalRefractive Index Thermo sensors - Helium Low7. Discuss different types of thermalTemperature Thermometer – Magnetic7. Discuss different types of thermalThermometer – Resistance Change Type8. Sensors (C3).Thermometric Sensors – Thermoemf – Sensors –9. Junction Semiconductor Types – ThermalRadiation Sensors – Quartz Crystal7. Discuss different types of thermalThermoelectric Sensors – NQR Thermometry –NoiseThermometry – Heat Flux Sensors1. Explain the working principles ofSensors and the Principles Behind –1. Explain the working principles ofMagnetoresistive Sensors – Hall Effect and2. Explain the working principles ofSensors – Inductive and Eddy Current Sensors –1. Explain the working principles ofSensors – Inductive and Eddy Current Sensors –2. Explain the working principles ofAngular/ Rotary Movement Sensors – Eddy2. Explain the working principles ofSwitching Magnetic Sensors:6. Juli Cell Potential, PolarisationSwitching Magnetic Sensors:3. Discuss below properties of Smart	Ultrasonic Sensors	Electromechanical sensors (C3)
Gas Thermometric Sensors – Thermal Expansion Type Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors - Helium Low Temperature Thermometer – Magnetic Thermometric Sensors – Thermoemf – Sensors – Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux Sensors6. Identify the applications of thermal sensors (C3).Block II1. Explain the working principles of Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Eddy Current Sensors – SQUID Sensors1. Explain the working principles of Electroanalytical Sensors: S. Discuss below properties of Smart		5. Explain the working principle of
TypeThermometricSensorsAcousticThermometricSensorsDielectricConstant andRefractiveIndexThermo sensorsHeliumLowTemperatureThermometerMagneticSensorsThermometerResistanceChangeTypeThermometerResistanceChangeTypeThermometerResistanceChangeTypeJunctionSemiconductorTypesThermalRadiationSensorsQuartzCrystalThermoelectricSensorsNQRThermometrySpectroscopicThermometryNoiseThermometryHeatFluxBlock II1.ExplainMagneticSensorsI.MagnetoresistiveSensorsHallAngular/RotaryMovementAngular/RotaryMovementSensorsElectroanalyticalSensorsAngular/RotarySensorsSensorsSensorsSensorsAngular/RotaryMovementSensorsSensorsSensorsAngular/RotaryMovementSensorsSensorsSensorsSensorsSensorsSensorsAngular/SensorsSensorsSensorsSensorsSensorsSensorsSensorsSensorsAngular/SensorsSensorsSensorsSensorsSensorsSensorsSensorsSensorsSensorsS	Thermal Sensors:	Thermal Sensors (C2).
Thermometric Sensors – Dielectric Constant and Refractive Index Thermo sensors - Helium Low Temperature Thermometer – Magnetic Thermometer – Resistance Change Type Thermometric Sensors – Thermoeff – Sensors – Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux Sensors7. Discuss different types of thermal sensors (C3)Block II1. Explain the working principles of Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors:1. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Block II3. Discuss below properties of Smart	Gas Thermometric Sensors – Thermal Expansion	6. Identify the applications of thermal
Refractive Index Thermo sensors - Helium Low Temperature Thermometer – Magnetic Thermometer – Resistance Change Type Thermometric Sensors – Thermoemf – Sensors – Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux Sensorssensors (C3)Block II1. Explain the working principles of Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors:1. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Blectroanalytical Sensors: Such as Bleok Sensors – SQUID Sensors3. Discuss below properties of Smart	Type Thermometric Sensors – Acoustic	sensors (C3).
TemperatureThermometerMagneticThermometerResistanceChangeTypeThermometricSensorsThermoemf – Sensors –JunctionSemiconductorTypes –ThermalRadiationSensorsQuartzCrystalThermoelectricSensors –NQRThermometry –SpectroscopicThermometry –NoiseThermometry – HeatFluxSensorsBlock II1.ExplainMagneticSensors:1.Sensors and thePrinciplesSensors –Inductive and Eddy CurrentAngular/RotaryMovementSensors –Electroanalytical sensors –SwitchingMagnetic Sensors:SwitchingSensors –Sensors –Sensors –Sensors –HallElectroanalyticalSensors –Sensors –ElectromagneticSensors –Sensors –Sen	Thermometric Sensors - Dielectric Constant and	7. Discuss different types of thermal
ThermometerResistanceChangeTypeThermometric SensorsThermoemf – SensorsJunctionSemiconductorTypes-JunctionSemiconductorTypes-ThermalRadiationSensors-QuartzCrystalThermoelectric Sensors-NoiseThermometry – Heat Flux Sensors-Block II1. Explain the working principles ofSensorsand the Principles Behind-Magnetic Sensors:1. Explain the working principles ofSensors and the Principles Behind-Magnetoresistive Sensors – Hall Effect and2. Explain the working principles ofSensors – Inductive and Eddy Current Sensors2. Explain the working principles ofAngular/ Rotary Movement Sensors – EddyCell Cell Potential, Polarisationwitching Magnetic Sensors:3. Discuss below properties of Smart	Refractive Index Thermo sensors - Helium Low	sensors (C3)
Thermometric Sensors – Thermoemf – Sensors – Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux SensorsNoise Thermometry – NoiseBlock II1. Explain the working principles of magnetic Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID Sensors1. Explain the working principles of Electroanalytical Sensors of SmartElectroanalytical Sensors:3. Discuss below properties of Smart	Temperature Thermometer – Magnetic	
Junction Semiconductor Types – Thermal Radiation Sensors – Quartz Crystal Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux SensorsIntermoelectric SensorsBlock II1. Explain the working principles of magnetic Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID Sensors1. Explain the working principles of Electroanalytical Sensors – SQUID Sensors 3. Discuss below properties of Smart	Thermometer – Resistance Change Type	
RadiationSensorsQuartzCrystalThermoelectricSensorsNQRThermometrySpectroscopicThermometryNoiseThermometryHeatFluxSensorsThermometryHeatMagneticSensors:1.Sensorsand thePrinciplesBehind-magnetic sensors (C3)MagnetoresistiveSensors2.EnsorsInductive and Eddy CurrentSensorsFelctroanalytical sensorsAngular/RotaryMovementSensorsElectroanalytical sensorsSwitchingMagnetic Sensors:SwitchingSensors:Sensors:SQUIDSensorsSensorsSwitchingSensors:SuitchingSensors:Sensors:SuitchingSuitchingSensors:SuitchingSensors:Sensors:SuitchingSuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors:SuitchingSensors: <td>Thermometric Sensors – Thermoemf – Sensors –</td> <td></td>	Thermometric Sensors – Thermoemf – Sensors –	
Thermoelectric Sensors – NQR Thermometry – Spectroscopic Thermometry – Noise Thermometry – Heat Flux SensorsNoise NoiseBlock IIIExplain the working principles of magnetic Sensors:Magnetic Sensors: Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors:1. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Junction Semiconductor Types – Thermal	
SpectroscopicThermometryNoiseThermometry – Heat Flux SensorsIBlock IIIMagnetic Sensors:1. Explain the working principles ofSensors and the Principles Behindmagnetic sensors (C3)Magnetoresistive Sensors – Hall Effect and2. Explain the working principles ofSensors – Inductive and Eddy Current Sensors –Electroanalytical sensors and theirAngular/ Rotary Movement Sensors – Eddyproperties such as ElectrochemicalCurrent Sensors – Electromagnetic Flowmeter –Cell, Cell Potential, PolarisationSwitching Magnetic Sensors:3. Discuss below properties of Smart	Radiation Sensors – Quartz Crystal	
Thermometry – Heat Flux SensorsBlock IIMagnetic Sensors: Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors:1. Explain the working principles of magnetic sensors (C3)2. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)3. Discuss below properties of Smart	Thermoelectric Sensors - NQR Thermometry -	
Block IIMagnetic Sensors:1. Explain the working principles of magnetic sensors (C3)Sensors and the Principles Behind –1. Explain the working principles of magnetic sensors (C3)Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors –2. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Switching Magnetic Sensors:3. Discuss below properties of Smart	Spectroscopic Thermometry – Noise	
Magnetic Sensors:1. Explain the working principles of magnetic sensors (C3)Sensors and the Principles Behind –magnetic sensors (C3)Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors –2. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Switching Magnetic Sensors:3. Discuss below properties of Smart	Thermometry – Heat Flux Sensors	
Sensors and the Principles Behind – Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID Sensorsangular/ Rotary Movement Sensors – Eddy Cell, Cell Potential, Polarisation etc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Block II	
Magnetoresistive Sensors – Hall Effect and Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID Sensors2. Explain the working principles of Electroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Magnetic Sensors:	1. Explain the working principles of
Sensors – Inductive and Eddy Current Sensors – Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID SensorsElectroanalytical sensors and their properties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Sensors and the Principles Behind –	magnetic sensors (C3)
Angular/ Rotary Movement Sensors – Eddy Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID Sensorsproperties such as Electrochemical Cell, Cell Potential, Polarisation etc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Magnetoresistive Sensors - Hall Effect and	2. Explain the working principles of
Current Sensors – Electromagnetic Flowmeter – Switching Magnetic Sensors – SQUID SensorsCell, Cell Potential, Polarisation etc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Sensors – Inductive and Eddy Current Sensors –	Electroanalytical sensors and their
Switching Magnetic Sensors – SQUID Sensorsetc.(C3)Electroanalytical Sensors:3. Discuss below properties of Smart	Angular/ Rotary Movement Sensors - Eddy	properties such as Electrochemical
Electroanalytical Sensors: 3. Discuss below properties of Smart	Current Sensors – Electromagnetic Flowmeter –	Cell, Cell Potential, Polarisation
•	Switching Magnetic Sensors – SQUID Sensors	etc.(C3)
Sensors (C3)	Electroanalytical Sensors:	3. Discuss below properties of Smart
		Sensors (C3)

TOTAL	1	78	144		
Assessment		6	-		
Revision		-	-		
Case Based Learning (CBL)		-	-		
Problem Based Learning (PBL)		-	-		
Self-directed learning (SDL)		-	-		
Small Group Discussion (SGD)		-	-		
Quiz		-	-		
Lecture		36	72		
			time (Hrs)		
Learning strategy		Contact hours	Student learning		
Learning strategies, contact hours and stud	ent		64 1 4		
Sensors.		•			
Sensors – Oxygen Sensors – Torque and Posit	ion	automobiles (C3)			
Sensors – Pressure Sensors – Temperat		2. Discuss the application of sensors in			
On-board Automobile Sensors – Flow-r					
Applications of Sensors:		(MEMS) - Nano Sensors (C3)			
Nano Sensors.		Microelectromechanical Systems			
Microelectromechanical Systems (MEMS)	-	Technology,			
Film Sensors – Semiconductor IC Technolog	у —	Film sensors, – Se	miconductor IC		
Recent Trends in Sensor Technology:		1. Describe the worki	ng principle of		
Block III					
Communication – Automation					
Information Coding/ Processing – D	ata				
Filters – Converters – Compensation	_				
Primary Sensors – Excitation – Amplification	1 –				
Smart Sensors:					
Media - ChemFET					
Sensor Electrodes – Electroceramics in C	Gas				
potentials – Polarization – Reference Electrode					
Hydrogen Electrode - Liquid Junction and oth	her				

Assessment Methods:		I			
Formative:				Summa	ative:
Internal practical Test				Session	al examination
Theory Assignments				End	semester
				examin	ation
Lab Assignment & Viva				Viva	
Mapping of assessment	with Cos				
Nature of assessment		CO 1	CO 2	CO 3	CO 4
Sessional Examination 1		*	*		
Sessional Examination 2				*	*
Assignment/Presentation		*	*		
End Semester Examination	on	*	*	*	*
Feedback Process	• Enc	d-Semester	Feedback		
Reference Material	1. D Patra	anabis "Ser	nsors and Tr	ansducers",	, Second Edition,
	PHI, 2004				
	2. John	G. Web	oster. Edite	or-in-chief.	"Measurement,
	Instrument	ation, and S	Sensors Hand	dbook", CR	C Press. 1999. 0-
	8493-2145	-X.			
	3. Pawlak	Andrzej M,	"Sensors an	d actuators	in Mechatronics",
	2007				
	4. PDF file	es online ava	ailable at ww	w.engnetba	ise.com
	5. "Autom	otive Hand	Book", Rob	ert Bosch, H	Bently Publishers,
	2007.				
		-	Modern inst	rumentation	applications and
	design", 20	004			

Name of the Prog	ram: Master of Engineering - ME (Automotive Embedded Systems)					
Course Title:	Vehicular Adhoc Networks					
Course Code: AE						
Academic Year:						
No of Credits: 3						
	Communication and Networks.					
Synopsis:	1. This course introduces students the basics of Adhoc					
	networking and understanding of various protocols of					
	vehicular adhoc networks (VANETs).					
	2. Learn the design issues in vehicular networks and about					
	VANET components.					
	3. The Security Architecture and requirements of VANET.					
	4. Learn the routing algorithms to route the data packets in					
	VANET.					
	5. Learn how to perform mobility modelling in VANETs.					
	6. Learn about the connection establishment and information					
	dissemination in a vehicular network.					
	7. Learn protocols affiliated to physical and MAC layers of					
	vehicular communication network.					
Course						
Outcomes	On successful completion of this course, students will be able to					
(COs):						
CO 1:	Identify the goals and applications of vehicular networks, able to					
01.	explain the classification of vehicular networks and reference models.					
~~ •	Explain the functions of On-Board Units (OBUs) and Road-Side Units					
CO 2:	(RSUs) used in vehicular networks, IP addressing techniques.					
	Demonstrate routing algorithms and information dissemination					
CO 3:	mechanisms in vehicular network.					
CO 4:	Describe the core components of security requirements and					
	architecture of VANET.					
CO 5:	Analyse the performance of the protocols for various topology of					
	vehicular networks.					
CO 6:	Design and compare the efficiency of different vehicular network					
	models through simulation.					

Mapping of COs to POs

PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	<i>PO</i> 8	<i>PO</i> 9	PO 10	PO 11
*										
	*	*	*	*						
*	*	*		*						
		*		*						
*	*	*								
*	*	*								
	*	* *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	*	* · · * * * * * * * * * * * * * * * * * *	*	* · · · · * * * * · * * * * · * * * · · * * * · · * * · · ·	* * * * * * * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

Course content and outcomes:

Content	Competencies			
Unit 1: Introduction				
Vehicular AdHoc Networks, Basic Concept of	At the end of the topic student should			
VANET, Taxonomy of Vehicular	be able to:			
Communication Systems, Challenges and	1. Define vehicular adhoc			
Perspectives, Application for VANETs Basic	networks. (C1)			
Principles and Challenges, Past and Ongoing	2. Describe about any four			
VANET Activities	applications of vehicular			
	adhoc networks. (C2)			
	3. Write the classifications of			
	Vehicular Networks. (C3)			
	4. Write an overview of the basic			
	components in VANET. (C3)			
	5. Explain the challenges faced			
	in the implementation of			
	VANET. (C2)			
	6. Write notes on VANET			
	perspectives. (C3)			
	7. Differentiate the IVCs from			
	that of MANETs. (C4)			
Unit 2: Cooperative Vehicular Safety Applicati	ons			

Motivation, Enabling Technologies, Cooperative	1. Discuss the enabling
System Architecture, Mapping for Safety	technologies for Co-operative
Applications, VANET-enabled Active Safety	driving systems. (C2)
Applications.	 Explain the Cooperative
rr	system architecture in
	Cooperative Vehicular safety
	applications. (C2)
	 Illustrate the working of
	Infrastructure-to-Vehicle
	applications in Cooperative
	Vehicular Safety applications
	in VANETs. (C4)
Unit 3: Information Dissemination in VANET	
Obtaining Local Measurements, Information	1. Explain about the basic
Transport, Protocols for information transport,	vehicular network topologies.
Improving network connectivity, Geographical	(C2)
Data Aggregation	2. Explain the working of
	position based routing
	protocols in VANET. (C5)
	3. Explain the working of
	Localization Techniques for
	VANET. (C6)
	4. Illustrate the working of
	VANET protocols for
	information transport in
	Information dissemination.
	(C2)
	5. Write notes on improving
	network connectivity in
	information transport with
	respect to Information
	dissemination in VANETs.
	(C3)
	(C3)

	6. Write notes on Cryptographic
	protection with respect to
	Secure Position based routing.
	(C3)
Unit 4: Vehicular Mobility Modelling for VAN	
Random Models, Flow Models, Traffic Models,	1. Distinguish different aspects of
Behavioural Models, Integration with Network	Vehicular mobility modelling
Simulators, A Design Framework for Realistic	for VANETs. (C2)
Vehicular Mobility Models	2. Illustrate the challenges to
	modelling vehicular motions.
	(C4)
	3. Describe the popular models
	available in Vehicular Mobility
	Modelling. (C6)
Unit 5: Physical Layer Considerations for Veh	icular Communications
Standards Overview, Wireless Propagation	1. Write an overview of the
Theory, Channel Metrics, Highway	DSRC Standard and specific
environments, Urban environments, Rural LOS	parameters of OFDM
environments	architecture. (C3)
	2. Summarize small-scale
	multipath effects. (C6)
	3. Explain the impact on OFDM
	systems. (C2)
Unit 6: MAC Layer and Scalability Aspects of	Vehicular Communication Networks
Introduction: Challenges and Requirements, A	1. Write notes on the DHCP and
Survey on Proposed MAC Approaches for	Address Resolution Protocol
VANETs, Communication Based on IEEE	with respect to IP Address
802.11p, The IEEE 802.11 standard, IEEE	Auto configuration in
802.11p: towards wireless access in vehicular	VANETs. (C5)
environments, Performance Evaluation and	2. Explain in detail the steps
Modeling, Aspects of Congestion Control.	involved in IP passing with the
<i>c,</i> , , , , , , , , , ,	help of a flow chart. (C6)

	3. Illustrate the concept of Pulse
	Relay used in the Priority-
	Ensured Medium Access
	scheme. (C4)
	 Explain the different
	-
	challenges in Emergency
	message dissemination with
	respect to MAC. (C2)
Unit 7: Efficient Application Level Message C	
Introduction to the Application Environment,	1. Describe cooperative vehicular
Message Dispatcher, Example Applications,	safety applications and their
DataSets, Architecture Analysis.	communication requirements.
	(C6)
	2. Discuss the goals of system
	architecture for wireless inter-
	vehicle safety communication.
	(C2)
	3. Illustrate the basic architectural
	concept of the Message
	Dispatcher (MD). (C4)
Unit 8: Data Security in Vehicular Communic	ation Networks
Introduction and Outline, Challenges of Data	1. Describe the attacker's model
Security in Vehicular Networks, Network,	in VANET with respect to
Applications, and Adversarial Model, Security	dimensions. (C5)
Infrastructure, Privacy Protection Mechanisms	2. Identify the challenges of Data
	Security in VANET. (C1)
	3. Compare between Academic
	hacker and Organizational
	hacker. (C4)
	4. Compare between Curious
	hacker and Malicious hacker.
	(C4)
	、 <i>、</i>

	I			
	5.	Distinguish betw	veen IT safety	
		and IT security.	(C2)	
	6.	Describe the Net	twork model,	
		Applications mo	del and	
		Adversarial mod	lel used for	
		Data Security in	VANET. (C6)	
	7.	Explain the secu	rity	
		infrastructure us	ed for Data	
		Security in VAN	IET. (C5)	
Unit 9: Standards and Regulations				
Layered Architecture for VANETs, DS	RC 1.	Discuss about th	e layered	
Regulations, DSRC Physical Layer Standa	ard,	architecture for	VANET. (C2)	
DSRC Data Link Layer Standard (MAC	and 2.	Discuss about th	e DSRC	
LLC), DSRC Middle Layers, DSRC Mess	age	regulations. (C2))	
Sublayer.	3.	Examine the various layers of		
		the DSRC proto	col stack in	
		detail. (C4)		
	4.	Describe the MA	AC and LLC of	
		the DSRC Data	Link Layer.	
		(C6)		
Learning strategies, contact hours and stud	ent learnin	g time		
Learning strategy	Con	etact hours	Student	
			learning time	
			(Hrs)	
Lecture		30	60	
Quiz		02	04	
Small Group Discussion (SGD)		02	02	
Self-directed learning (SDL)		-	04	
Problem Based Learning (PBL)		02	04	
Case Based Learning (CBL)		-	-	
Revision		02	-	
		06	_	
Assessment		00		

Assessment Methods:		I					
Formative:				Su	ımmati	ive:	
Internal practical Test				Se	ssional	examin	nation
Theory Assignments				En	ıd	S	semester
				ex	aminat	ion	
Lab Assignment & Viva				Vi	va		
Mapping of assessment	with Cos						
Nature of assessment	Nature of assessment			CO 3	CO 4	CO 5	CO 6
Sessional Examination 1		*	*	*	*		
Sessional Examination 2				*	*	*	*
Assignment/Presentation	Assignment/Presentation				*	*	*
End Semester Examination	on	*	*	*	*	*	*
Feedback Process	• Enc	l-Semester I	Feedback	1	1		
Reference Material	1. Hannes	Hartenstei	in, Kennet	h P L	abertea	ux, "V	ANET:
	Vehicular Applications and Inter-Networking						working
	Technologies", John Wiley & Sons Ltd, 2010.						
	2. Hassnaa Moustafa, Yan Zhang, "Vehicular Network						etworks
	Techniques, Standards and Applications", Auerba						uerbach
	Publications, 2009.						
	3. IEEE an	d other Tran	saction pap	pers.			

Name of the Pro	gram: Master of Engineering - ME (Automotive Embedded				
	Systems)				
Course Title:	Internet of Things				
Course Code:	IOT 607 Course Instructor:				
Academic Year:	2020 – 2021Semester:First Year, Semester 1				
No of Credits:	Prerequisites: Computer Networks, Programming				
No of Credits:	aspects.				
Synopsis:	This Course provides insight on				
	1. Various elements involved in the development of application				
	for IoT.				
	2. Understanding of protocols across IoT stack				
	3. Scripting languages like shell and python.				
	4. Client Server architecture and Python APIs of Socket				
	programming.				
	5. Database and Python Database connectivity, Python Web				
	Programming, IoT Framework				
Course					
Outcomes	On successful completion of this course, students will be able to				
(COs):					
CO 1:	Describe the developmental aspects of the application in IoT.				
CO 2:	Demonstrate the usage of networking protocols across IoT stack.				
CO 3:	Demonstrate the fundamental concepts in Client Server architecture and				
CO 3:	database implementation and usage with Python API's.				

Mapping of COs to POs											
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*			*						
CO 3	*		*		*						

Course content and outcomes:								
Content	Competencies							
Unit 1: Internet of Things								
IoT Protocols – Logical Design - Enabling	At the end of the topic student should be able to:							
Technologies - Levels – IoT vs M2M –	1. Outline the integration of various							
Design Methodology – Domain Specific	elements of IoT ecosystem. (C2)							
Applications								
Unit 2: Introduction to Python								
Datatypes - Constructs – Packages	1. Employ Datatypes, Constructs, Packages							
	in python programming. (C2)							

Unit 3: Wireless Sensor Networks	
Protocol Standards – Issues – Routing –	1. Describe Protocol Standards, Routing
Applications	Issues in Wireless Sensor Networks. (C2)
Unit 4: Bluetooth	
Introduction – Protocol Stack - RF Classes	1. Explain the aspects of Bluetootl
 Radio Technologies – Service Discovery 	technology. (C2)
- Device Discovery - Profiles - Security	
(Discovering Bluetooth) - Hardware	
Unit 5: Zigbee	
- Frequency - Channels – Topology -	1. Describe Protocol Standards, Routing
Zigbee Protocol Stack - PHY - MAC Layer	Issues in Zigbee. (C2)
- Working – Frame Structure – Beacon –	
Non-Beacon Communication - Zigbee	
PDU – Zigbee Hardware – API Mode and	
AT mode communication.	
Unit 6: Internet Protocol	
Introduction to IPv4 and IPv6 – IPv4	1. Demonstrate the implementation of IPv4
Headers – Ipv6 Headers	and IPv6 protocol in TCP/IP protocol stack
	(C3)
Unit 7: 6LoWPAN - 6LoWPAN archi	tecture
simple, extended and ad-hoc networks.	1. Indicate the 6LoWPAN architecture fo
Issues in determining IPv6 links in LLNs	resource constrained devices. (C2)
and illustration of the undetermined link	
addressing model. IPv6 addressing in	
6LoWPAN.	
Unit 8: Sockets	
Introduction to Sockets – Client Server	1. Outline Client Server Architecture. (C1)
Architecture –Unix Sockets – PORTS –	
Python APIs of Sockets – TCP socket	
programming using Python – UDP – RAW	
packets python programming.	
Unit 9: Databases & Web Programming	
Introduction to Databases – File System	1. Illustrate the socket communication
vs RDBMS – ER Diagram – Python	using python API's for RWA, strean
Database connectivity (CRUD) - Web	and datagram-oriented use cases. (C3
Server Concepts - Python Web	
Programming – IoT Framework.	

Learning strategies, contact hours and student learning time		
Learning strategy	Contract hours	Student learning
	Contact hours	time (Hrs)

Lecture	30	60
Quiz	02	04
Small Group Discussion (SGD)	02	02
Self-directed learning (SDL)	-	04
Problem Based Learning (PBL)	02	04
Case Based Learning (CBL)	-	-
Revision	02	-
Assessment	06	-
TOTAL	44	74

Assessment Methods:		
Formative:	Summative:	
Internal practical Test	Sessional examination	
Theory Assignments	End semester examination	
	Viva	

Mapping of assessment with Cos				
Nature of assessment	CO 1	CO 2	CO 3	
Sessional Examination 1	*	*		
Sessional Examination 2		*	*	
Assignment/Presentation		*	*	
End Semester Examination	*	*	*	

Feedback Process	End-Semester Feedback
1. Reference Material	 Arshdeep Bhaga, Vijay Madishetti, "Internet of things:A hands on Approach", Universities Press, ISBN:978172719547 Robert Faludi, "Building Wireless Sensor Networks", Orielly, 2012 Jean-Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet", Morgan Kaufmann Publishers, 2010, ISBN:0123751659 9780123751652 Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014 Charalampos Doukas, "Building Internet of Things With the Arduino: Volume 1", CreateSpace Independent Publishing Platform, 2012 Todor Cooklev, "Wireless communication standards", IEEE Press Houda Labiod, Hossam Afifi, Costantino De Santis, "Wi-Fi,
	Bluetooth, Zigbee and WiMAX", Springer Publications

Name of the	Program: Master of Engineering - ME (Automotive Embedde Systems)									mbedded	
Course Title	:			Micro	Microcontrollers and its Applications						
Course Code	Cour	se Instru	uctor:								
Academic Ye	ear: 2020	-2021		Seme	ster: F	First Yea	r, Semeste	r 1			
No of Credit	s: 3				-	: Micr Number	oprocesso: systems	r archite	cture , A	ssembly	
Synopsis: Course	 This Course provides insight on 1. This course provides the knowledge of Intel 8051 and ARM Microcontrollers. 2. This course provides the knowledge of Microcontroller architecture, Registers and Instruction sets to write Assembly and Embedded C Programming. 3. This course provides the concept of Interfacing and Programming Sensors and Peripherals to Microcontrollers. 4. This course provides the concept of Designing Embedded Systems using Microcontrollers. 										
Outcomes (COs):	On successful completion of this course, students will be able to										
CO 1:	Emplo	y the k	nowled	ge of M	licrocor	trollers	to build I	Embedde	ed system	ns.	
CO 2:	Explai Embec		oncept	of Pro	grammi	ng Mic	rocontroll	ers usin	ig Assem	bly and	
CO 3:	Design	Embe	dded Sy	ystems	by inter	facing S	ensors an	d Actua	tors.		
Mapping of	COs to	POs									
COs PO I	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11	
CO 1 *	102	105	104	105	100	107	100	107	1010	1011	
CO 2 *	*			*							
CO 3 *		*		*							
Course content and outcomes:											
Content				(Compete	encies					
Unit 1: In	troductio	on to N	/licrop	rocesso	r & Mi	crocon	trollers				
Comparison General – A			• •		Expl Micr		about sor and N		difference atrollers((

	1	
to Motherboard(Desktop) - Introduction	2.	Describe Microcontroller Architecture (C2)
to Embedded Board – Compare and	3.	Explain the Register sets, Programming model
Contrast - Application Types - Single		and Memory map of Microcontroller(C2)
Tasking – Multitasking – Multi-	4.	Describe about Microcontroller Instruction set.
Application		(C2)
	5.	Write the Applications using Microcontrollers.
		(C3)
Unit 2: Introduction to ARM Microco	ontr	ollers
Programming Model – Processor	1.	Describe ARM Microcontroller architecture.
Modes – ARM vs Thumb Introduction		(C2)
to LPCxxxx Microcontrollers -	2.	Describe the architecture of ARM
Features – Detailing of Pins - Memory		Microcontrollers. (C2)
Map Concepts - RAM & ROM -	3.	Apply knowledge of ARM Microcontroller
Interrupts Concepts (Internal &		architecture to rig up Embedded system
External)		circuits(C3)
	4.	Develop a Prototype of Embedded systems
		using ARM Microcontroller(C5, P3)
Unit 3: Reset Circuitry	1	
Crystals - Introduction to GPIO – Registers	1.	Describe Crystal oscillator. (C2)
– Input /Output Configuration – Pull Up and	2.	Describe Pull Up and Pull Down Resistor
Pull Down Resistor Concept – Interfacing		Concept.(C2)
with LED – Interfacing Push Buttons –	3.	Illustrate Interfacing LED, Push Buttons,
LCD – Stepper Motor – DC Motor		LCD, Stepper Motor - DC Motor with
		microcontroller. (C2)
Unit 4: Relays	1	
Types of Relays – Interfacing	1.	Describe Relay and its with interfacing
		external peripherals to Microcontrollers. (C4)
Unit 5: Timer, Counter Introduction	1	
Configuration – Programming	1.	Describe about timers, counters and its usage
		with Microcontrollers(C4)
Unit 6: Serial vs Parallel Bus	1	

Serial vs Parallel Bus - Compare and	1.	Describe ab	out	Seria	l a	nd	Parallel
Contrast – Terminology: Baud Rate – Bit	communication protocols(C2)						
Rate – RS232 – DB9 handshaking							
concepts - Configuring Registers -							
Programming for UART modules.							
Unit 7: Introduction to SPI and I2C I	Pro	otocol					
Detailed Discussion – Bit Banging –	1.	Describe SPI, I	2C st	tandards	s and i	ts In	terfacing
Interfacing with SPI and I2C Devices -		with SPI and	I2C	Device	es –	RTC	ADC
RTC / ADC /DAC.		/DAC.(C3)					
	2.	Explain about l	how	to estab	lish m	ulti c	controller
		communication	ıs	using	co	omm	unication
		protocols (C3)					
Unit 8: Introduction to ADC and DA	C						
Types – Chips - Register Configuration –	1.	Summarize typ	bes of	f ADC,	DAC	and	its usage
Interfacing		with Microcon	trolle	er. (C2)			-
Learning strategies, contact hours and	stu	dent learning t	ime				
Learning strategy		Contact he	ours		Student learning		earning
					t	ime (J	Hrs)
Lecture		30				60)
Quiz		02				04	ł
Small Group Discussion (SGD)		02				02	2
Self-directed learning (SDL)		-				04	ŀ
Problem Based Learning (PBL)		02				04	ŀ
Case Based Learning (CBL)		-				-	
Revision		02				-	
Assessment		06				-	
TOTAL		44				74	l
Assessment Methods:							
Formative:		Sur	nmativ	e:			
Internal practical Test			Ses	sional e	xamir	natior	1
Theory Assignments		End semester examination			ation		
Lab Assignment & Viva			Viv	a			
			L				

Mapping of assessm	ent with Co	8		
Nature of assessment		CO 1	CO 2	CO 3
Sessional Examinatio	n 1	*	*	
Sessional Examinatio	n 2		*	*
Assignment/Presentat	tion	*		*
End Semester Examin	nation	*	*	*
Feedback Process	• Enc	l-Semester I	Feedback	
	Fundamenta ISBN-10: 14 • Andrew S Guide: Desi Kaufmann 1558608740 • David Sea Wesley Prof • Steve Fur Wesley Prof • Douglas V ,ISBN-10 12	Ils and Tech 482229854 Gloss, Domini gning and Op Series in Co), ISBN-10: 1 1, "ARM Arch fessional. ber,"ARM Sy fessional, ISE 7. Hall,"Micro	ic Symes, Chris Wright,"A timizing System Software mputer Architecture and 558608745 hitecture Reference Manua ystem-on-Chip Architectu BN-13: 078-5342675191,I oprocessors and Interfacin SBN-13 9781259006159	al", 2nd Edition, Addison- re",2nd Edition,Addison- SBN-10: 0201675196 ng",Mcgraw Hill Educatin

Name of the	Program: Master of Engineering - ME (Automotive Embedder Systems)								nbedded		
Course Title						Linux and Scripting languages					
					rse Insti		iguages	•			
Academic Year: 2020-2021 Semester: First Year, Semester 1											
No of Credit		20 2021			equisite		, benne				
Synopsis:	The goal of the course is to										
ν I	1. Study of scripting languages such as Bash and Perl in Linux environmen								onment.		
	2. The study of usage of scripting languages in VLSI field.										
	3. To	provide	e the ba	sic kn	owledge	about diff	erent to	ols avai	lable to a	utomate	
	the	task			-						
Course											
Outcomes	On suc	cessful	compl	etion c	of this co	urse, stude	ents wil	l be able	e to		
(COs):											
GO 1	Discover shell script programmatically using different features and debugging								bugging		
CO 1	the code										
CO 2	Apply	Apply SED & AWK commands to do more complex task in easy way									
CO 3	Apply	PERL s	scripts	that cr	eate and	change sc	alar, ar	ray and	hash vari	ables	
Mapping of	COs to l	POs									
<u> </u>	DO 0	DO 3	DO (D O 5	D O (DO 7	DO 0	D O O	DO 10	DO 11	
COs PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	<i>PO</i> 8	PO 9	PO 10	PO 11	
CO 1 *	*	*									
CO 2 *	*		*								
CO 3	*	*	*								
Course cont	ent and	outcon	nes:								
Content					Compete	encies					
Unit 1: I	Essential	S									
Structure of	a Linux	Based	Opera	ting	1. Sum	marize th	e Struc	cture of	a Linux	K Based	
System, Hard	lware, K	ernel,	files &	file	ile Operating System						
system; Proc	esses; ne	tworki	ng; ver	sion	on 2. Discuss Hardware, Kernel (C2)						
control.					3. Expl	ain files	& f	ile sys	tem, Pr	ocesses;	
					3. Explain files & file system, Processes; networking; version control(C2)						

Unit 2: Introduction to Scripting: Shell, Tcl/tk, perl, python

Unit 2: Introduction to Scripting: Sn	en, i ci/tk, peri, python
Getting started with Shell	1. Explain Variables, User defined variables
Programming: Writing shell scripts,	(UDV) (C2)
Variables in shell, User defined	2. Examine the Rules for Naming variable name
variables (UDV), Rules for Naming	(C3)
variable name (Both UDV and System	3. Write basic shell script using echo Command,
Variable), Printing or accessing values	Shell Arithmetic, Quotes, Exit Status, Wild
of UDV (User defined variables), echo	cards, Command Line arguments; Redirection,
Command, Shell Arithmetic, More	Pipes, constructs. (C3)
about Quotes, Exit Status, The read	
Statement, Wild cards (Filename	
Shorthand or meta Characters), More	
commands on one command line,	
Command Line Processing,	
Requirements for Command Line	
arguments, Redirection of Standard	
output/input i.e. Input - Output	
redirection, Pipes, Filter, What is	
Processes, Why Process required, Linux	
Command(s) Related with Process	
Shells (bash) structured Language	
Constructs: Decision making in shell	
script, test command or [expr],	
ifelsefi, Nested ifs, Multilevel	
ifthen-else, Loops in Shell Scripts, for	
loop, Nested for loop, while loop, The	
case Statement, Debugging the shell	
script. Advanced Shell Scripting	
Commands: /dev/null - to send	
unwanted output of program, Local and	
Global Shell variable (export command)	
Conditional execution i.e. && and ,	
I/O Redirection and file descriptors,	

Unit 5: Perl	
determines, Strings, Numbers.	
Array Operators, How a Scalar Operator	
Accessing Hash Array values, Hash	
variables, Literal Representation,	
Key and its value, Defining Array	
Arrays: What is a Hash Array?, Hash	
Representation, Array Operators. Hash	
Defining Array variables, Literal	
Arrays: What is a List or Array? ,	
Representation, Scalar Operators.	
Defining Scalar Variables, Literal	arrays (C3)
Scalar Variables: What is Scalar?,	1. Illustrate scalar variables, arrays, and hash
Unit 4:	
sed command, Writing sed scripts.	
Introduction, Redirecting the output of	
awk, awk miscellaneous, sed - Quick	
Loops in awk, Real life examples in	statement using awk (C4)
Specification Code, if condition in awk,	3. Experiment script using conditional
Use of printf statement, Use of Format	utility (C4)
awk, User Defined, variables in awk,	 Experiment Regular expression using awk
variables of awk, Doing arithmetic with	utility(C3)
Unit 3:Awk utilityGetting Starting with awk, Predefined	1. Illustrate Data manipulation using awk
Command, getopts command.	
all together, trap command, The shift	
Interface using dialog Utility - Putting it	
(inputbox) using dialog utility, User	
(yesno box) using dialog utility, Input	
using dialog utility, Confirmation Box	
utility-Part II, Message Box (msgbox)	
utility-Part I, User Interface and dialog	
Functions, User Interface and dialog	

1. Experiment Perl	program using Perl
constructs (C4)	
es	
1. Illustrate stdin/stdou	t and makefile (C3)
tudent learning time	
Contact hours	Student learning
	time (Hrs)
30	60
02	04
02	
02	02
-	02 04
- 02	
-	04
-	04
- 02 -	04
- 02 - 02 02	04
	es 1. Illustrate stdin/stdou tudent learning time Contact hours 30 02

Assessment Methods	5:						
Formative:			Summative:				
Internal practical Test	,			Sessional examination			
Theory Assignments				End semester examination			
Lab Assignment & Vi	iva			Viva			
Mapping of assessme	ent with Co	S					
Nature of assessment		CO 1	CO 2	CO 3			
Sessional Examinatio	n 1	*	*				
Sessional Examinatio	n 2	*	*				
Assignment/Presentat	ion			*			
End Semester Examin	nation	*	*	*			
Feedback Process	• Mie	d-Semester fo	eedback				
	• Enc	l-Semester F	eedback				
Reference Material	1. "In	troduction to	Linux – A B	Beginner's Guide", Machtelt			
	Gai	rels					
	2. "Ui	nix shell prog	gramming", S	Stephen G. Kochan, Patrick H.			
	Wo	ood					
	3. "Sed & awk ", Dale Dougherty, Arnold Robbins						
	4. "Pr	ogramming I	Perl", Larry V	Wall, Tom Christiansen, Jon			
	Orv	want					

Name of the	e Program: Master of Engineering - ME (Automotive Ember Systems)									nbedded	
Course Titl	e:			Real Time Operating Systems Lab							
Course Cod		02			se Inst		, bystem	Luo			
	Academic Year: 2020-2021 Semester: First Year, Semester 1										
No of Credi	ts: 1				quisites ating Sy		wledge	on C	progra	mming,	
Synopsis:	This C	This Course provides insight on									
	1.										
		 Dustes of operating systems and real operating systems. Understand the concepts of process management, 									
		scheduling, synthetization and dead lock.									
	3.	Learn	thread-	based p	orogram	ming.					
	4.	Learn	the con	cept of	memor	y manag	gement.				
	5.	Learn	the sali	ent feat	tures of	real tim	e operati	ng syster	ms		
Course											
Outcomes	On suc	cessful	compl	etion of	f this co	urse, stu	idents wi	ll be able	e to		
(COs):											
CO 1:	Experi	ment pi	cocess of	creation	, proces	ss hierar	chies and	l multi-tl	hread con	cepts.	
CO 2:		process s scenai		uling al	gorithm	is and pr	cocess syr	nchroniz	ation con	cepts on	
CO 3:	Apply	memor	y mana	gement	t technio	ques on	various s	cenarios	I		
Mapping of	COs to P	Os									
COs PO	PO 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11	
CO 1 *	*	*		*							
CO 2 *	*	*		*							
CO 3 *	*	*		*							
Course cont	ent and or	itcome	s:								
Content				(Compete	encies					

Unit 1:		
Basics of C programming: String	Practice basic C programm	ing concepts (C3)
manipulation, file handling.		
Unit 2:	L	
Process creation, fork, exec, wait, multi	Experiment process creatio	n, process hierarchies
thread concepts.	and multi-thread concepts.	(C4)
Unit 3:	L	
Process scheduling algorithms	Apply process-scheduling a	algorithms on various
	scenarios. (C3)	
Unit 4:		
Process synchronization concepts.	Experiment process synchro	onization concepts
	(C4)	
Unit 5:		
Memory management techniques	Apply memory management	nt techniques on
	various scenarios (C3)	
Learning strategies, contact hours and stu	ident learning time	
Learning strategy	Contact hours	Student learning
		time (Hrs)
Lecture	12	-
Seminar	-	-
Quiz	-	-
Small Group Discussion (SGD)	-	-
Self-directed learning (SDL)	-	-
Problem Based Learning (PBL)	-	-
Case Based Learning (CBL)	03	-
Clinic	-	-
Practical	24	-
Revision	03	-
Assessment	06	-
TOTAL	48	-
Assessment Methods:		
Formative:	Summa	tive:

Continuous practical	Test		Sessional ex	amination			
		End semeste	End semester examination				
Lab Assignment & V	iva		Viva				
Mapping of assessme	nt with Cos						
Nature of assessment		CO 1	CO 2	CO 3			
Sessional Examinatio	n 1	*	*				
Assignment/Presentat	ion			*			
Laboratory Examination	on	*	*	*			
Feedback Process	• Enc	l-Semester Feedback	I				
Reference Material	[1] Text m	ining handbook: adv	anced approaches				
	in analyzin	g unstructured data	Feldman, Ronen and	d James Sanger,			
	978052183	6579, CUP, 2008					
	[2] Linked	Lexical Knowledge	Bases Iryna Gurev	ych, Judith Eckle-			
	Kohler, Michael Matuschek,9781627059749, Morgan & Claypool,						
	2016						
	[3] Introduction to information retrieval Manning, Christopher D.						
	and Prabha	kar Raghavan and H	inrich Schutze, 978	0521865715,			
	Cambridge	University Press,200	08				
	[4] Text m	ining: classification,	clustering and				
	application	s Srivastava, Ashok	and Mehran Saham	ii (eds.).,			
	978142005	9403, Chapman & H	all,2009				
	[5] Weiss,	S. M., Indurkhya, N.	., Zhang, T. (2010).	Fundamentals of			
	Predictive	Text					
	[6] Mining	g. Springer: New Yor	k. ISBN: 978-1849	962254			
	[7] Pustejo	ovsky, J. and Stubbs,	A. (2012). Natural	Language			
	Annotation	for Machine					
	[8] Learni	ng. O'Reilly.					
	[9] Founda	ations and Trends in I	Information Retriev	al, 2(1-2): 1–135.			
	Available of	online at:					
	http://www	.cs.cornell.edu/home	e/llee/opinion-minin	g-sentiment-			
	analysis-su	rvey.html.					

[10] Manning, C. D., Raghavan, P., and Schutze, H. (2008).
Introduction to Information Retrieval, Chapters 6 and 13-18,
Cambridge University Press. Available online at:
http://nlp.stanford.edu/IR-book/
[11] Articles: https://www.healthcatalyst.com

Name of the	Program	:		Maste Syste		Ingineeri	ng - MI	E (Autor	notive E	mbedded	
Course Title	ourse Title:				Embedded Systems Lab						
Course Cod)5L			se Instr						
Academic Y	ear: 2020	- 2021		Seme	ster: I	First Yea	r, Semeste	er 2			
No of Credi	s: 1			Micro	Prerequisites:Microprocessorarchitecture,MicrocontrollerArchitecture,AssemblylanguageandNumber systems						
Synopsis:	This C	ourse p	rovides	s insigh	t on						
	1.	This c	ourse j	provide	s the k	nowledg	ge of AR	M Corte	ex M3 P	rocessor	
	arc	hitectu	re.								
	2.	This c	ourse p	rovides	the kno	owledge	of Micro	controlle	er based o	on ARM	
	Pro	ocessor	archite	ecture	and its	Registe	ers and 1	Instruction	on sets 1	o write	
	As	sembly	and Er	nbedde	d C Pro	grammi	ng.				
	3.	This c	course	provide	es the c	concept	of Interf	facing a	nd Progr	amming	
	Sei	nsors ar	nd Perij	pherals	to Micr	ocontro	llers.				
	4.	his co	urse pi	ovides	the con	ncept of	f Real tir	ne opera	ating sys	tems on	
	Mi	crocont	rollers.								
Course											
Outcomes	On suc	cessful	compl	etion of	f this co	urse, stı	idents wi	ll be able	e to		
(COs):											
CO 1:	Illustra	te the f	eatures	of emb	bedded s	systems,	architect	ure of A	RM7, Ins	truction	
001	set and	l develo	pment	tools of	f ARM.						
CO 2.	Experi	ment th	e arcl	hitectur	al feat	ures o	f LPC1	3/17XX	microcor	trollers,	
CO 2:	interfa	cing pe	riphera	l device	es to LP	C2148.					
CO 3:	Design	a Real	time I	Embedd	led Syst	ems by	interfacio	ng Senso	ors and A	ctuators	
	and po	rting R	eal tim	e opera	ting sys	tems.					
Mapping of	f COs to]	POs									
COs PO	1 PO 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	<i>PO</i> 8	PO 9	PO 10	PO 11	
CO 1 *	*	*		*							
CO 2 *	*			*							
CO 3 *	*	* * *									
Course content and outcomes:											

Content	Competencies				
Unit 1: Introduction to LPC13/17xx	Microcontroller				
Introduction to LPC13/17xx	At the end of the topic student	t should be able to:			
Microcontroller - Hardware, SW.	1. Summarise LPC13/17	XX			
	Microcontroller architectu	re and development			
	tools of ARM. (C2)				
Unit 2: Interfacing LPC13/17xx Micr	ocontroller				
Interfacing With LED, LCD Seven	Experiment interfacing LPC1	3/17xx			
Segment Display, UART, HEX	Microcontroller with I/O devi	ces. (C2)			
Keypad.					
Unit 3:					
Introduction to Free	1. Summarise FreeRTOS	architecture. (C2)			
RTOS, FreeRTOS API Calls, Task	2. Practise different API call in FreeRTOS.				
Creation, Queques, semaphore, mutex,	(C2)				
RTOS application development.	3. Design a Real time Embedded system by				
	writing applications on	top of Real time			
	operating systems (C5)				
Learning strategies, contact hours and	student learning time				
Learning strategy	Contact hours	Student learning			
		time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	24	-			
Revision	03	-			
Assessment	06	-			

TOTAL			48		-	
Assessment Methods	S:					
Formative:				Summati	ive:	
Internal practical Test	,			Sessional	examination	
Theory Assignments				End seme	ester examination	
Lab Assignment & Vi	iva			Viva		
Mapping of assessme	ent with Co	S				
Nature of assessment		CO 1	CO 2		CO 3	
Sessional Examinatio	n 1	*	*		*	
Assignment			*		*	
Laboratory Examinati	on	*	*		*	
Feedback Process	• Enc	l-Semester I	Feedback	l		
Reference Material	1. Joseph	n Yiu, "The	e definitive gu	ide to the	e ARM Cortex-M3",	
	Elsevier, 2	nd Edition, 2	2010.			
	2. Frank	Vahid, Tor	ny Givargis, '	'Embedded	d System Design: A	
	Unified Ha	rdware/Soft	ware Introducti	on", Wiley	/ India, ISBN:81-265-	
	0837-X, 2007.					
	3. Richard Barry, "NXP Semiconductors, LPC13xx/17xx User					
	Manual", 2012.					
	4. NXP Se	4. NXP Semiconductors, "LPCzone Examples", 2012.				
	5. "FreeR"	TOS Referen	nce Manual", R	eal Time E	Engineers Ltd., 2016.	

0				edded	f Engine Systems))		(Autor	notive	
Course Title:				Sensors and Transducers Lab						
Course Code: AE					structor:					
Academic Year:	2020-2021				First Y					
No of Credits: 1			Basi	-	ites: Basio f Data ng			and	Signal	
Synopsis:	This cou	rse provid	les the l	cnowle	edge of v	ariety o	f availa	ble sens	ors.	
	1. Base	d on need	design	ing an	embedde	ed syste	ms usin	g senso	s	
	2. This	course p	rovides	insigh	nt into the	e sensoi	rs used	in autor	nobile	
	indu	stry & the	ir work	ing.						
	3. Prov	ides insig	ht into t	he act	uators use	ed in au	tomotiv	ve indus	try.	
Course										
Outcomes	On succe	essful con	npletion	of thi	is course,	student	s will b	e able to):	
(COs):										
CO 1:	Discuss	the worki	ng of di	fferen	t types of	sensor	s availa	ble		
CO 2:	Design a	a Data A	cquisiti	on Sy	stem for	a spec	ific app	olication	using	
02.	sensors									
CO 3:	Describe	the sense	ors used	in Au	itomotive	Applic	ations			
CO 4:	Demons	trate the v	working	g of se	ensors in a	automo	tive app	olication	using	
04.	simulation	on as well	as buil	ding h	ardware u	using bi	eadboa	rd		
Mapping of COs	to POs									
			-							
COs PO 1	PO 2 PO	3 PO 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11	
CO 1 *	*								*	
CO 2	* *	:	*				*		*	
CO 3 *									*	
CO 4	*		*	*	*	*			*	
Course content and outcomes:										
Content				(Competer	icies				
Block I										
					At the end be able to		course	student	should	

$Sensors/\ Transducers-Principles-Classification$	1. Demonstrate the working of below
- Parameters - Environmental Parameters -	sensors in Proteus Simulation
Characterization	Software using Arduino / ARM
	microcontroller (C4):
Mechanical and Electromechanical Sensors:	• Humidity sensor
Resistive Potentiometer - Strain Gauge -	• Light sensor
Inductive Sensors - Capacitive Sensors - Force/	• Temperature sensor
Stress Sensors using Quartz Resonators -	Load Cell
Ultrasonic Sensors	• RTD
	• Flex sensor
Thermal Sensors:	Force Sensitive Resistor
Gas Thermometric Sensors – Thermal Expansion	• Motion Sensor / Passive Infrared
Type Thermometric Sensors – Acoustic	Sensor
Thermometric Sensors - Dielectric Constant and	• Hall effect sensor
Refractive Index Thermo sensors - Helium Low	
Temperature Thermometer – Magnetic	
Thermometer – Resistance Change Type	
Thermometric Sensors - Thermoemf - Sensors -	
Junction Semiconductor Types - Thermal	
Radiation Sensors – Quartz Crystal	
Thermoelectric Sensors - NQR Thermometry -	
Spectroscopic Thermometry – Noise	
Thermometry – Heat Flux Sensors	
Block II	1
Magnetic Sensors:	1. Design & Demonstrate sensor
Sensors and the Principles Behind -	project in automobile with suitable
Magnetoresistive Sensors - Hall Effect and	sensors to measure below
Sensors – Inductive and Eddy Current Sensors –	parameters using Arduino / ARM
Angular/ Rotary Movement Sensors - Eddy	microcontroller (C5)
Current Sensors - Electromagnetic Flowmeter -	• Distance of the obstacle
Switching Magnetic Sensors – SQUID Sensors	Engine Temperature
Electroanalytical Sensors:	• Accelerator
	• Human movement near the car

Electrochemical Cell – Cell Potential – Standard • Speed measurement				
Hydrogen Electrode – Liquid Junction and other				
potentials – Polarization – Reference Electrodes –				
Sensor Electrodes – Electroceramics in G	fas			
Media - ChemFET				
Block III	I			
Applications of Sensors:	1. Demonstra	te the wo	orking of the	
On-board Automobile Sensors – Flow-ra	ate sensor a	pplication	in automobile	
Sensors – Pressure Sensors – Temperatu	ure using Sin	nulation Sc	oftware as well	
Sensors – Oxygen Sensors – Torque and Positi	on as in ha	rdware usi	ng breadboard	
Sensors.	(C4).			
Learning strategies, contact hours and stude	ent learning time			
Learning strategy	Contact he	ours	Student	
			learning time	
			(Hrs)	
Lecture	12	-		
Seminar	-		-	
Quiz	_		-	
Small Group Discussion (SGD)	_		-	
Self-directed learning (SDL)	_		-	
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03		-	
Clinic	-		-	
Practical	24		-	
Revision	03		-	
Assessment	06		-	
TOTAL	48 -			
Assessment Methods:				
Formative: Summative:				
Internal practical Test		Sessional	examination	
Theory Assignments		End	semester	
		examinati	on	

Lab Assignment & Viva				Viva		
Mapping of assessment	with Cos					
Nature of assessment		CO 1	CO 2	CO 3	CO 4	
Sessional Examination 1		*	*			
Sessional Examination 2				*	*	
Assignment/Presentation			*	*		
Laboratory examination			*		*	
Feedback Process	• Enc	d-Semester I	Feedback	II		
Reference Material	 End-Semester Feedback 1. D Patranabis "Sensors and Transducers", Second Edition PHI, 2004 2. John G. Webster. Editor-in-chief. "Measuremen Instrumentation, and Sensors Handbook", CRC Press. 1999. 0 8493-2145-X. 3. Pawlak Andrzej M, "Sensors and actuators in Mechatronics" 2007 4. PDF files online available at www.engnetbase.com 5. "Automotive Hand Book", Robert Bosch, Bently Publishers 2007. 6. John G. Webster, "Modern instrumentation applications an design", 2004 					

Name	of the	Program	n:				ngineer	ing - ME	E (Auton	notive Er	nbedded
						ems)					
Course	e Title	:			Vehi	cular A	dhoc Ne	etworks L	.ab		
Course	e Code	AES	602L		Cour	se Inst	ructor:				
Acade	mic Ye	ear: 202	20-2021	l	Seme	ester:	First Y	ear, Seme	ester 1		
No of	Credit	s: 1			Prer	equisite	es: Basi	c of Com	puter Co	ommunica	tion and
					Netw						
Synop	sis:	This C	ourse p	rovides	s insigh	t on					
		1.	Basics	of Adl	noc net	working	g and un	derstandi	ing of va	rious pro	tocols
			of veh	icular a	idhoc n	etworks	(VANI	ETs).			
		2.	Learn	the Ro	uting al	gorithm	ns to rou	te the dat	ta packet	ts in VAN	JETs.
		3.	Learn	how to	perform	n Mobi	lity Mo	delling in	VANE	Гs.	
		4.	Learn	abou	t the	conne	ection	establish	ment a	and info	ormation
			dissem	inatior	n in a ve	ehicular	networ	k.			
Course	e										
Outco	mes	On suc	cessful	compl	etion of	f this co	urse sti	udents wi	ill be abl	e to	
(COs):		on suc	00551UI	compi			uise, su			• • • •	
CO 1:			nstrate r lar netv	-	algoritl	hms and	l inform	ation diss	seminatio	on mecha	nisms in
CO 2:		Analys networ		erform	ance of	f the pr	otocols	for vario	ous topo	logy of v	ehicular
CO 3:		Design through		-	e the e	fficienc	y of di	fferent v	ehicular	network	models
Mappi	ing of (COs to]	POs								
COs	PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	PO 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11
	*	<i>PO2</i>	*	<i>PO</i> 4 *	*	100	<i>FU</i> /	108	<i>PO9</i>	*	FUIT
CO 1 CO 2	*		*	*	*					*	
	*										
CO 3	<u>ጥ</u>										
Course	Course content and outcomes:										
Conten	ıt				(Compet	encies				
Unit 1	: Ins	tallatior	n and u	sage of	f SUM	O tool					
0											

Installation of Simulation of Urban	At the end of the topic studer	nt should be able to:		
MO bility (SUMO) tool, configuring	1. Demonstrate the usage of SUMO tool			
path variables, Node and Edge creation	(C3)			
Unit 2: Network Building				
Network generation, importing	2. Practice creation and	modification of		
networks with Netconvert, importing	network files (C3)			
non-SUMO networks, importing				
SUMO networks, creating and				
modifying networks,.				
Unit 3: Demand Modelling and Simu	lation			
Introduction to demand modelling,	3. Practice simulation of	f public transport.		
definition of vehicles, vehicle types and	(C3)			
routes, Simulation of Public transport,	4. Practice routing in the	e simulation. (C3)		
shortest or optimal path routing.	5. Experiment various VANET Scenarios.			
Generation of route file, generation of	(C4)			
additional files, generation of				
configuration file, running a sample				
scenario,				
Learning strategies, contact hours and	student learning time			
Learning strategy	Contact hours	Student learning		
		time (Hrs)		
Lecture	12	-		
Seminar	-	-		
Quiz	-	-		
Small Group Discussion (SGD)	-	-		
Self-directed learning (SDL)	-	-		
Problem Based Learning (PBL)	-	-		
Case Based Learning (CBL)	03	-		
Clinic	-	-		
Practical	24	-		
Revision	03	-		
Assessment	06	-		

Assessment Methods:					
Formative:				Summat	ive:
Internal practical Test				Sessional	examination
Theory Assignments				End seme	ester examination
Lab Assignment & Viva	l			Viva	
Mapping of assessmen	t with Co	DS			
Nature of assessment		CO 1	CO 2		CO 3
Sessional Examination	l	*	*		
Sessional Examination 2	2		*		*
Assignment/Presentation	1	*	*		*
End Semester Examinat	ion				
Laboratory examination		*	*		*
Feedback Process •	En	d-Semester Fee	dback		
Reference Material	1. htt	ps://www.eclips	se.org/sumo/	/	
	2. htt	ps://sumo.dlr.de	e/docs/index	.html	
	3. https://www.tetcos.com/downloads/v12/VANETs.pdf				
	4. htt	ps://www.opens	streetmap.or	g/	
	5. htt	p://www.nsnam	n.org/		

Name of the Pro	gram:	Master of Engineering - ME (Automotive				
		Embedded Systems)				
Course Title:		Internet of Things Lab				
Course Code:	IOT 607L	Course Instructor:				
Academic Year:	2020 - 2021	Semester: First Year, Semester 1				
No of Credits:	1	Prerequisites: Computer Networks, Programming				
No of creats.	L	aspects.				
Synopsis:	This Course provides i	nsight on				
	1. Various eleme	nts involved in the development of application for				
	IoT.					
	2. Understanding	g of protocols across IoT stack.				
	3. Scripting langu	lages like shell and python.				
	4. Client Server	r architecture and Python APIs of Socket				
	programming.					
	1. Database	and Python Database connectivity, Python Web				
	Programm	ing, IoT Framework.				
Course						
Outcomes	On successful comple	tion of this course, students will be able to				
(COs):						
CO 1:	Explain basic principles of Python programming language. (C2)					
CO 2:	Demonstrate the usage	ge of networking protocols across IoT stack using				
	Raspberry Pi and Clou	id. (C3)				
CO 3:	Demonstrate the fun	damental concepts in Client Server architecture,				
CO 3.	database implementa	tion and web programming with Python API's. (C3)				

Mappi	Mapping of COs to POs										
COs	PO 1	PO 2	PO 3	<i>PO</i> 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11
CO 1	*										
CO 2	*	*		*	*						
CO 3	*		*		*						

Course content and outcomes:						
Content Competencies						
Unit 1: Python						
Introduction to Python datatypes,	At the end of the topic student should be able	e to:				
constructors, functions, Python Class	s,					
Modules, exception Handling, Pythe	on Employ Datatypes, Constructs, Packages	in				
Packages	python programming. (C2)					
Unit 2: Raspberry PI IoT Board						

Introduction to PDI Pacabora, Di	Domonstrate the usage of PDI in IoT Application			
Introduction to RPI, Raspberry Pi -	Demonstrate the usage of RPI in IoT Application			
Installation, first boot configuration,	Scenario. (C3)			
Raspberry Pi - Sensor Interfacing,				
Sending data to Cloud.				
Unit 3: Things Board Cloud				
Installation of things board Platform,	Illustrate the usage of things board Platform. (C4)			
Device, assets & dashboard Creation,				
population of data.				
Unit 4: Socket Programming				
Unix Socket Programming - Client	Illustrate the socket communication using python			
Server Architecture, Python Socket	API's for RWA, stream and datagram-oriented use			
Programming - Client Server	cases. (C3)			
Architecture, RAW packets python				
programming				
Unit 5: Databases				
Python Database connectivity (CRUD) -	Demonstrate the usage of databases, web			
Web Server Concepts - Python Web	programming using Python API . (C3)			
Programming – IoT Framework.				

Learning strategies, contact hours and student learning time						
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	12	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	-	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	03	-				
Clinic	-	-				
Practical	24	-				
Revision	03	-				
Assessment	06	-				
TOTAL	48	-				

Assessment Methods:						
Formative:	Summative:					
Internal practical Test	Sessional examination					
Theory Assignments	End semester examination					
Lab Assignment & Viva	Viva					

Mapping of assessment with Cos								
Nature of assessment	CO 1	CO 2	CO 3					
Sessional Examination 1	*	*	*					
Assignment/Presentation		*	*					
Lab Semester Examination	*	*	*					

Feedback Process	End-Semester Feedback
Reference Material	 Arshdeep Bhaga, Vijay Madishetti, "Internet of things:A hands on Approach", Universities Press, ISBN:978172719547 Robert Faludi, "Building Wireless Sensor Networks", Orielly, 2012 Jean-Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The Next Internet", Morgan Kaufmann Publishers, 2010, ISBN:0123751659 9780123751652 Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014 Charalampos Doukas, "Building Internet of Things With the Arduino: Volume 1", CreateSpace Independent Publishing Platform, 2012 Todor Cooklev, "Wireless communication standards", IEEE Press Houda Labiod, Hossam Afifi, Costantino De Santis, "Wi-Fi, Bluetooth, Zigbee and WiMAX", Springer Publications Madhushree Ganguli, "Getting started with Bluetooth", Premier Press, 2002, ISBN 1931841837, 9781931841832.

Name of the	Program	:			Master of Engineering - ME (Automotive Embedded							
				•	Systems)							
Course Title					Microcontroller and its Applications Lab							
Course Code					se Instr							
Academic Yo		-2021		_			r, Semeste					
No of Credit	s: 1				e quisites age and	: Mic Number	croprocess systems	or archite	ecture , A	ssembly		
Synopsis:	This C	ourse p	rovides	s insigh	t on							
Course												
Outcomes	On suc	cessful	compl	etion of	f this co	urse, stu	idents wil	ll be able	e to			
(COs):												
CO 1:	Emplo	y the ki	nowled	ge of M	licrocor	ntrollers	to build l	Embedd	ed system	IS.		
CO 2:	Explai	n the c	oncept	of Pro	grammi	ng Mic	rocontrol	lers usin	ig Assem	bly and		
	Embed	lded C.										
CO 3:	Design	Embe	ided Sy	ystems	by inter	facing S	lensors ar	nd Actua	tors.			
Mapping of	COs to	POs										
COs PO I	PO 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	PO 9	PO 10	PO 11		
CO 1 *		*		*								
CO 2 *	*			*								
CO 3 *	*	*		*								
Course cont	tent and	outcon	nes:									
Content					Competencies							
	roduction				& Micro	controlle	ers					
Comparison -		• 1		eral –	1 – 1. List different IDE's to program							
	PLD –	Introdu		to	Microcontrollers (CI)							
Motherboard					2. Design a Environment with tools required to							
	Embedded Board – Compare and Contrast -					ouild Em	bedded sy	stems usi	ng			
~ ~	Application Types – Single Tasking – Multitasking – Multi-Application					Microcontrollers (C3)						
Unit 2: Int	roduction	to ARM	A Micr	ocontro	llers							

Programming Model–ProcessorModes–ARM vs Thumb Introductionto LPCxxxx Microcontrollers–FeaturesDetailing of Pins-Memory Map Concepts–RAM & ROM-Interrupts Concepts(Internal & External)-Unit 3:Reset Circuitry	 Demonstrate ARM Processor architecture specification using LPC 2148 Microcontroller Board (C3) Demonstrate a peripherals of ARM Microcontroller using LPC 2148 Microcontroller Board (C3)
Crystals - Introduction to GPIO – Registers – Input /Output Configuration – Pull Up and Pull Down Resistor Concept – Interfacing with LED – Interfacing Push Buttons – LCD – Stepper Motor – DC Motor	 Design an Digital notice board using LPC 2148 Microcontroller board to understand Peripherals on board (C3) Design an Automated Fan / AC / Temperature control system using on chip sensors and peripherals of LPC 2148 Microcontroller board (C3)
Unit 4: Relays	
Types of Relays – Interfacing	 Demonstrate working of Relay by controlling High voltage devices like DC Motor interfacing to ARM Microcontroller (C4)
Unit 5: Timer, Counter Introduction	
Configuration – Programming	 Design a Digital clock using ARM Microcontroller using on chip Timer and Counter (C3)
Unit 6: Serial vs Parallel Bus	
Serial vs Parallel Bus - Compare and Contrast – Terminology: Baud Rate – Bit Rate – RS232 – DB9 handshaking concepts - Configuring Registers – Programming for UART modules.	 Design a Master and Slave architecture using Microcontrollers and establish communication using on chip serial UART (c4)
Unit 7: Introduction to SPI and I2C Prot	ocol

	v 1 v d				
Theory Assignments Lab Assignment & Viva	Viva	End semester examination			
Internal practical Test		Sessional examination			
Formative:	Summa				
Assessment Methods:					
TOTAL	48	-			
Assessment	06	-			
Revision	03	-			
Practical	24	-			
Clinic	-	-			
Case Based Learning (CBL)	03	-			
Problem Based Learning (PBL)	-	-			
Self-directed learning (SDL)	-	-			
Small Group Discussion (SGD)	-	-			
Quiz	-	-			
Seminar	-	-			
Lecture	12	-			
Learning strategy	Contact nours	time (Hrs)			
Learning strategies, contact hours and s Learning strategy	Contact hours	Student learning			
Laarning stratagies, contact hours and	· · ·				
Interfacing	1. Design a Data Acquisition system ARM Microcontroller (C4)				
Types – Chips - Register Configuration –	1. Design a Data Acquisi	tion system ARM			
Unit 8: Introduction to ADC and DAC					
	Master and Slave Arcl	nitecture using SPI (c4)			
	Microcontroller and m	-			
	-	-			
RTC / ADC /DAC.	I2C (c4)2. Design a Serial wired communication among				
Interfacing with SPI and I2C Devices -	multiple Microcontrol	lers and sensors using			
Detailed Discussion – Bit Banging –	1. Design a Serial wired communication amor				

Mapping of assessm	ent with Co	S		
Nature of assessment		CO 1	CO 2	CO 3
Sessional Examination	n 1	*	*	
Sessional Examination	on 2		*	*
Assignment/Presentat	tion	*	*	
Laboratory Examinat	ion	*	*	*
Feedback Process	• End	d-Semester I	Feedback	
Reference Material	Fundament 148222985 • Andrey Developer' Software'', Architectur 155860874 • David S Addison-W • Architectur 078-53426 • Interfacing 13 97812	tals and 51, ISBN-10 w Sloss, D 's Guide: 1st Edition, re and De 45 eal, "ARM Vesley Profe Steve re",2nd Edit 75191,ISBN Dougl	Techniques",2nd Edi : 1482229854 ominic Symes, Chri Designing and The Morgan Kaufman sign, ISBN-13: 978-2 Architecture Reference essional. Purber,"ARM ion,Addison-Wesley I V-10: 0201675196 as V. Ha Hill Educatin ,ISBN-10 012.	Assembly Language: tion, ISBN-13: 978- s Wright,"ARM System Optimizing System n Series in Computer 1558608740, ISBN-10: e Manual", 2nd Edition, System-on-Chip Professional, ISBN-13: 11,"Microprocessors and 1259006158,ISBN-

Name	8					Master of Engineering - ME (Automotive Embedded Systems)						
Course	e Title:				•	Linux and Scripting languages Lab						
Course	e Code	: CSE-	620L		Cour	se Inst	ructor:					
Acade	mic Ye	ar: 202	20-2021	l	Seme	ester:						
No of	Credite	s: 1			Prer	equisite	s: Probl	em solvir	ng, basic	program	ming	
Synops	Synopsis: This Course provides				insigh	t on						
 Study of scripti environment. The study of usage 						-	-		ash and	l Perl ir	ı Linux	
Course	e			<u> </u>	0	I	0 0					
Outco	mes	On suc	cessful	compl	etion of	f this co	urse. stu	idents wil	l be able	e to		
(COs):				· · ·			,					
(008)												
CO 1:		Experi debugg			cript p	ript programmatically using different features and						
CO 2:		Operat	e SED	& AW	K comr	commands to do more complex task in easy way						
CO 3: Experiment PERL scr variables					scripts	cripts that create and change scalar, array and hash						
Mappi	ng of (COs to 1	POs									
<i>a</i> .	DO 1	D O O	D O 0	D O (D G F	DOG	D 0 T	D 0 0	D.C.C	DO 10	DO 11	
COs	PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	<i>PO</i> 9	PO 10	PO 11	
CO 1	*											
CO 2			*									
CO 3	*				*							
Course	Course content and outcomes:											
Conten	nt 🗌				(Compete	encies					
Unit 1	:											
Essentials						 Understand the basic concepts of shell, kernel, operating system (C2). Able to create user account (c3) 						

Unit 2:					
Introduction to Scripting: Shell, Tcl/tk, perl, python	 Able to write shell script and debug the script (C3) Understand the importance of shell script in real wold. (C2) 				
Unit 3:					
Awk utility	1. Generate report using aw	k script (C3)			
Unit 4:					
Sed & Make	 Perform file handling function using sed script (C4) Appraise the importance of MAKE file (C3) 				
Unit 5:					
Perl	 Create pattern matching , report generation and perform file handling function using Perl Script (C3) 				
Learning strategies, contact hours and	student learning time				
Learning strategy	Contact hours	Student learning time (Hrs)			
Lecture	12	-			
Seminar	-	-			
Quiz	-	-			
Small Group Discussion (SGD)	-	-			
Self-directed learning (SDL)	-	-			
Problem Based Learning (PBL)	-	-			
Case Based Learning (CBL)	03	-			
Clinic	-	-			
Practical	36	-			
Revision	-	-			

Assessment		06		-				
TOTAL			48		-			
Assessment Methods	5:							
Formative:	Formative:				ve:			
Internal practical Test				Sessional	examination			
Theory Assignments				End semester examination				
Lab Assignment & Viva				Viva				
Mapping of assessme	ent with Co	s						
Nature of assessment		CO 1	CO 2		CO 3			
Sessional Examinatio	Sessional Examination 1							
Sessional Examination 2			*		*			
Assignment/Presentation *			*					
Laboratory examination *			*		*			
Feedback Process End-Semester Feedback								
Reference Material	5. "Introduction to Linux – A Beginner's Guide", Machtelt							
		Garrels						
	6. "Unix shell programming", Stephen G. Kochan, Patrick H.							
	Wood							
		7. "Sed & awk ",Dale Dougherty, Arnold Robbins						
		"Programming Perl", Larry Wall, Tom Christiansen, Jon						
		Orwant						

Name of the Program:					Master of Engineering - ME (Automotive Embedded						
Course Title:			-	Systems)							
Course Code: AES 695						Mini Project - 1 Course Instructor:					
Academic Year: 2020 - 2021						First Year, S	Semester	r 1			
No of Credits: 4					requisites				iguage an	d circuit	
110 01 CICUID. 4				basi	-	· · · · · · · · · · · · · · · · · · ·	51 0 B 1 M 11		-8~~8°		
Synop	sis:	Students are expected to select a problem in the area of their interest and the								and the	
		area of	their sp	pecializ	ation	that wou	ld require	an impl	ementat	ion in ha	rdware /
		softwa	re or bo	oth in a	seme	ster					
Course	e										
Outco	mes	On suc	cessful	compl	etion	of this co	urse, stude	ents wil	l be able	e to	
(COs):	:										
СО	1.	Apply	the obj	ectives	of the	e project	work and	provide	an adeq	uate bacl	kground
	1.	with a	detaile	d literat	ure su	urvey					
СО	2.	Breakd	lown th	e proje	ct into	o sub bloc	cks with su	ifficient	details	to allow t	he work
	2:	to be re	eproduc	ed by a	an ind	ependent	researche	r			
		Compo	ose hard	lware/s	oftwa	re design	, algorithr	ns, flow	vchart, n	nethodolo	ogy, and
CO	3:	block diagram									
CO	4:	Evalua	te the r	esults							
CO	5:	Summa	arize th	e work	carrie	ed out					
Маррі	ng of (COs to]	POs								
COs	PO 1	PO 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	5 PO 6	<i>PO</i> 7	PO 8	<i>PO</i> 9	PO 10	PO 11
CO 1				*							
CO 2					*			*			
CO 3							*			*	
CO 4						*					*
CO5:							*				
Course content and outcomes:											
Content Competencies											
Phase 1											
Problem identification, synopsis At the end of the topic student should be able to:											
submis	submission, status submission, mid 1. Identify the problem/specification (C1)										
evaluat	evaluation. 2. Discuss the project (C2)										

	3. Prepare the outline (C	(3)				
	-					
	 Describe the status of the project (C2) Describe a mid term project presentation report 					
	 Prepare a mid-term project presentation report (C3) 					
		ant midtama musicat				
	6. Prepare and pres	1 0				
	presentation slides (C3, C5)7. Develop project implementation in					
		ware or both in chosen platform				
	(C5)					
Phase 2						
Status submission, final evaluation.	1. Prepare the progress r	report (C3)				
	2. Prepare the final pro	oject presentation report				
	(C3)					
	3. Prepare and present t	final project presentation				
	slides (C3, C5)					
	4. Modify and Develop implementation					
	hardware/software or	both in chosen platform				
	(C3, C5)					
	5. Justify the methods used and obtained results					
	(C6)					
Learning strategies, contact hours and	l student learning time					
Learning strategy	Contact hours	Student learning				
		time (Hrs)				
Lecture	-	-				
Seminar	-	-				
Quiz	-	-				
Small Group Discussion (SGD)	48	-				
Self-directed learning (SDL)	-	-				
Problem Based Learning (PBL)	-	-				
Case Based Learning (CBL)	-	-				
Clinic	-	-				
Practical	-	-				
Revision	-	-				

Assessment		03		-		
TOTAL		51		09		
Assessment Methods:		·				
Formative:	Summative:					
Project Problem Selection	Mid-Term Presentation					
Synopsys review		Second status review				
First status review		Demo & Final Presentation				
Mapping of assessment with	n Cos			I		
Nature of assessment	CO 1	CO 2	CO 3	CO 4	CO 5	
Mid Presentation	*	*				
Presentation	*	*	*	*	*	
Feedback Process	Feedback Process End-Semester Feedback					
Reference Material Partice	I Particular to the chosen project					

Course Title: Seminar - 1 Course Code: AES 697 Course Instructor: Academic Year: 2020 - 2021 Semester: First Year, Semester I No of Credits: I Prerequisites: Communication Skill Synopsis: 1. To select, search and learn technical literature. 2. 2. To Identify a current and relevant research topic. 3. To prepare a topic and deliver a presentation. 4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course On successful completion of this course, students will be able to Oscillation and explaining topics under discussion. CO 1: Show competence in identifying relevant information, defining and explaining topics under discussion. Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs	Name of the Program:Master of Engineering - ME (Automotive EmbedoSystems)										mbedded						
Course Code: AES 697 Course Instructor: Academic Year: 2020 - 2021 Semester: First Year, Semester 1 No of Credits: 1 Prerequisites: Communication Skill Synopsis: 1. To select, search and learn technical literature. 2. To Identify a current and relevant research topic. 3. To prepare a topic and deliver a presentation. 4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course On successful completion of this course, students will be able to (COS): Show competence in identifying relevant information, defining and explaining topics under discussion. CO 1: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. Co 5: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.																	
No of Credits: 1 Prerequisites: Communication Skill Synopsis: 1. To select, search and learn technical literature. 2. To Identify a current and relevant research topic. 3. To prepare a topic and deliver a presentation. 4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course On successful completion of this course, students will be able to (COS): Show competence in identifying relevant information, defining and explaining topics under discussion. CO 1: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs Image: PO 1 PO																	
Synopsis: 1. To select, search and learn technical literature. 2. To Identify a current and relevant research topic. 3. To prepare a topic and deliver a presentation. 4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course Outcomes On successful completion of this course, students will be able to (COS): CO 1: Show competence in identifying relevant information, defining and explaining topics under discussion. CO 2: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs CO 3 * Develop PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 CO 3 * Quade and reflect on information. Mapping of Cos to POs Quade and reflect on information. <th colspan="6">Academic Year: 2020 - 2021</th> <th colspan="11">Semester: First Year, Semester 1</th>	Academic Year: 2020 - 2021						Semester: First Year, Semester 1										
2. To Identify a current and relevant research topic. 3. To prepare a topic and deliver a presentation. 4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course Outcomes On successful completion of this course, students will be able to (COS): Co 1: Show competence in identifying relevant information, defining and explaining topics under discussion. CO 2: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs CO 1 * * * CO 3 * I I I * * CO 1 * I I * * * CO 1							•										
3. To prepare a topic and deliver a presentation. 4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course Outcomes (COS): CO 1: Show competence in identifying relevant information, defining and explaining topics under discussion. CO 2: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. CO 5: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POS Image: PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * Image: PO 3 PO 4 PO 5 PO 6 PO 7 * Image: PO 10 PO 11 PO 11 PO 1 PO 11 PO 1 PO 11 PO 1 PO 11 PO 1 PO 1 PO 11 PO 1 PO 11 PO 1 PO 1 PO 11 PO 1 PO	Synops																
4. To develop the skill to write a technical report. 5. Develop ability to work in groups to review and modify technical content. Course On successful completion of this course, students will be able to (COS): Show competence in identifying relevant information, defining and explaining topics under discussion. CO 1: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. CO 5: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POS VOS to POS CO 1 * Image: PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * CO 1 * Image: PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 11 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 11 PO 12 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 11 PO 12 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 11 PO 12 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 10 PO 11 PO 11 PO 12 PO 11 PO 12 PO 10																	
5. Develop ability to work in groups to review and modify technical content. Course On successful completion of this course, students will be able to (COS): Show competence in identifying relevant information, defining and explaining topics under discussion. CO 1: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 2: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. CO 5: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs VO3 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 CO 1 * I			3. To	prepare	presentati	tion.											
Course Outcomes (COs): On successful completion of this course, students will be able to CO 1: Show competence in identifying relevant information, defining and explaining topics under discussion. CO 2: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. CO 5: Develop persuasive speech, present information in a compelling, well- structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * I I I I I I I CO 2 * I I I I I I I CO 3 * I I I I I I I CO 3 * I I I <thi< th=""> <th< th=""><th></th><th></th><th>4. To</th><th>develo</th><th>p the sl</th><th colspan="10">kill to write a technical report.</th></th<></thi<>			4. To	develo	p the sl	kill to write a technical report.											
Outcomes (COs):On successful completion of this course, students will be able to (Cos):CO 1:Show competence in identifying relevant information, defining and explaining topics under discussion.CO 2:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 3:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 4:Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing.CO 4:Demonstrate that they have paid close attention to what others say and can respond constructively.CO 5:PO 1PO 2PO 2PO 3PO 4PO 1PO 5PO 6PO 1PO 10PO 1PO 1CO 1*1CO 1*1CO 1*1CO 3*1CO 3*1CO 3*1CO 3*1CO 4**CO 5:*1CO 5:*1CO 4:*1CO 5:*1CO 5:*1			5. Develop ability to work in groups to review and modify technical conte														
(COs):Show competence in identifying relevant information, defining and explaining topics under discussion.CO 1:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 2:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 3:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 3:Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing.CO 4:Demonstrate that they have paid close attention to what others say and can respond constructively.CO 5:Develop persuasive speech, present information in a compelling, well- structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsCO 1PO 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO 10PO 11CO 1*IncInc*****CO 3*IncInc****CO 3*IncInc****CO 4*IncInc****CO 5:*IncIncInc****CO 5:*IncIncInc****CO 5:*IncIncI	Course																
CO 1: Show competence in identifying relevant information, defining and explaining topics under discussion. CO 2: Show competence in working with a methodology, structuring their oral work, and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 4: Demonstrate that they have paid close attention to what others say and can respond constructively. CO 5: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * Image: Complex subjects is a structure in the stru	Outcomes		On successful completion of this course, students will be able to														
CO 1:CO 2:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 3:Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing.CO 3:Demonstrate that they have paid close attention to what others say and can respond constructively.CO 4:Demonstrate that they have paid close attention in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsPO 10 PO 11CO 1* * * * * * * * * * * * * * * * * * *	(COs):																
topics under discussion.CO 2:Show competence in working with a methodology, structuring their oral work, and synthesizing information.CO 3:Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing.CO 4:Demonstrate that they have paid close attention to what others say and can respond constructively.CO 4:Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.PO 10 PO 10Cos to POsCos to POsPO 1PO 2PO 3PO 4PO 5PO 7PO 8PO 9PO 10PO 11CO 4:PO 1PO 10PO 10PO 11CO 5:PO 10PO 10 <t< th=""><th>CO 1</th><th></th><th colspan="12">Show competence in identifying relevant information, defining and explaining</th></t<>	CO 1		Show competence in identifying relevant information, defining and explaining														
CO 2: and synthesizing information. CO 3: Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing. CO 3: Demonstrate that they have paid close attention to what others say and can respond constructively. CO 4: Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information. Mapping of COs to POs Co 1 * - * * * Co 2 * - - * * * * Co 3 * - - - - * * * * Co 4 * - * * * * *	CO I:		topics under discussion.														
and synthesizing information.Use appropriate registers and vocabulary, and will demonstrate command of voice modulation, voice projection, and pacing.Demonstrate that they have paid close attention to what others say and can respond constructively.Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsC0 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO 10PO 11CO 1*****CO 2*****CO 4******CO 5*****CO 4******CO 5******CO 5******CO 1******* <t< th=""><th colspan="2"><u> </u></th><th colspan="12">Show competence in working with a methodology, structuring their oral work,</th></t<>	<u> </u>		Show competence in working with a methodology, structuring their oral work,														
CO 3:voice modulation, voice projection, and pacing.CO 4:Demonstrate that they have paid close attention to what others say and can respond constructively.CO 5:Develop persuasive speech, present information in a compelling, well- structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsPO 1 PO 2 PO 3PO 4 PO 4 PO 5PO 6 PO 6 PO 7 PO 7 PO 8 PO 9 PO 9 PO 10 PO 10 PO 11 PO 11 PO 11 CO 1 CO 2 *PO 3 PO 4 PO 3 PO 4 PO 5 PO 6 PO 6 PO 7 PO 7 PO 8 PO 9 PO 9 PO 10 PO 10 PO 11 PO 11 PO 11 PO 11 PO 11 CO 1 CO 2 *PO 3 PO 4 PO 4 PO 5 PO 6 PO 7 PO 8 PO 7 PO 8 PO 9 PO 9 PO 10 PO 10 PO 11 PO 11 PO 11 PO 11 CO 1 CO 2 *PO 3 PO 4 PO 4 PO 5 PO 6 PO 7 PO 7 PO 8 PO 9 PO 9 PO 10 PO 10 PO 11 PO 11 PO 11 PO 11 CO 1 ** * *CO 2 ** </td <th>CO 2:</th> <td></td> <td colspan="12">and synthesizing information.</td>	CO 2:		and synthesizing information.														
voice modulation, voice projection, and pacing.Demonstrate that they have paid close attention to what others say and can respond constructively.Develop persuasive speech, present information in a compelling, well-structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsCO 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO 10PO 11CO 1*Image: Colspan="4">Image: Colspan="4"Colspan="4" Image: Colspan="4" I	CO 3.		Use appropriate registers and vocabulary, and will demonstrate command of														
CO 4:respond constructively.Develop persuasive speech, present information in a compelling, well- structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11CO1*IIIII****CO2*IIIII****CO3*IIIII****CO5:*IIIII****	0.5:		voice modulation, voice projection, and pacing.														
respond constructively.Develop persuasive speech, present information in a compelling, well- structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsCOsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11CO1* </th <th>CO 4.</th> <th></th> <th colspan="12">Demonstrate that they have paid close attention to what others say and can</th>	CO 4.		Demonstrate that they have paid close attention to what others say and can														
CO 5:structured, and logical sequence, respond respectfully to opposing ideas, show depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsCOsPO 1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9PO 10PO 11CO 1* </td <td colspan="2">CU 4:</td> <td colspan="12">respond constructively.</td>	CU 4:		respond constructively.														
CO 5:depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsCOsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11CO1*****CO2****CO3****CO4****CO5:****			Develop persuasive speech, present information in a compelling, well-														
depth of knowledge of complex subjects, and develop their ability to synthesize, evaluate and reflect on information.Mapping of COs to POsCOsPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11CO1******CO2******CO3******CO4******CO5:******	005		structured, and logical sequence, respond respectfully to opposing ideas, show														
Mapping of COs to POs COs PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * - - - - * * * * * CO 2 * - - - - * * * * CO 3 * - - - - * * * * CO 4 * - - - - * * * * CO 5: * - - - - * * * *	05:		depth of knowledge of complex subjects, and develop their ability to														
COs PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 CO 1 * - - - - * * * * * CO 2 * - - - - * * * * * CO 3 * - - - - - * * * * * CO 4 * - - - - * * * * * CO 5: * - - - - * * * * *			synthesize, evaluate and reflect on information.														
CO 1 * ·																	
CO 1 * ·																	
CO 2 *	COs	PO 1	<i>PO</i> 2	<i>PO 3</i>	<i>PO</i> 4	<i>PO</i> 5	PO 6	<i>PO</i> 7	PO 8	<i>PO</i> 9	PO 10	PO 11					
CO 3 *	CO 1	*							*	*		*					
CO 4 * * * * CO5: * * * *	CO 2	*							*	*		*					
CO5: * * * * * *	CO 3	*							*	*		*					
	CO 4	*							*	*		*					
	CO5:	*							*	*		*					
Learning strategies, contact hours and student learning time	Learni	ing stra	ategies,	contac	t hour	s and s	tudent	learning t	ime	L	1	<u>.</u>					

Learning strategy		Са	ontact he	Student learning					
				time (Hrs)					
Lecture			-	-					
Seminar			-		-				
Quiz			-		-				
Small Group Discussion (SGI	D)		14		-				
Self-directed learning (SDL)			-		-				
Problem Based Learning (PBI	L)		-		-				
Case Based Learning (CBL)			-		-				
Clinic			-		-				
Practical			-		-				
Revision			-	-					
Assessment			-	-					
TOTAL			14		-				
Assessment Methods:									
Formative:	Summative:								
Seminar Topic Selection									
Synopsys review									
PPT Review									
Mapping of assessment with	Cos			1					
Nature of assessment	CO 1	CO 2 CO 3		CO 4	CO 5				
Presentation	*	*	*	*	*				
Feedback Process • End-Semester Feedback									
Reference Material Particu	Reference Material Particular to the chosen Seminar								

PROGRAM OUTCOMES (POS) AND COURSE OUTCMES (COS) MAPPING

Sl.No.	Course Code	Course Name	Credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
1	CSE 602	Real Time Operating Systems	3	*	*	*	*							
2	ESD 605	Embedded Systems	3	*	*	*		*						
3	AES 601	Sensors and Transducers	3	*	*	*		*	*					
4	AES 602	Vehicular Adhoc Networks	3	*	*	*	*	*						
5	ESD-602	Microcontrollers and its Applications	3	*	*	*	*	*						
6	CSE-620	Linux and Scripting Languages	3	*	*	*	*							
7	CSE 602L	Real Time Operating Systems Lab	1	*	*	*		*						
8	ESD 605L	Embedded Systems Lab	1	*	*	*		*						
9	AES 601L	Sensors and Transducers Lab	1	*	*	*		*	*	*	*	*		*
10	AES 602L	Vehicular Adhoc Networks Lab	1	*		*	*	*					*	
11	ESD-602L	Microcontrollers and its Applications Lab	1	*	*	*		*						
12	CSE-620L	Linux and Scripting Languages Lab	1	*		*		*						
11	AES 695	Mini Project - 1	4				*	*	*	*	*		*	*
12	AES 697	Seminar - 1	1								*	*		*

Semester 2: ESIGELEC, FRANCE

Communication Buses

Module code: MSCAES01

Duration: 30h

Objectives: At the end of this module, students will be able to:

- Use the most widely used communication busses in the field of embedded processors
- Understand technical specifications
- Design and implement bus-based communication architectures
- Understand and implement different bus systems like CAN, I2C, SPI, LIN, etc.
- Design communication programming for different board and protocol

- RS-485
- I2C BUS, SPI BUS
- CAN BUS
- ARINC bus

ADAS and Automotive Electronic Systems

Module Code: MSCAES02

Duration: 46h

Objectives: At the end of this module, students will be:

- Able to design ADAS automotive system architecture
- Familiar with Driver Assistance System for Autonomous Vehicle
- Able to describe the EMC as a generic immunity and emission mechanisms of an electric/electronic vehicle
- Familiar with interaction traffic, vehicles and infrastructures

- ADAS Autonomous and Connected Driving:
 - Road safety
 - ADAS functions, Intellectual property and TRIZZ low
 - Lateral and longitudinal control
 - Autonomous driving, and Car2X
- ADAS Automotive Systems-based EMC:
 - Standards and regulations
 - EMC design, Mitigation techniques, Numerical simulation
 - Equipment validation, Vehicle validation, Future challenges
- Introduction to Highway Engineering and Traffic Analysis:
 - Vehicles and road infrastructures
 - Highway design
 - Introduction to traffic theory
 - Road transport system technologies
- Autonomous Vehicle:
 - Autonomous vehicle issues and how it works
 - Autonomous Driver (AD)
 - Sensors

Robotics and Localization

Module Code: MSCAES03

Duration: 30h

Objectives: At the end of this module, students will be:

- Familiar with mobile robotic architecture
- Able to control a mobile robot like Wifibot
- Able to design and implement navigation algorithm on a mobile robot
- Able to design and implement a localization algorithm based on odometry
- Able to implement localisation of a robot in a known and / or unknown environment

- Introduction to mobile and autonomous robotics
- Control software architectures:
 - Case study: the ESIGELEC VIKINGS robot (TOTAL ARGOS challenge)
- Location based odometry:
 - Project: Implementation of a Wifibot robot based on odometry
- Development of different projects using Wifibot and which has as application:
 - Mobile robot
 - Environment perception and navigation
 - Localization
 - Autonomous navigation

Embedded C Programming

Module Code: MSCAES04

Duration: 30h

Objectives: At the end of this module, students will be:

- Familiar with C coding practices for embedded systems
- Familiar with the parts and tools for embedded software validation
- Able to develop, write and test a C language program (as per design specifications) to be used with a microprocessor, in keeping with good practices like MISRA-C rules
- Able to analyse and enumerate the various phases of development for a software project: the V cycle
- Able to programme a microcontroller and develop embedded applications. These
 applications will deal with digital inputs/ outputs, analog signals and will create delays
 and time events by means of a hardware timer
- Able to apply techniques and rules to ensure software quality and best coding practices (A sizeable part of the course is devoted to programming the microcontroller)

- Specificities of C Language for embedded systems (variables, memory organization, physical address access, etc.)
- Introduction to embedded system and programming methods
- Software analysis and validation tools and principles for embedded systems
- C language for embedded systems
- Best coding practices
- Programming the MSP430 microcontroller

LabVIEW Programming

Module Code: MSCAES11

Duration: 30h

Objectives: At the end of this module, students will be able to:

- Use LabVIEW to create applications
- Understand front panels, block diagrams, and icons and connector panes
- Use built-in LabVIEW functions
- Create and save programs in LabVIEW so students can use them as subroutines
- Create applications that use plug-in DAQ devices. The application must respect standard LabVIEW practices (taken from the Certified LabVIEW Developer (CLD) test) and use a modular and evolving architecture
- Design a program with LabVIEW for an electrocardiogram that monitors real and "noisy" data. This program must:
 - Respect design standards
 - Use standard programming and signal processing tools seen in the 2nd year

- Fundamental programming notions in LabVIEW
- LabVIEW programming
- Creating an interface
- Learning good LabVIEW practices for form and structure in programming

VHDL Programming

Module Code: MSCAES12

Duration: 30h

Objectives: At the end of this module, students will be able to:

- Program logic devices (PLD) and develop programs using VHDL language
- Design Finite State Machines (FSMs) in VHDL.
- Use the Xilinx ISIM simulator
- Synthesize a VHDL design and program the resulting bitstream in a FPGA
- Understand the different design flows for the design, verification and test of logic designs using VHDL as the design language and a FPGA as the final target device

- Review of combinatory and sequential logic
- The different families of programmable logic devices
- Practice with synthesis tools (Xilinx or Altera targets, Quartus or ISE tools, Modelsim)

Embedded Linux

Module Code: MSCAES07

Duration: 30h

Objectives: At the end of this module, students will:

- Be familiar with the uses of the Linux kernel for an embedded IT project
- Be familiar with principle software tools used in the Linux/Unix world and how to use them to develop
- Be able to write a device driver for specific Linux run material
- Be able to combine tools to create advanced functions with a minimum of programming

- Introduction to Linux
- How an OS fits in an embedded system
- History of Linux and Unix systems
- Linux compared to other embedded operating systems
- Fundamental tools: command lines, shell scripts
- Linux development tools
- C programming with embedded systems
- Linux drivers
- Web connections and Remote Administration Tools (RATs)

Biomedical Imaging & Biomedical Signal Processing

Module Code: MSCAES05

Duration: 30h

Objectives: At the end of this module, students will be:

• Familiar with medical images used in clinics and hospitals, including a description of physical phenomena

- Image processing and signal analysis
- Introduction of Fourier transforms features of medical images within Matlab introduction
- Ultrasound images basic theory of acoustic waves reflection and transmission, ultrasonic arrays, formation of images in B mode, other techniques of ultrasonic imaging:
 - Doppler
 - Agents of contrast
 - Elastography
- X-ray images, radiography images and computed tomography
- Magnetic resonance images

EMC Automotive System

Module Code: MSCAES06

Duration: 30h

Objectives: At the end of this module, students will:

- Be familiar with EMC System architecture
- Be familiar with Integrity signal and how to calculate it
- Be familiar with EMC of components and how to protect electronic system
- Be familiar with near field and interactions with the environment

- EMC Integration
- Integrity Signal (IS)
- EMC of Components
- EMC Measurement tools:
 - Test facilities
 - Instrumentation
- EMC Tests on an Automotive equipment in reverberation chamber
- Near-field
- European requirements and associated tests

Project

Module Code: MSCAESPRJ

Objectives: At the end of this module, students will be able to:

- Design, develop and realize an embedded system in mobile robotics and automotive systems
- Develop technical solutions hardware and software
- Test the platform developed
- Develop and carry out an embedded system platform successfully and learn how to manage a technical project

- Project Management:
 - Benchmarking study
 - Technical and Functional specifications
 - Architecture Design and Risk analysis
 - Test protocol
- Technical Development:
 - Image processing and computer vision systems
 - Image segmentation
 - Pattern recognition
 - Object detection and tracking
 - Artificial Intelligence and Deep Learning Applications for mobile robotics and automotive
 - Dataset collection
 - Mobile robotics and autonomous navigation
 - IoT and sensors
 - Smart mobility

Project Management

Module Code: MSCAESPRMG

Duration: 26h

Objectives: At the end of this module, students will:

- Be familiar with the importance of project management, including formal methods, as a recognized discipline. They will also understand the complexities of different types of computing projects and methods to manage them
- Appreciate the need to break up complex projects
- Appreciate the need for effective planning, monitoring & control mechanisms
- Appreciate the need for formal project management organizational structures
- Appreciate the importance & management of stakeholders in an international project
- Be able to apply some of the skills and knowledge acquired, in any future project and, in particular, documentation for development project
- Appreciate the complexity of a technical project and the need for formal methods

- What is a project? The need for Project Management, formal methods
- Managing large, complex, international projects
- Un peu de franglais (Project Management culture and language in English and in French)
- Management of projects, project life cycle, roles of the project manager and stakeholders
- Stakeholder management, scope, creep
- Work planning, project breakdown structures and estimating
- Resource planning, estimating, management
 Risk identification, analysis, management
- PERT and Gantt charts, their use and shortcomings
- Project Management planning tools (including practical sessions with MS Project)
- Change control, documentation, configuration management
- Project control, quality, documentation, delivery management
- Project closure; maintenance projects

- Types of computing projects and risks; computing Project Management methods
- Cost-benefit analysis and project accounting may be touched upon, but are not in the scope of this course

Automotive Safety Systems

Module Code: MSCAES08

Duration: 25h

Objectives: At the end of this module, students will:

- Be familiar with the role EMC phenomena play in the field of embedded systems, by studying automotive examples
- Be able to design and develop automotive embedded systems
- Be able to verify mechatronics and electromagnetic compatibility constraints in the development
- Be able to design a functional safety system

- EMC (Electromagnetic Compatibility) issues for electronics
- Cause and effect
- Prevention and solutions
- The automotive field: an overview

Bibliographical Studies

Module Code: MSCAES09

Duration: 15h

Objectives: At the end of this module, students will be familiar with:

- State of the art technologies relate to the autonomous vehicle:
 - Mobile robotics, sensors, deep learning applications
 - Mobile robot localization
- Issues related to testing and validation of autonomous vehicles
- How to conduct a presentation on a technical subject, given at the beginning of the semester
- How to acquire basic skills and methods about information searching and final presentations
- Information searching and final presentation

- Team working
- Information searching
- Final presentation

Oral Communication

Module Code: MSCAES10

Duration: 14h

Objectives: At the end of this module, students will:

- Have a clear model of what constitutes successful and unsuccessful presentations
- Have practiced giving formal presentations in English
- Be more aware of their own shortcomings when presenting
- Practice and perfect final presentation skills
- Learn the importance of structure and how formal prepared speech differs from everyday social interactions
- Work with their presenting strengths and weaknesses via several short practice presentations and a final (individual and/or group) presentation

- Methods for creating a final presentation
- Practice

French Language 2

Module Code: MSCAESLANG

Duration: 64h

Objectives: At the end of this module, students will be able to:

- Understand standard French used in everyday situations at work, school, etc. (Oral comprehension)
- Understand texts written in standard French used in everyday situations such at work, school, etc. (Written comprehension)
- Participate in a regular day-to-day conversation on familiar topics (Oral expression)
- Ask and exchange information (Oral expression)
- Prepare and give a short formal presentation (Oral expression)
- Write short, clear and coherent texts on familiar/everyday situations with basic grammar and vocabulary (Written expression)

- Revision of grammar and vocabulary
- Preparation for the Test of French Language (TCF or TEF)