CAT - 2019 GEOLOGY

- 1. The fragmental volcanic products ejected through the vent are termed as
 - (A) Scoriae
 - (B) Bomb
 - (C) Tephra
 - (D) Lapelli
- 2. The deepest oceanic trench is
 - (A) Atacama trench
 - (B) Mariana trench
 - (C) Guatemala trench
 - (D) Aleutian trench
- 3. Flat-topped hills or small in buntains for med by stream action are called
 - (A) Platecu
 - (B) Stream terraces
 - (C) Me as
 - (Γ) Cuestas
- 4. The Pangea existing up to the
 - (A) Sila ian period
 - (B) Late I rmian period
 - (C) L. de' Carboniferous period
 - (D) Devonian period
- 5. The plain formed due to coalescence of series of alluvial fans in the piedmont zone is known as
 - (A) Pediplain
 - (B) Pediment
 - (C) Bajada
 - (D) Hamada

6.	In the solar system which planet has the lowest density?
	(A) Saturn
	(B) Mars
	(C) Jupiter (D) Margury
	(D) Mercury
7.	The concept of sea-floor spreading was originally conceived by
, .	The concept of sea specialing was originally concerved by
	(A) Carey
	(B) Wegener
	(C) Deiv
	(D) Hess
8.	The most dominant factor causing place mount is
	(A) Asthenospheric convection
	(B) Slab-pull
	(C) Underplating
	(D) Bridge-push
9.	The mean density of earth's mantle is
<i>)</i> .	The mean den, ity we call a mainter is
	(A) 2.7 g/cm^3
	(B) 3.0 y/cm ³
	(C) 4.5 g/cm ³
	$(D, 5.4 \text{ g/cm}^3)$
10.	Conservative of the boundary is represented by
	(A) Transform fault
	(A) Transt rm fault (B) Normal fault
	(C) Peverse fault
	(L) Growth fault
	(D) Glowill lault
11.	Elements which readily form ions with an outermost 8-electron shell are mostly:
	(A) Chalcophile
	(B) Atmophile
	(C) Siderophile
	(D) Lithophile

- 12. The term "hurricane" is given to tropical cyclones in
 - (A) Australia
 - (B) The Bay of Bengal
 - (C) The North Pacific Ocean
 - (D) The North Atlantic Ocean
- 13. The evidence of devitrification is
 - (A) Spherulitic
 - (B) Corona structure
 - (C) Percussion figure
 - (D) Orbicular structure
- 14. The pH of a solution is the
 - (A) Negative Log of the H io is concemuration
 - (B) Negative Log of the recip ocal crits Highs oncemation
 - (C) Log of its H ions concentration
 - (D) H ions concentration of the solution
- 15. Sulphurous ho springs (solfataras) are associated with
 - (A) B'jawer group
 - (B) Kor'an group
 - (C) Gwalior group
 - (D) Kaladgi group
- 16. A region where repotranspiration exceeds rainfall is probably
 - (A) desent
 - (B) a rin forest
 - (C) swamp
 - (L) heavily forested
- 17. The 'hodograph' of a reflected wave is
 - (A) rectilinear
 - (B) hyperbolic
 - (C) curvilinear
 - (D) parabolic

18.	Shear fractures are developed und	e
	(A) Compression	
	(B) Couples	
	(C) Tension	
	(D) All of the above) (

- 19. A drainage pattern that develops upon a rock of uniform resista, re and is not structurally controlled is called
 - (A) Dendruic pattern
 - (B) Trellis pattern
 - (C) Rectangular pattern
 - (D) Barbed drainage pattern
- 20 "Electrum" is a natural alloy of
 - (A) Zinc and Silver
 - (B) Zinc and Gold
 - (C) Gold and Silver
 - (D) Silver and Coppe
- 21. Very small ridges and depression on the surface of joints are described as
 - (A) Fea. 'er joints
 - (F) Plumose markii gs
 - (C) Slickensides
 - (D) Striations
- 22. The structur consisting of a series of parallel columns in deformed rocks is called
 - (4) Foliation
 - (3) I ineation
 - (C) Mullions
 - (D) Boudins

23.	The fo	fold which has two hinges is	
	())	GI 611	
	(A)		
	(B)		
	(C)		
	(D)	Isoclinal fold	<i>A</i>
24.	The a	amount of dip is maximum in a direction at	ng!es to the stike oi the
	beddi	ling planes	()
		S F	
	(A)	0 🚠	
	(B)		
	(C)		
	(D)	180 ⋒	
		100 шпт	
	All		9
25	The C	Caledonian folds formed around	
23	THE	Calculations formed around	
	(A)	320 million years ago	
	(B)		
	(C)		
	(D)	70 million years 200	
26.		is a nurrow coastal saudy formation which	connects main land and an
20.			connects main land and an
	offsho	nore sland.	Sy
	(4)	Cuit	
	(A)	•	
	(B)		
	(C)		* O >
	(D)	Tomtalo	G
			63
	0.1:		
27.	Ophit	itic 'exture is commonly seen in	
	(Λ)	Cachyte	
	(B)	Lamprophyres	
	(C)	Andesite	
	(D)	Dolerite	
••		itic 'exture is commonly seen in Tachyte Lamprophyres Andesite Dolerite mekite structure is produced by the intergrowth of	
28.	Myrm	mekite structure is produced by the intergrowth of	
	(A)		
	(B)		
	(C)		
	(D)	Orthoclase and albite	

29.	A rock behaves as an elastic solid
	(A) Below its ultimate strength
	(B) Below its yield strength
	(C) Above its ultimate strength
	(D) Above its yield strengt!
20	
30.	The line joining points of equal height in a map is known as
	(A) Contour
	(B) Isobar
	(C) Isotherm
	(D) Isochrones
31.	The species <i>Homo Sapiens</i> appeared ε roung
	A the species from suprems appeared from a
	(A) 300 thousand years ago
(C)	(B) 500 thousand years ago
	(C) 4 million years ago
	(D) 6 million years ago
	19
32.	When mouth and arms are centrally placed at the opposite poles of the test, the forms are
	known as
	(A) Regular schinoids
	(F) Irregular echinoids
	(C) Crinoids
	(D) Both (A) and (b)
33.	is NOT a living fossil
33.	
	(4) Nuvia
	(3) Pautilus
	(C) Nummulites
	(D) Lingula
	\sim \circ

34.	The s	keleton of an entire coral colony is described as
	(4)	Callymalla
	(A)	Collumella
	(B)	Rhabdosome
	(C)	Corallite
	(D)	Corallum
35.	Cerat	itic suture is prevalent in the forms found in
55.	Corac	the suture is provident in the forms found in
	(A)	Permian o Triassic
	(B)	Cretaceous
	(C)	Permian
	(D)	Triassic
	(2)	
36.	Whic	h of these Trilobites was blind?
\sim	(A)	Olenellus
	(B)	Olenus
	(C)	Agnostus
	(D)	Asaphus
	(2)	Thurphus .
37.	The s	uccessive whorls in the shell of gasti pod lie on mutual contact along a line called
	(A)	Spire
	(B)	Suivre
	(C)	Umblicus
	(D_{r})	Seria
20	Tl C	
38.	The I	irst flowering plant originated during
	(A)	Cretac ous period
	(A) (B)	Cambrian period
	(C)	Silurian period
		Devonian period
	(L)	Devoluan period
39.	Ordov	vician period is known for the origin of
	(A)	first land plant fossil
	(B)	first mammal
	(C)	first amphibian
	(D)	first fish
	(-)	(5)

40.	Strom	natolites are due to
	(A) (B) (C)	Green bacteria Blue-green algae Fungi
	(D)	Blue-green ostracods
41.	Which	n was the warmest epoch of the Cenozoic?
	(A)	Eocene
	(B)	Miocene
	(C)	Paleocene
	(D)	Oligocene
42.	The L	ower and Upper Gondwana are charac erized respectively by
	(A)	Ptilophylluam and Nilgor ia
	(B)	Ptilophylluam and Glossc teris
	(C)	Glossopteris and P'(lophyllum
	(D)	Glossopteris and Gal. ramopteris
43.	"Old	red sands one" facies is of
	(A)	Muddy Jeep water factes
	(B)	Sha'low narine facie.
	(C)	Fluviatile and Lacustrine deposits
	(D,	Notice of the chove
4.4	Daan	allo akti ni Dianallo limastano ana inaludad in
44.	Daone	ella sha'e . " Daonella limestone are included in stage.
	(A)	Runtei
	(B)	Neric
	(C)	Muschelkalk
	(L)	Ladinic
	<i>y</i>	
45.	The re	ock of Permian age in the Salt Pange is represented by
	(A)	Productus limestone series
	(B)	Fenestella shale series
	(C)	Zewan beds
	(D)	None of the above
	` '	(5)

<i>(</i>)			iona neia o	i ilidia is	associated	WILII
(A	, ~ .	-		00,		
(B	_	-	^			
(C			C'	·		
(D) Kaimur	group				
			T			
Wh	ch of the fo	ollowing	coal field is	respons	ible for abo	ut 40
	luction?	Jilowing	coar ficially	s respons	1010 101 400	ut ¬
pro	iuction!	1				Z \

- o fthe total Indian
 - Jharia coal field (A)
 - (B) Ranigand coal field
 - (C) Singrauli coal field
 - (D) Mohpani coal field
- The facies of the Triassic system of rochs in India is
 - (A) Estuarine
 - Lacustrine (B)
 - Terrestrial (C)
 - (D) Marine
- The Neogene period includes 49.
 - (A) Palencere, Eocena and Oh socene
 - (E) Oligocene, Miorene and Pliocene
 - (C) Miscene aná Pliocene
 - (D) Paleocene nd Locene
- The Cryptoric Eon is designated as 50.
 - The age of hidden life
 - The age of no life (3)
 - (C) The age of modern life
 - The age of well displayed life
- The upper limit of troposphere is called 51.
 - Mesopause (A)
 - Tropopause (B)
 - Stratosphere (C)
 - Stratopause (D)

52.	Thun	derstorms originate from
	(A)	Cirro-cumulus clouds
	(B)	Cirro-stratus clouds
	` ′	Cumulonimbus cloud
	(C)	
	(D)	Alto-cumulus cloud
53.	Ocean	n currents are generated due to
00.	occur	ourround are gottomical and to
	(A)	Salinity difference
	(B)	Temperature difference
	(C)	Density difference
	(D)	All of the above
	(D)	All of the doove
54.	Whiel	h of the following has the higher t com, ressive strength.
),, ,,,	ar of the following has the inghest completions.
$\langle $	(A)	Granite
	(B)	Sandstone
	(C)	Marble
	(D)	Quartzite
	(2)	Quantizate .
55.	"Hode	ographs" arei the stismic studies of the subsurface geology
	(4)	
	(A)	V :locity – density cv. ves
	(B)	Tin 2 – density curve.
	(C)	Time – distance curves
	(D)	Velocity – d. tance curves
56.	Whiel	h of the wing varieties of mica is lithium mica?
50.	VV IIIC	if of the te. Twing varieties of finea is numum finea?
	(A)	repide lite
	(B)	B ₁ tite
	(C)	Muscovite
	(L)	Phlogopite
	(L)	1 mogopite
57.	Realg	h of the wing varieties of mica is lithium mica? Tepide lite Britie Muscovite Phlogopite ar has the composition of CuS NiS AsS
	(4)	Cus
	(A)	CuS NiS AsS
	(B)	NiS
	(C)	1100
	(D)	HgS

58.	In cyclosilicates, the ratio of Si:O is
	(A) 1:3 (B) 2:5 (C) 1:2 (D) 2:3
59.	Which of the following is a mineraloid?
	(A) Chalcedony (B) Opal (C) Chert (D) Quartz
60.	Which of the following mineral has the high st Refractive linex?
A C	(A) Rutile(B) Hematite(C) Zircon(D) Cassiterite
61.	The reflective 'ndex (R ^T) of Canada balsan is
	(A) 1.45 (B) 1.6.3 (C) 1.54 (D, 1.59
62.	Loess is an equipment deposit of
	(A) Silt an I clay (B) Sand and gravel (C) Gravel and silt (L) Sand and clay
63.	The primary gold lodes are reported from region.
	(A) Wayanad(B) Pathanamthitta(C) Idukki(D) Thiruvananthapurana
	* *

64.	Hardr	less in water is typically caused by the presence of
	(4)	0 11 4
	(A)	Suspended matter
	(B)	Total dissolved solids
	(C)	Carbonate and bicarbonate
	(D)	Calcium and magnesium ions
<i>-</i>		
65.	The g	lacier will retreat when
	(4)	13.5
	(A)	Accumulation is greater than ablation
	(B)	Ablation is greater than accumulation
	(C)	Accumulation is equal to ablation
	(D)	None of the above
	Va.	
66.	The re	ocks of Wayanad schist belt are equivalent to g oup of Karnataka
. ()		
	(A)	Sargur
	(B)	Chitradurga
	(C)	Bababudan
	(D)	Kolar
67.	The g	eneral stake of Bayali lineament is
	(A)	WNW-ESE
	(B)	EN.7-WSW
	(C)	NE-SW
	(D)	NW-SE
60	a .	
68.	Carbo	enatite is
	(4)	
	(A)	Sedim ntary rock
	(B)	M. tarnorphic rock
	(C)	Txtrusive igneous rock
	(L)	Intrusive igneous rock
60	m1	
69.	The s	edimentary layer having thickness 1 cm is called
	(4)	Louise
	(A)	Lamina
	(B)	Stratum
	(C)	Bed
	(D)	Both (A) and (C)

70. A paleosol is

- (A) A red tropical soil
- (B) A black nutrient rich soil
- (C) An ancient soil which is now buried
- (D) A transported soil

71. Clay minerals are

- (A) Phyllosilicates
- (B) Tectosilicates
- (C) Cyclesilicates
- (D) Neosilicates
- 72. Sediments having the size range of 64-256 1. m are called
 - (A) Cobbles
 - (B) Pebbles
 - (C) Boulders
 - (D) Granules
- 73. The granulite facies is characterize by
 - (A) I nw pressure-high temperaure
 - (B) Hig' pressure-low te. per ture
 - (C) Low pressure-lew temperature
 - (D) High pressur -high temperature
- 74. Which is the that dominant metamorphic rock found at mid-eccanic ridges?
 - (A) Green: tone
 - (B) Hernfels
 - (C) "clogite
 - (L) Blueschist
- 75. Water gives almost nil reflectance in
 - (A) Visible regions
 - (B) Ultra violet regions
 - (C) Infrared regions
 - (D) Both (A) and (B)

76.	Geost	ationary satellites are located at an altitude of about
	(4)	26 000 lm
	(A)	36,000 km
	(B)	10,000 km
	(C)	20,000 km
	(D)	45,000 km
77	A	1 4
77.	A car	bonate reservoir tock having 10-15% porosity, is said to neve
	(A)	Vary good paragity
	` /	Very good porosity
	(B)	Poor perosity
	(C)	Good porosity
	(D)	Fair porosity
	20	
70	71 "	
78.	the	anticlinal" traps are classified as type of petroleum reservoir.
, C	(A)	Concave traps
	(A) (B)	Convex traps
<i>y</i>	. ,	Non-concave traps
	(C)	Non-convex traps
	(D)	Non-convex traps
79.	A cry	stal form consisting of only one face is
1).	71 Ciy	star form core-sting or only o to face is
	(A)	Pridion
	(B)	Spi. noic.
	(C)	Dome
	(D)	Basal pinaco. 1
	(2)	Disar pinites.
		Y Y
80.	Varia	tion in the habit of a mineral refers to changes in the
	(A)	Symm stry elements
	(B)	C ₁ stal class
	(C)	Crystal form
	(L)	Crystal system
	<i>y</i>	
81.	Whic	h of the following combinations is incorrect?
	(A)	Optical twins Quartz
	(B)	Cyclic twins Aragonite
	(C)	Glide twins Calcite
	(D)	Tartan twins Pyrite
		^ X /

82. Digboi oil field is associated with

- (A) Surma series
- (B) Tipam series
- (C) Barail series
- (D) Jainta series

83. Leucite shows

- (A) Star-like inclusions
- (B) Curved inclusions
- (C) Radial inclusions
- (D) Straight inclusions

84. The magnifying power of a microscor e

- (A) Increases with the tube length
- (B) Decreases with the tube length
- (C) Increases with the focal length
- (D) None of the above

85. Lines joining points of equal limb (ip in seccessive layers through the fold profile are known as

- (A) Aguic lines
- (F) Isohyetes
- (C) Dip isogons
- (D) Contour lange

86. Which of the following can be classified as an 'alkaline rock'.

- (4) He v'olende-granite
- (3) Piebeckite-granite
- (C) Hornblende-syenite
- (D) Biotite-granite

87. Which of the following minerals does NOT exhibit needle-like crystals?

- (A) Wavellite
- (B) Sillimanite
- (C) Tourmaline
- (D) Rutile

88.	The plagioclase feldspar that is commonly seen in Archean anorthosites is
	(A) Albite
	(B) Bytownite
	(C) Oligoclase
	(D) Labradorite
89.	Graywackes typically exhibit
	(A) Graded bedding
	(B) Torrendal bedding
	(C) Flaser bedding
	(C) Frase: bedding (D) Herringbone cross-bedding
	(D) Merringbone cross-bedding
90.	Arkose is derived from the disintegration of
. ()	
	(A) Gabbro
Y'	(B) Granite
	(C) Ultrabasic rocks
	(D) Marble
0.1	
91.	Bog iron ore is of
	(A) Organic origin
	(B) Bio hem cal origin
	(C) Chemical origin
	(D) Biclogical of gin
	(D) Diviogical of Alli
	\sim
92.	Which of the wing rocks are complete unfoliated?
	(A) Home loss
	(A) Hornfelses
	(B) Sixter
	(C) Phyllites
	(L) Schists
	*O>
93.	When the strike of the fault is parallel to the strike of the rock beds, the fault is called
	(A) Strike fault
	(B) Strike slip fault
	(C) Dip slip fault
	(D) Diagonal fault

94.	Lourn	nalinization is the combined effect of
	(4)	W. 10
	(A)	Water and flourine
	(B)	Water, carbondioxide and chlorine
	(C)	Water, boron and fluorine
	(D)	Water. carbondioxide and hydrogen
95.	The K	farewa Formation in the Kashmir valley is renowned for it deposits.
	(A)	Gypsum
	(B)	Barytes
	(C)	Ochre
	(D)	Lignite
	(-)	
96.	The d	isseminated or "porphyry" copper deposits are of
70.) inc a	isseminated of porphyty copp of dept sits are of
	(A)	Epithermal origin
	(B)	Mesothermal origin
<i>Y</i>	(C)	Hypothermal origin
	(D)	Telethermal origin
	(D)	referring origin
97.	Thora	iant oil field of 'Ankaleshwai' was ciscovered in the year
91.	The g	iant on held in Finkaleshwar was a scovered in the year
	(A)	1960
		1955
	(B)	
	(C)	1958
	(D)	1963
00	۸ :	
98.	An in	fluent suc. " is one which
	(4)	Claves at a moment atmosph
	(A)	Tows into a parent stream
	(B)	receives discharges from the groundwater
	(C)	acharges the groundwater
	(L)	flows parallel to consequent stream
00	CD1	
99.	The sy	ymbol of Macro dome is
	()	011
	(A)	0kl
	(B)	h0l
	(C)	hkl
	(D)	hk0

100.		is the mineral that is NOT crystallized in the Orthorhombic system
	(A)	Sulphur
	(B)	Staurolite
	(C)	Augite
	(D)	Andalusite
	(D)	Middlesic
101.	The c	leavages in twinned crystals are
	(A)	In same directions
	(B)	In different directions
	(C)	In oblique direction of the twin plane
	(D)	Parallel to the twin plane
	1	
102		moment and and anlarm come vanishing of a vest in language
102.	trans	parent and red colour gem varie y of z. con is known as
	(A)	Hyacinth
	(B)	Monazite
	(C)	Jargoon
	(D)	Zirconite
	()	
103.	The c	leavage engles in amphiboles are
	(A)	70ā a. 1115ā
	(A)	70 and 110 and 126 and
	(B)	54 k and 126 km 67 km and 113 km
	(C) (D,	56 than 113 than 113 than 12-1 than 113
	(D)	Solam and 12-, wm
		\sim
104.	Rutile	e is specifically characterized by
	(A)	'ts gen iculate twinning
	(B)	its brown-red colour
	(C)	its hardness
	(L)	its brown-red colour its hardness its acicular form
		40>
105.		systems are optically uniaxial
-		
	(A)	Hexagonal and Monoclinic
	(B)	Monoclinic and Tetragonal
	(C)	Hexagonal and Tetragonal
	(D)	Cubic and Orthorhombic

106. The Bertrand lens is used to

- (A) determine the interference colour
- (B) determine the optic sign
- (C) analyse the plane of vibration of light
- (D) magnify the interference figures

107. Nepheline is distinguished from quartz by its

- (A) Positive sign only
- (B) Negative sign and lower birefringence
- (C) Negative sign and higher birefringence
- (D) Higher birefringence only

108. In a binary eutectic system, the solubility lines shows

- (A) the concentration of components in the liquid
- (B) the temperature in the liquid
- (C) the pressure in the 'quid
- (D) Both (A) and (B)

109. Which of the following volcanic rooks contains the lowest percentage of silica?

- (A) Basalt
- (B) And esite
- (C) Trachyte
- (D, Rhyolite

110. The formation of illow lava indicates a

- (A) continental eruption
- (B) free exuption
- (C) "ub-marine eruption
- (L) None of the above

111. Radiolarian and Diatomaceous oozes are

- (A) Phosphatic deposits
- (B) Siliceous deposits
- (C) Calcareous deposits
- (D) Carbonaceous deposits

112.	Guano deposits are formed by	y accumulation of the
	 (A) excreta of birds (B) aragonite shells (C) calcareous shells (D) bones of sea – birds 	F.ST 2019
113.	Retrograde metamorphism is	also known as
	 (A) Diapthoresis (B) Additive metamorphis (C) Injective metamorphis (D) None of the above 	m
114.	The Chitradurga schist belt is	s an example or the
	 (A) Epidote amphibolites to (B) Green schist facies (C) Amphibolite schist (D) Granulite facies 	facies
115.	An assemblage of high temper called as	erature ore an I gangue minerals in contact metasomatism is
	(A) Gon tite (B) Bar deposits (C) Skarn (D) Gossan	
116.	Most of the auxite deposits	of central and western India have been formed from
	 (A) Gi, nite (B) Cyenite (C) Nepheline syenite (D) Basalt 	
117.	Placer deposits at the foot of	a slope are known as
	(A) Alluvial placers(B) Colluvial placers(C) Eluvial placers(D) Eolian placers	

Exploration of chromite is generally done by 118. (A) Seismic method (B) Resistivity method (C) Gravity method (D) Magnetic method Which type of clay is used as a drilling mud? 119. (A) Chica clay (B) Fuller's earth (C) Bentonite clay (D) Fire clay Wolframite is an ore of (A) Vanadium Cobalt (B) (C) Antimony Tungsten (D) 121. Which type of vnconformity is move effective as stratigraphic oil-traps? (A)Non-conformity Disconformi' (B) Angular v confirmity (C)

122.	The puriti	on of Gra	aphite in	India i	S

(D) None of the bove

- (A) Essential
- (E) Critical
- (C) Strategic
- (D) None of the above

123. Which planet is an exceptional case of Bode's law?

- (A) Neptune
- (B) Mars
- (C) Uranus
- (D) Saturn

124.	The upper mantle is	in composition
	(A) Felsic(B) Ultramafic(C) Granitic(D) Basic	TEST
125.	The water loving colloids a	re called as
	(A) Hydrophobic(B) Hydrophilic(C) Dispersion(D) Emulsions	
126.	Which method is used for o	ating relativery recent scological event?
Y	(A) K-Ar method (B) U-Pb method (C) Carbon-14 method (D) Rb-Sr method	
127.	Humidity is usually measur	ea by
	(A) Psychrometer (B) Rain gauge (C) Kadiomet * (D) Pyranometer	SIONIFE
128.	Clay is an example of	
	(A) Aquifer(E) Aquitard(C) Aquiclude(D) Aquifuse	AMON ADI.
129.	Groundwater flow map is a	
	 (A) Isopatch map (B) Isocontour map (C) Potentiometric map (D) Hydraulic map 	

- 130. The building stones can be dressed very easily
 - (A) just after quarrying
 - (B) after seasoning
 - (C) after some months of quarrying
 - (D) any time
- 131. Slicken sides are a type of
 - (A) Foliation
 - (B) Bedding
 - (C) Lineation
 - (D) Fault plane
- 132. The famous sun temple at Konark is riade of
 - (A) Granites
 - (B) Gneisses
 - (C) Sandstones
 - (D) Khondalites
- 133. Generally aeric I photographs are taken
 - (A) horizonally
 - (B) yer cally
 - (C) at an angle of 45 im
 - (D, at an angle c. 60 mm
- 134. Which one has the shortest wavelength?
 - (A) X-rays
 - (B) Un ray solet rays
 - (C) Visible radiations
 - (L) Gamma rays
- 135. Drift mining is generally employed
 - (A) for the underground mining
 - (B) for coal mining
 - (C) in the exploitation of placers
 - (D) in the exploitation of copper ore

136. Water trapped in the sediments at the time of their deposition is known		trapped in the sediments at the time of their deposition is known as
	(A)	Connate water
	(B)	Juvenile water
	(C)	Mine water
	(D)	Meteoric water
	(D)	Nicteoric water
137.	The p	rolongation of the posterior marginal area of the Pygidium in Trilobites is called
	(A)	Glabella
	(B)	Facial suture
	(C)	Caudai spine
	(D)	Doublure
138.	Whiel	h of the following has richest for sils at ong the Sivaling
Y ()	(A)	Nagri
	(B)	Dhokpathan
	(C)	Kamlial
	(D)	Chinji
	(2)	
120		
139.		rocks are most suitable for the formation of replacement deposits
	(A)	L'imestones
	(B)	San ⁴ stores
	(C)	Quartzites
	(D,	Granites
1.40	TI	
140.	i ne v	alves of in a riculates are in shape
	(A)	Ricon\ ex
	(\mathbf{B})	B ₁ oncave
	(C)	Conical
	(L)	Circular
	` <i>Y</i>	
141.	In the	Gondwanaland, India was NOT adjacent to
	(A)	Africa
	(A)	Australia
	(B)	Antarctica
	(C)	South America
	(D)	South America
		4 \>

142.	The space between the dunes is known as
	(A) Oasis (B) Gassis (C) Col (D) Wadies
143.	The organ by which most Brachiopods attach themselves to the substratum is known as
	(A) Pedicle (B) Brachidia (C) Lopophore (D) Pallium
144.	Sandstones consisting of 60% quartz and 30 34% feldspar are called
S. C.	(A) Arkose(B) Graywacke(C) Grit(D) Free stone
145.	Young's modulus is obtained by
	 (A) Stress (B) Rail of stress to strail (C) Strain (D) Ratio of transverse strain to longitudinal strain
146.	Daonella limes and Daonella shales belong to
	Daonella limes and Daonella shales belong to (A) Tower Triassic (B) Middle Triassic (C) Upper Triassic (L) None of the above
147.	Eohippus is also known as

(A) Pliocene horse(B) Cretaceous horse(C) Eocene horse(D) Miocene horse

- 148. Trace fossils are known as
 - Organic fossils
 - Ichnofossils (B)

 - (C) Ripple fossils(D) None of the above
- The path finder element of gold is 149.
 - (A) As
 - (B) Se
 - (C) Mo
 - SO_4 (D)
- How many faces does the Ditetragonal pyra. iidal form bave
 - 8 (A)
 - 16 (B)
 - (C) 24
 - 32 (D)

