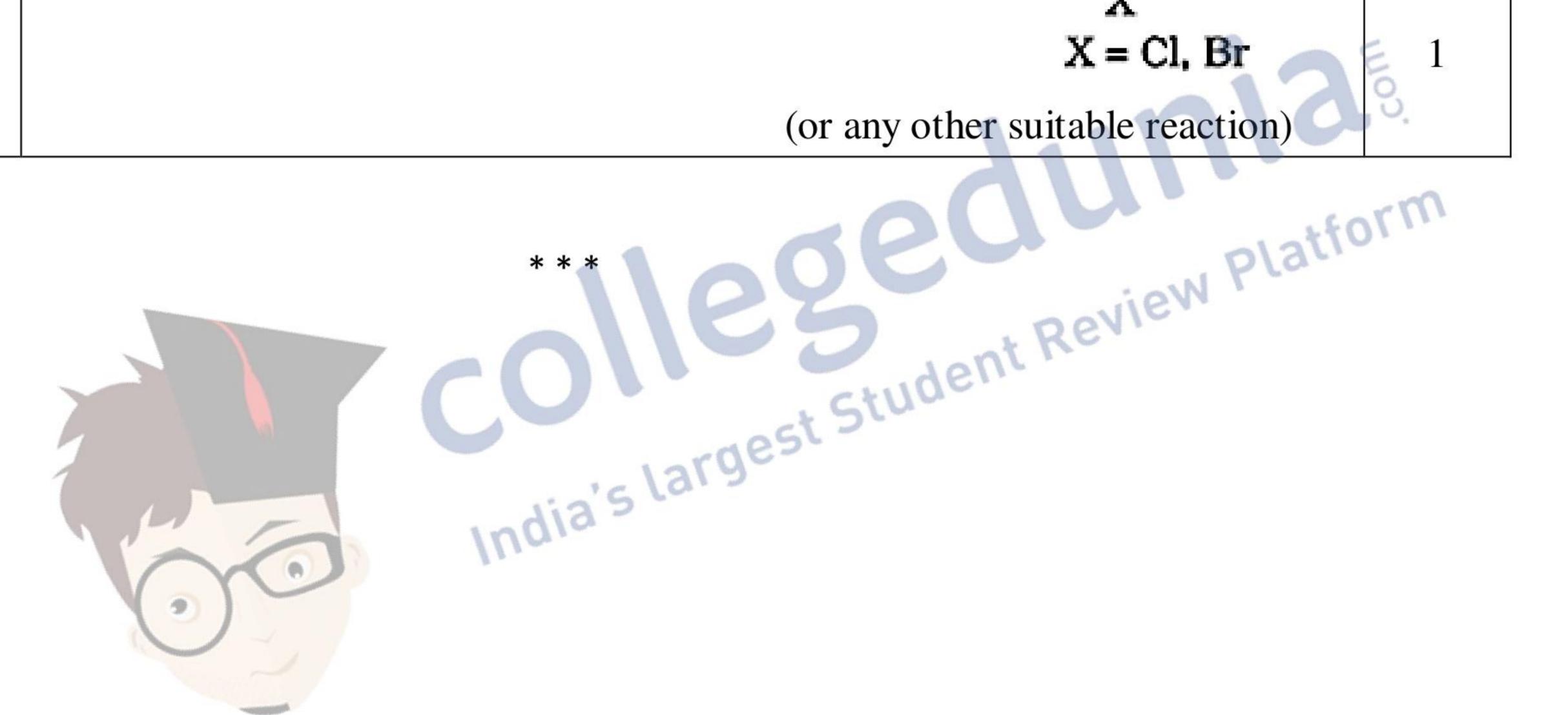
MARKING SCHEME

Senior Secondary School Examination TERM-II, 2022

CHEMISTRY (Subject Code-043)

[Paper Code: 56/6/1]

Q. No.	EXPECTED ANSV	VER / VALUE POINTS	Marks
	SECT	ΓΙΟΝ—Α	
1.	(a) First order. (b)		1
	Order	Molecularity	
	The sum of powers of the concentration of the reactants in the rate law expression is called the order of a reaction.	The number of reacting species (atoms, ions or molecules) taking part in an elementary chemical reaction.	
	Order of a reaction can be zero or fraction or negative.	The Molecularity of a reaction cannot be zero or fraction or negative. Any one) or (any other correct difference)	5. 1
2.	kept between two electrodes with are length / Conductivity observed for on (b) S cm ² mol ⁻¹	ion containing one mole of electrolyte a of cross section A and distance of unit no molar solution.	
	(c) Am decreases with an increase in in concentration.	concentration or increases with decrease (Any two)	1 X 2
3.	(a) C ₆ H ₅ COOH < FCH ₂ COOH < NO	D ₂ CH ₂ COOH	1
	(b) Butanal / Butan-1-al		1
	SEC	ΓΙΟΝ—Β	
4.	$ \Lambda_{m} = \frac{\mathbf{K} \times 1000}{c} $ $ 3.905 X 10^{-5} X 1000 $		1/2
	$= \frac{0.001}{0.001}$ = 39.05 S cm ² mol ⁻¹	(Deduct ½ marks if no or incorrect unit)	1
	Degree of dissociation		
	$\alpha = \frac{\wedge_m}{\wedge_{m^\circ}}$		1/2
	$= \frac{39.05}{390.5} = 0.1$		1/2


5.	(a) The movement of colloidal particles under an applied electric potential.	
	(b) Yes.	1
	(c) The process of settling colloidal particles is coagulation / The process of	1
	converting colloidal solution into precipitate.	1
	OR	\$2.780
5.	(a) Adsorption: The accumulation of molecular species at the surface rather	
	than in the bulk of a solid or liquid is termed adsorption.	
	(b) Lyophobic sol: The dispersed phase has little or no affinity for the	
	dispersion medium / solvent-repelling sols.	
	(c) Multimolecular colloid: On dissolution, a large number of atoms or smaller	
	molecules of a substance aggregate together to form species having the size	
	in the colloidal range (1–1000 nm).	1 x 3
6 (a)	(i) +3	1
	(ii) Due to the poor shielding effect of d-electrons and increase in effective	
	nuclear charge.	1
	(iii) V ³⁺ : 2 unpaired electrons, Ti ³⁺ : 1 unpaired electron.	1/2, 1/2
	OR	
6 (b)	(i) $Ce^{3+} = [Xe] 4f^{1} = 1$ unpaired electron	6
	$\mu = \sqrt{n(n+2)}$	1/2
	μ - γ - (11 + 2)	-m
	$\mu = \sqrt{1(1+2)} = \sqrt{3}$	
	= 1.75 B W	1/2
	(ii) Copper in +2 oxidation state has incompletely filled d-orbital.	1
	(iii) Sc ³⁺ has no unpaired electrons / no d-d transition / d ⁰ configuration	
	whereas in Ti ³⁺ with one unpaired electron shows d-d transition.	1
7 (a)	(i) Zero order	1
30 (250)	(ii) -k	1
	(iii) $mol L^{-1} s^{-1}$	1
	OR	
7 (b)	$k = \frac{0.693}{1.0000} = 0.0288 \text{ min}^{-1}$	1/2
	24	
	$t = \frac{2.303}{\nu} \log \frac{a}{a - \nu}$	1/2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$t = \frac{10g}{0.0288} \frac{10g}{100 - 25}$	
	$t = \frac{2.303}{0.0288} \log \frac{4}{3}$	
	t = 79.96 (log 4 - log 3)	1
	$t = 79.96 \times 0.125$	
	= 9.99 min	1
	(Deduct ½ marks if no or incorrect unit)	
	OR	
	$1_{c} = \frac{0.693}{\text{min}^{-1}}$	
	$K = \frac{1}{24}$ IIIII ²	1/2
	$\frac{0.693}{100} = \frac{2.303}{100} = \frac{a}{100}$	1/2
	t a-x	

	2 2 2 2 2	
	$=\frac{2.303}{100} \log \frac{100}{1000.05}$	
	t 00-25 $2.303 X 24 4$	
	$t = \frac{100}{0.693} \log \frac{1}{3}$	1
	t = 79.75 (log 4 - log 3)	
	$t = 79.75 \times 0.125$	
		1
	= 9.97 min	
	(Deduct ½ marks if no or incorrect unit)	
8.	(a) CH ₃ CH ₂ NHCH ₂ CH ₃	1
	(b) $A = C_6H_5NH_2$,	1
	$B = C_6H_5NHCOCH_3$	1
9.	(a) hexaamminecobalt(III) chloride	1
	(b) tetrachloridonicklate (II)	1
	(c) Potasssium hexacyanidoferrate (III)	1
10.	(a) Due to incompletely filled d-orbitals / due to the participation of both (n-1)	1
	d and ns electrons.	
	(b) Due to high $\Delta_a H^{\circ}$ and low $\Delta_{hyd} H^{\circ}$.	1
	(c) Cr^{3+} is more stable in +3 oxidation state due to t_{2g}^{3} configutation.	1
	OD	
10		S.
10.	• The steady decrease in the atomic / ionic radii of the lanthanoid series with the increase in atomic number.	1
	 (i) 4d and 5d series elements have almost identical atomic radii. (ii) Difficulty in the separation of Lanthanoids. 	rm
	(ii) Difficulty in the separation of Lanthanoids.	
	(iii) Similar physical and chemical properties.	
	(iv) Basic character of the lanthanide hydroxides M(OH) ₃ decreases with	
	increase in atomic number. (Any two consequences)	
	increase in atomic number. (Any two consequences)	1 x 2
11.	(a) Aryl halides do not undergo nucleophilic substitution with the anion	1
	formed by phthalimide.	
	(b) In aniline, due to resonance lone pair of electrons on N is less available	
	while it is easily available in alkyl amines due to electron donating nature (+I	
	effect) of alkyl group / Due to electron withdrawing nature of the aryl group in	1
	aniline while electron donating nature of alkyl group in alkyl amine.	
	(c) $C_2H_5NH_2 < (C_2H_5)_3 N < (C_2H_5)_2NH$	1
10	(a) Ethanal	4
12.	(b) On heating with Tollens' reagent, propanal forms a silver mirror whereas	1
	propanone does not.	1
	(Or any other suitable chemical test)	
	(c) PCC	1
	(d) (i)	
	OH	
	A = / Propan-2-ol,	
	B = CH ₃ COCH ₃ / Propanone /Acetone	
	2 - Chije Chij / Propundic / Procedic	

CH_3 — C — NH_2 $C = CH_3$ / Propanone hydrazone	½ x 4
$D = CHI_3 / Iodoform$ OR	
(d)(ii) (I)	1
$C = O \xrightarrow{Zn-Hg} CH_2 + H_2O$	
(or any other suitable reaction)	
(II)	
R-CH ₂ -COOH $\frac{(i) X_2/\text{Red phosphorus}}{(ii) H_2O}$ R-CH-COOH	
X	
X = Cl, Br	§ 1
(or any other suitable reaction)	

