NEW COURSE STRUCTURE- To be effective from academic session 2018-19 Based on CBCS & OBE model

for

M.Sc.(Physics)

Department of Physics B.I.T. Mesra, Ranchi 98A, Academic Council, 2nd May, 2018

CBCS based Course Structure & Syllabus for MSc. (Physics) programme

Important notes:

> The basic criteria of UGC have been followed in preparing the course structure of this programme.

Department Vision

To become an internationally recognized centre of excellence in academics and research in the area of Physics and related inter-disciplinary fields.

Department Mission

The Department of Physics (previously known as Department of Applied Physics) since its inception in 1955 has played a pivotal role in the institute. This course aims to train the young students with the following objectives:

- > To impart high quality Science education in a vibrant academic ambience.
- > To prepare students to take up challenges as a researcher in diverse areas of theoretical and experimental physics.
- ➢ Excellent lab and internet facilities.
- > Opportunity of pursuing high end research as project work.
- > Students to take admission in the Ph.D. programs of different prestigious research organizations.
- During 3rd and 4th semesters, students may opt special papers for the following areas: Theoretical and Computational Physics, Condensed Matter Physics, Electronics, Photonics and Plasma Sciences.

Program Educational Objectives of M.Sc.(Physics):

- 1. To impart high quality education in Physical Sciences.
- 2. To prepare students to take up challenges as globally competitive physicists/researchers in diverse areas of theoretical and experimental physics.
- 3. To make the students technically and analytically skilled.
- 4. To provide opportunity of pursuing high end research as project work.
- 5. To give exposure to a vibrant academic ambience.
- 6. To create a sense of academic and social ethics among the students.
- 7. To prepare them to take up higher studies of interdisciplinary nature.

Program Outcomes of M.Sc.(Physics):

- 1. The students will obtain good knowledge in Physical Sciences. They will be trained to compete national level tests like UGC-CSIR NET, JEST, GATE, etc., successfully.
- 2. They will be prepared to take up challenges as globally competitive physicists/researchers in diverse areas of theoretical and experimental physics.
- 3. They will be technically and analytically skilled enough to pursue their further studies.
- 4. They will have a sense of academic and social ethics.
- 5. They will be capable of taking up higher studies of interdisciplinary nature.
- 6. They will be able to recognize the need for continuous learning and develop throughout for the professional career.

Course Structure for M.Sc.(Physics)

Level			Code no.	Name of the subjects	L	Τ	Р	С
ľ								
				THEORY				
		PC	PH 401	Mathematical Method in Physics	3	0	0	3
	H		PH 402	Electrodynamics	3	0	0	3
	er		PH 403	Classical Mechanics	3	0	0	3
	Semester-		PH 404	Quantum Mechanics	2	1	0	3
4	Je		PH 405	Modern Computational Techniques &	2	0	0	2
-	n			Programming				
	Š	OE		Open Elective II	3	0	0	3
				LABORATORIES				
		PC	PH 406	Modern Computational Techniques &	0	0	4	2
				Programming Lab				
			PH 407	Modern Physics Lab	0	0	4	2
2]	MC	MT204	Constitution of India	2	0	0	Non-
								Credit
							Fotal	21

Level			Code no.	Name of the subjects	L	Т	P	С
		Category		THEORY				
		PC	PH 408	Statistical Physics	3	1	0	4
	Semester-		PH 409	Atomic and Molecular Spectroscopy	3	1	0	4
	ES		PH 410	Electronic Devices & Circuits	3	0	0	3
4	Ĕ		PH 411	Condensed Matter Physics	3	0	0	3
	Ģ	OE		Open Elective III	3	0	0	3
				SESSIONAL / LABORATOR	Y			
		PC	PH 412	Electronics Lab	0	0	4	2
			PH 413	Condensed Matter Physics Lab	0	0	4	2
						I	Total	21

		Category	Code no.	Name of the subjects	L	Т	P	С
Level								
				THEORY				
	Π	PC	PH 501	Nuclear and Particle Physics	3	1	0	4
			PH 502	Advanced Quantum Mechanics	3	1	0	4
	ter		PH 503	Laser Physics and Applications	3	1	0	4
	SS	PE	PH 504 to PH 512	PE- V	4	0	0	4
5	Semester		(Annexure II)	One paper from Either Group A or B or C or D or E: Specialization				
		PE	PH 500 (Annexure II)	Project (Phase-I) from Either Group A or B or C or D or E				4
				LABORATORIES				
		PC	PH 513	Laser Physics Lab	0	0	4	2
							Total	22

Level		Category	Code no.	Name of the subjects	L	T	Р	С
				THEORY				
5	emester-I	PE	PH 513 to PH 530 (Annexure II)	 PE - VI: One paper from Either Group A or B or C or D or E: Specialization PE - VII: One paper from Either Group A or B or C or D or E: 		0	0	4
	Ň		PH 550	Specialization Project (Phase-II) from Either Group A or B or C or D or E				8
				Total			1	16

Total Credits of M.Sc. Physics (I to IV Semesters) = 80

<u>Note:</u> The contents of laboratory papers are designed to meet the course objectives and outcomes of their respective theory papers.

Annexure II

PE	Pre-requisites	Subjects	
PE-V	One paper from	Group A- Theoretical and Computational Physics:	
	Either Group A	Numerical Methods for Physicists	PH 504
	or B or C or D or	• Theory of Solids	PH 505
	Ε	Group B- Condensed Matter Physics:	
		Theory of Solids	PH 505
		Functional Materials	PH 506
		Group C – Photonics:	
		• Fiber and Integrated Optics	PH 507
		Quantum & Nonlinear Optics	PH 508
		Group D- Electronics	
		Instrumentation and Control	PH 509
		 Physics of Low dimensional Semiconductors Devices 	PH 510
		Group E- Plasma Sciences:	
		 Introduction to Plasma Physics 	PH 511
		 Plasma Processing of Materials 	PH 512
PE -VI	Two papers from	Group A- Theoretical and Computational Physics:	
to VII	any group	Theoretical and Computational Fluid Dynamics	PH 514
	(Papers shall be	• Theoretical and Computational Condensed Matter Physics	PH 515
	chosen from same	Nonlinear Dynamics and Chaos	PH 516
	group in IX and X	Group B- Condensed Matter Physics:	
	Semesters)		PH 517
		Nonconventional Energy MaterialsCryogenic Physics	PH 518
			PH 519
		Physics of Thin Films The set of Dislocation and Development	PH 520
		Theory of Dielectrics and Ferroics Theoretical Comparison of Matter Physics	PH 515
		Theoretical and Computational Condensed Matter Physics	111515
		Group C- Photonics:	
		Photonic and Optoelectronic Devices	PH 521
		Holography and Applications	PH 522
		Quantum photonics and applications	PH 523
		Introduction to Nanophotonics	PH 524
		Group D- Electronics:	
		Microprocessor and Microcontroller Applications	PH 525
		Integrated Electronics	PH 526
		Microwave Electronics	PH 527
		Croup E Plasma Sajanaas:	
		Group E- Plasma Sciences:	PH 528
		Theory of PlasmasPlasma Confinement	PH 528 PH 529
			PH 529 PH 530
		Waves and Instabilities in Plasma	PH 530 PH 519
		Physics of Thin Films	111 517

M.Sc. Physics (I -IV Semester)

Semester	Subjects	Credit	Total
Ι	Mathematical Method in Physics	3	21
	Electrodynamics	3	
	Classical Mechanics	3	
	Quantum Mechanics	3	
	Modern Computational Techniques &	2	
	Programming		
	Open Elective I	3	
	Modern Computational Techniques &	2	
	Programming Lab		
	Lab-II (Modern Physics Lab)	2	
II	Statistical Physics	4	21
	Atomic and Molecular Spectroscopy	4	
	Electronics Devices & Circuits	3	
	Condensed Matter Physics	3	
	Open Elective II (Other Dept)	3	
	Lab III (Electronics Lab)	2	
	Labs IV (Condensed Matter Physics Lab)	2	
III	Nuclear and Particle Physics	4	22
	Advanced Quantum Mechanics	4	
	Laser Physics and Applications	4	
	PE - V	4	Papers shall be
	One paper from Either Group A or B or C or D or E: Specialization		chosen from same group in I.MSc. IX and X Semesters
	Project from Either Group A or B or C or D or E	4	
	Lab –V (Laser Physics Lab)	2	
IV	PE - VI	4+4	16
	One paper from the same Group A or B or C or D		
	or E		
	PE - VII		
	One paper from the same Group A or B or C or D or E		
	Project (Phase-II) from Either Group A or B or C or D or E	8	
		Total	80

Internship (In-house/External) of at least 2 months should be done by the students (Non-credit)

Course Assessment tools & Evaluation procedure for Theory Papers

	Direct	Assessment
--	--------	------------

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Indirect Assessment

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Course Assessment tools & Evaluation procedure for Laboratory Papers

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Semester I

COURSE INFORMATION SHEET

ourse code: PH 401 ourse title: Mathematical Methods in Physics e-requisite(s): Mathematical Physics	
- requisite(s):	
edits: 3 L: 3 T: 0 P: 0 ass schedule per week:	
ass senedule per week.	
mester / Level: I	
anch: PHYSICS	
me of Teacher:	
Code: Title: Mathematical Methods in Physics L-	-T-P-C
—	3-0-0-3]
Course Objectives: The objectives of the course are	
1. To train the students to solve problems related to complex variables which contain real and in	naginary parts.
2. To teach the use of different special functions in solving physical problems.	
3. To provide an understanding of Integral Transform and Probability.	
4. To teach about an understanding of Tensors.	
5. To give the basic knowledge of Group theory.	
Course Outcomes: After completion of the course students should be able to	
•	ablas
1. The students will be able to solve different physical problems which contain complex varia	
2. They will be familiarized with different special functions like Associated Legendre Polyno	miais,
Polynomials, etc. and their solutions in solving different physical problems.	
3. This module will be helpful to obtain knowledge of Fourier and Laplace Transforms in solv	-
different problems of Mechanics and Electronics etc. The module will also impart some bas	sic
knowledge of Probability.	
4. Students will be able to learn about the concept and uses of Tensors.	
5. Useful to obtain the basic knowledge of Group theory and its applications.	
Module-1 Complex variables	[6]
Analytic functions, Cauchy-Riemann conditions, Cauchy's Integral theorem and	Integral
formula, Laurent expansion, Singularities, Evaluation of residues, Residue theorem.	
Module-2 Special Functions	[8]
Associated Legendre Polynomials, Recurrence relations, Rodrigue's formula, Orthogor	nality of
Legendre Polynomials, Hermite Polynomials, Green's function.	[10]
Module-3 Integral Transform	[10]
Laplace Transform, Inversion, Applications of Laplace Transform; Fourier Tra Inversion, Fourier Sine and Cosine transform, Convolution Theorem, Fourier transf	
derivatives, Applications of Fourier Transform.	
Probability	
Elementary probability theory, simple properties, random variables, binomial and	normal
distribution, centre limit theorem	norma
Module-4 Tensors	[8]
Covariant, Contravariant and Mixed tensors, Tensors of rank 2, Algebra of tensors	
Difference & Product of Two Tensors, Contraction, Quotient Law of Tensors, Pseudo	
dual tensors, Tensors in General Coordinates, Tensor derivative operators, Jacobians,	, Inverse
of Jacobians. Diad and Triad.	
Module-5 Introductory group theory	[8]
Review of sets, Mapping and Binary Operations, Relation, Types of Relations,	-
Elementary properties of groups, uniqueness of solution, Subgroup, Centre of a group, of a subgroup: SU(2), O(3).	, Co-sets

Text books:

T1: Hans J. Weber George B. Arfken, Mathematical Methods for Physicists, (2005), Academic Press.

T2: L. A. Pipes, Applied Mathematics for Engineering and Physics (1958) McGraw-Hill.

T3: Elements of Group Theory for Physicists by A. W. Joshi, 1997, John Wiley.

Reference books:

R1: Charlie Harper, Introduction to Mathematical Physics (2003), Prentice-Hall India.

R2: Erwin Kreyszig, Advanced Engineering Mathematics (1999), Wiley.

R3: N. P. Bali, A. Saxena and N.C. S. W. Iyengar, A Text Book of Engineering Mathematics (1996), Laxmi Publications (P) Ltd.

R4: Group Theory and its Applications to Physical Problems by Morton Hamermesh, 1989, Dover

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
End Sem Examination Marks			\checkmark	\checkmark	\checkmark
Quiz 1					
Quiz 2			\checkmark		
Quiz 3					

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e		
1	Н	L	L	L	L		
2	L	Η	L	L	L		
3	L	L	Н	L	L		
4	L	L	L	Н	L		
5	L	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Н	М	Н	Н	
2	Н	Н	Н	М	Н	Н	
3	Н	Н	Н	М	Н	Н	
4	Н	Н	Н	М	Н	Н	
5	Н	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods										
CD	Course Delivery methods	Cours Outco		Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1		CD1 and CD2							
CD2	Tutorials/Assignments	CO2		CD1 and CD2							
CD3	Seminars	CO3		CD1 and CD2							
CD4	Mini projects/Projects	CO4		CD1 and CD2							
CD5	Laboratory experiments/teaching aids	CO5		CD1 and CD2							
CD6	Industrial/guest lectures										
CD7	Industrial visits/in-plant training										
CD8	Self- learning such as use of NPTEL materials and internets										
CD9	Simulation										

Week	Lect.	Fentati	Ch.	Fopics to be covered	Гext	COs	Actual	Methodo	Remarks
No.	No.	ve	No.		Book /	mappe	Content	logy	by
		Date			Refere	d	covered	used	faculty if
					nces				any
1-2	L1-L6			Analytic functions, Cauchy-	T1, R1	1		PPT	
				Riemann conditions, Cauchy's				Digi	
				Integral theorem and Integral				Class/	
				formula, Laurent expansion,				Chock	
				Singularities, Evaluation of				-Board	
				residues, Residue theorem.				Dourd	
3-5	L7-			Associated Legendre Polynomials,	T1,	2			
	L14			Recurrence relations, Rodrigue's	T2, R2				
				formula, Orthogonality of Legendre					
				Polynomials, Hermite Polynomials,					
				Green's function.					
5-7	L15-			Laplace Transform, Inversion,	T1,R3	3			
	L20			Applications of Laplace					
				Transform; Fourier Transform,					
				Inversion, Fourier Sine and Cosine					
				transform, Convolution Theorem,					
				Fourier transforms of derivatives,					
				Applications of Fourier Transform.					
7-8	L21-			Elementary probability theory,	T2, R2	3			
	L24			simple properties, random					
				variables, binomial and normal					
				distribution, central limit theorem					

9-11	L25-	Covariant, Contravariant and	T1, T2	4		
	L32	Mixed tensors, Tensors of rank 2,				
		Algebra of tensors: Sum,				
		Difference & Product of Two				
		Tensors, Contraction, Quotient				
		Law of Tensors, Pseudo tensors,				
		dual tensors, Tensors in General				
		Coordinates, Tensor derivative				
		operators, Jacobians, Inverse of				
		Jacobians. Diad and Triad.				
11-14		Review of sets, Mapping and	T3, R4	5		
		Binary Operations, Relation, Types				
		of Relations, Groups: Elementary				
		properties of groups, uniqueness of				
		solution, Subgroup, Centre of a				
		group, Co-sets of a subgroup:				
		SU(2), O(3).				

Course code: PH 402 Course title: Electrodynamics Pre-requisite(s): Electricity and Magnetism Co- requisite(s): Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Code: **Title: Electrodynamics** L-T-P-C PH 402 [3-0-0-3] **Course Objectives** This course enables the students: Introducing the mathematical tools used in electrodynamics. A. B. Review of electrostatics and magnetostatics in matter. Providing easy headway into the covariant formulation of Maxwell's equations. C. D. Teaching basic principles of waveguides and transmission lines. E. Rendering insights into fields generated by oscillating sources, and their applications. **Course Outcomes** After the completion of this course, students will be: Ability to use basic mathematical tools to solve problems in electrodynamics. 1. 2. Gaining proficiency in electrostatics and magnetostatics. 3. Obtaining command on four-vector and tensor notations. 4. Learning about TM, TE and TEM modes in waveguides. 5. Understanding radiations by moving charges. Module-1 The concept of a scalar potential. Poisson's and Laplace's equations for scalar potential. Green's [8] theorem, Electrostatic field energy density. Solutions of Laplace's equation in rectangular, spherical and cylindrical coordinates using the method of separation of variables, Method of images, Multipole expansion of potential due to a localized charge distribution. Electrostatics in matter; Polarization and electric displacement vector. Electric field at the boundary Module-[8] of an interface, Linear dielectrics. Magnetostatics, Biot-Savart Law, Ampere's Law, Scalar and 2 Vector potentials, Magnetic moment of a current distribution. Macroscopic magnetostatics, Magnetization. M and H vectors, Boundary conditions. Electromagnetic induction, Faraday's Law, Maxwell's equations, Maxwell's equations in matter, Module-[8] Conservation of charge, Poynting's theorem, Solutions of Maxwell's Equations, Covariant 3 formulation of electrodynamics, Inhomogeneous wave equations and their solutions. Electromagnetic waves in matter, Reflection and refraction at a plane interface between dielectrics, Module-[8] Fresnel's equations. Phase velocity and group velocity, spreading of a pulse propagating in a 4 dispersive medium, propagation in a conductor, skin depth. Transmission lines and wave guides; Dynamics of charged particles in static and uniform electromagnetic fields. Module-EM Field of a localized oscillating source. Fields and radiation in dipole and quadrupole [8] approximations. Antenna; Radiation by moving charges, Lienard-Wiechert potentials, total power 5 radiated by an accelerated charge, Lorentz formula. **References:** 1. Introduction to Electrodynamics by D. J. Griffiths 2. Classical Electrodynamics by J. D. Jackson 3. Lectures on Electromagnetism by A. Das

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Indirect Assessment -

Student Feedback on Faculty
 Student Feedback on Course Outcome

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination Marks					
Quiz I					
Quiz II					

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Н	М	-	М	L
В	Н	Н	-	L	-
С	Н	М	Н	Н	М
D	Н	L	-	Н	L
E	Н	L	М	М	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes							
	a	b	c	d	e	f		
1	Н	Н	Н	Н	Н	Η		
2	Н	Н	Н	Н	Н	Н		
3	Н	Н	Н	Н	Н	Н		
4	Н	Н	Н	Н	Н	Н		
5	Н	Н	Н	Н	Н	Н		

Week No.	Lect.No.	Ch. No.		pped	Actual Content covered	dology used	
1	L1-L4		The concept of a scalar potential. Poisson's and Laplace's equations for scalar potential. Green's theorem, Electrostatic field energy density. Solutions of Laplace's equation in rectangular coordinates	1			

2	ICIO	T 1 7		1	 	
2	L5-L8	Laplace's equation in spherical and		1		
		cylindrical coordinates using the				
		method of separation of variables				
		Method of images, Multipole expansion				
		of potential due to a localized charge				
		distribution.				
3	L9-	Electrostatics in matter; Polarization and	-	2		
	L12	electric displacement vector. Electric				
		field at the boundary of an interface				
		Linear dielectrics. Magnetostatics, Biot	-			
4	L 12	Savart Law, Ampere's Law,	T1 T2	2		
4	L13-	Scalar and Vector potentials		2		
	L16	Magnetic moment of a curren				
		distribution. Macroscopie				
		magnetostatics, Magnetization. M and	1			
		H vectors, Boundary conditions.				
5	L17-	Electromagnetic induction, Faraday'		3		
	L20	Law, Maxwell's equations, Maxwell'				
		equations in matter, Conservation o	f			
		charge, Poynting's theorem,				
6	L21-	Solutions of Maxwell's Equations	, T1,T3	3		
	L24	Covariant formulation o	f			
		electrodynamics, Inhomogeneous wave	•			
		equations and their solutions.				
7	L25-	Electromagnetic waves in matter	, T1,T3	4		
	L28	Reflection and refraction at a plane				
		interface between dielectrics, Fresnel'	5			
		equations. Phase velocity and group)			
		velocity, spreading of a pulse	e			
		propagating in a dispersive medium,				
8	L29-32	propagation in a conductor, skii	n T1,T3	4		
		depth. Transmission lines and wave	•			
		guides; Dynamics of charged particle	5			
		in static and uniform electromagnetic				
		fields.				
9	L33-	EM Field of a localized oscillating	g T1,T3	5		
	L36	source. Fields and radiation in dipole				
		and quadrupole approximations.				
10	L37-	Antenna; Radiation by moving charges	, T1,T3	5		
	L40	Lienard-Wiechert potentials, tota				
		power radiated by an accelerated				
		charge, Lorentz formula.	-			
		enarge, Dorentz formula.	1			

Course code: PH 403

Course title: Classical Mechanics

Pre-requisite(s):): Classical Dynamics (or similar papers) Or Mechanics and Electricity & Magnetism at UG level **Co- requisite(s):** Credits: P: 0 **3** L: 3 T: 0

Class schedule per week:

Class: M.Sc.

Semester / Level: I

Branch: PHYSICS Name of Teacher:

Code:		Title: Classical Mechanics	L-T-P-C
PH 40.	3		[3-0-0-3]
Cour	se Obj	ectives	
		enables the students:	
	А.	To define the concepts of Langrangian Mechanics.	
	В.	To interpret the concepts of Hamiltonian Mechanics.	
	С.	To explain generating function, canonical transformation & Poisson brackets.	
	D.	To illustrate the dynamics of a rigid body and non-inertial frames of reference.	
	E.	To formulate the concepts of coupled oscillators.	
Cour	se Out	comes	
		mpletion of this course, students will be able to:	
7 11 101	1.	Formulate the Lagrangian mechanics concepts and solve the problems with the help of	
	1.	Lagrangian mechanics.	
	2.	Compare the formulation of Hamiltonian Lagrangian mechanics and solve the problems	
		of classical and relativistic mechanics	
	3.	Solve the problems of generating function, canonical transformation & Poisson brackets.	
	4.	Formulate the equations of rigid body dynamics and demonstrate the examples of non-	
		inertial frames of reference.	
	5.	Solve the equations of coupled oscillator and to examine the two coupled pendulums, and	
		double pendulum related problems.	
Modu	ule-1	Constraints, classification of constraints, generalized coordinates, principal of virtual work, D	[10]
		Alembert's principal, Langrange's equations of motion, properties of kinetic energy function,	
		theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi	
		integrals and energy conservation, concept of symmetry, invariance under Galilean	
		transformation, velocity dependent potential.	
		Two body central force problem: reduction of two body problem to equivalent one body	
		problem, equation of motion under central force and first integrals, differential equation for an	
		orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.	
Modu	ıle-2	Hamilton's function and Hamilton's equation of motion, configuration space, phase space and	[7]
		state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and	
	1 0	Hamiltonian of a charged particle in an electromagnetic field.	
Modu	ile-3	Generating function, Conditions for canonical transformation and problem. Poisson Brackets,	[5]
		its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance	
M - 1-	-1- 4	of PB under canonical transformation. Lagrange bracket.	[10]
Modu	lle-4	Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular	[10]
		momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid body, symmetric bodies, moments of inertia for different body system, Euler's equation of	
		motion for a rigid body by Newtonian method and Lagrange's method Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force,	
		Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface	
		of the earth, air flow on the surface of the earth, projectile motion	
Modu	ıle-5	Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator,	[8]
mout	a10-J	differential equations for coupled oscillator, kinetic and potential energies of the coupled	[0]
		oscillators, theory of small oscillations, examples of coupled oscillator: two coupled	
		and thurs, double nondulum	

pendulums, double pendulum

Reference books:

- 1. Classical Mechanics by H. Goldstein, Pearson Education Asia.
- 2. Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma Book Jovanovich College Publisher.
- 3. Classical Mechanics by P. V. Panat, Narosa Publishing Home,, New Delhi.
- 4. Classical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- 5. Introduction to Classical Mechanics by R. G. Takwale and P. S. Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- 6. Landau and Lifsitz

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination		\checkmark	\checkmark		
End Sem Examination	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I		\checkmark	\checkmark		
Quiz II				\checkmark	\checkmark

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome
- **3.** Teacher's assessment

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

		Course Outcomes					
Course Objectives	1	2	3	4	<u>5</u>		
A	Н	Μ	Μ	L	L		
В	Н	Η	Μ	L	L		
С	М	Μ	Η	L	L		
D	L	L	L	Н	L		
Ε	L	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes							
Outcome #	a	b	С	d	e	f		
1	Н	Н	Н	Н	Н	Н		
2	Н	Н	Н	Н	Н	Н		
3	Н	М	М	Н	Н	М		
4	Н	L	L	М	Н	М		
5	Η	М	Н	М	Н	М		

	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2				
CD2	Tutorials/Assignments	CO2	CD1 and CD2				
CD3	Seminars	CO3	CD1 and CD2				
CD4	Mini projects/Projects	CO4	CD1 and CD2				
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2				
CD6	Industrial/guest lectures	-	-				
CD7	Industrial visits/in-plant training	-	-				
CD8	Self- learning such as use of NPTEL materials and internets	-	-				
CD9	Simulation	-	-				

Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodol	Remarks
No.	No.	Date	No.		Book /	mapp	Content	ogy	by
					Refere	ed	covered	used	faculty
					nces				if any
	L1-L3			Constraints, classification	T1				
				of constraints, generalized	T2				
				coordinates, principal of					
				virtual work, D Alembert's					
				principal, Langrange's					
				equations of motion					
	L4-			properties of kinetic energy	T1				
	L6			function, theorem on total	T2				
				energy, generalized					
				momenta, cyclic-					
				coordinates, integrals of					
				motion, Jacobi integrals					
				and energy conservation,					
				concept of symmetry					
	L7-			invariance under Galilean	T1				
	L10			transformation, velocity	T2				
				dependent potential.					
				Two body central force					
				problem: reduction of two					
				body problem to equivalent					
				one body problem,					
				equation of motion under					
				central force and first					
				integrals, differential					

		r		
	equation for an orbit,			
	Kepler's law, stability of			
	orbits, virial theorem,			
	scattering in a central force			
	field			
L11-	Hamilton's function and	T1		
L13	Hamilton's equation of			
LIJ	motion	12		
		m 1		
L14	configuration space, phase	T1		
	space and state space	T2		
L15-	Lagrangian and	T1		
L17	Hamiltonian of relativistic	T2		
	particles, Relativistic			
	Lagrangian and			
	Hamiltonian of a charged			
	particle in an			
	electromagnetic field.			
L 10		TT1		
L18,	Generating function,			
L19	Conditions for canonical	T2		
	transformation and			
	problem.			
L20-		T1		
L22	definitions, identities,	T2		
	Poisson theorem, Jacobi-			
	Poisson theorem, Jacobi			
	identity, invariance of PB			
	under canonical			
	transformation. Lagrange			
	bracket.			
L23-		TT1		
	Dynamics of a Rigid Body:			
L27	Rigid body and space			
	reference system, Euler's			
	angles, angular momentum			
	and inertia tensor, principal			
	moment of inertia,			
	rotational kinetic energy of			
	rigid body, symmetric			
	bodies, moments of inertia			
	for different body system,			
	Euler's equation of motion			
	for a rigid body by			
	Newtonian method and			
	Lagrange's method	T 1		
L28-		T1		
L32	reference, fictitious force,	T2		
	uniformly rotating frames,			
	coriolis force, Foucault's			
	pendulum, Larmor			
	precession, effects of			
	Coriolis force on: river			
	flow on the surface of the			
	earth, air flow on the			
	projectile motion.			

L32,	Coupled Oscillator: T1	
L33	Potential energy and T2	
	equilibrium of one	
	dimensional oscillator,	
L34-	differential equations for T1	
L38	coupled oscillator, kinetic T2	
	and potential energies of	
	the coupled oscillators,	
	theory of small oscillations,	
L39,	examples of coupled T1	
L40	oscillator: two coupled T2	
	pendulums, double	
	pendulum.	

Course code: PH 404 Course title: Quantum Mechanics Pre-requisite(s): Previous papers of Quantum Mechanics Co- requisite(s): Credits: 3L: 2 T:1 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Code:

PH 404

Title: Quantum Mechanics

L-T-P-C [2-1-0-3]

Course Objectives

This course enables the students to:

- A. define Heisenberg & Dirac formulation of quantum mechanics and explain their importance.-Outline the basics of crystallography and define various types of imperfections in crystals.
- B. demonstrate the linear harmonic oscillator and hydrogen-like atom using Dirac formulation-Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms.
- C. explain the angular momentum operators associated with spherical and symmetrical systems-Define ceramics and explain its types and applications.
- D. illustrate scattering theory and determine the scattering parameters.-Define polymers and composites and categorize them on the basis of their applications.
- E. formulate the approximation methods to solve real problems which are insolvable analytically-Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques.

Course Outcomes

After the completion of this course, students will be able to:

- 1. formulate the Heisenberg & Dirac formulation of quantum mechanics-explain various types of imperfections in crystals.
- 2. solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac formulation-analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques.
- 3. demonstrate angular momentum operators associated with spherical and symmetrical systems.-summarize ceramics and its types and relate their applications with properties.
- 4. explain scattering theory, formulate and solve scattering equation-classify polymers and composites based on their properties and applications.
- 5. apply the Variational principle and WKB Approximation to solve the real problems-Classify nanomaterials, their fabrication techniques and co relate the effects of confinement to nanoscale on their properties.

Module-1	Introduction to Dirac and Heisenberg Formulation:	[10]
	Linear vector space, Dirac Bra-Ket notations. Determination of eigen-values and	
	eigen-functions using matrix representations. Coordinate and momentum	
	representation. Uncertainty principle.	
Module-2	Harmonic Oscillator and Hydrogen atom problem:	[10]
	Linear harmonic oscillator, Heisenberg and quantum mechanical treatments.	
	Asymptotic behaviour, energy levels, correspondence with classical theory.	
	Spherically symmetric potential in three dimensions, hydrogen atom, wave functions,	
	eigenvalues, degeneracy, etc.	
Module-3	Angular momentum and its addition:	[10]
	Theory of angular momentum, symmetry, invariance and conservation laws, relation	
	between rotation and angular momentum. Commutation rules, eigenvalues and eigen	
	functions of the angular momentum. Stern-Gerlach experiment, spin, spin operators,	
	Pauli's spin matrices. Spin states of two spin-1/2 particles. Addition of angular	
	momenta, Clebsch-Gordon coefficients. Principle of indistinguishablity of identical	

	particles, Pauli's exclusion principle.	
Module-4	Scattering theory: Scattering Theory, differential and total scattering cross-section	[5]
	laws, partial wave analysis and application to simple cases; Integral form of	
	scattering equation, Born approximation validity and simple applications.	
Module-5	Approximation Methods: Variational Principle, WKB approximation, solution	[5]
	near a turning point, connection formula, tunnelling through barrier. boundary	
	conditions in the quasi classical case.	
Text b	ooks:	
1. J.J	. Sakurai, Modern Quantum Mechanics , Addison-Wesley Publishing Company, 1994.	
2. No	uredine Zettili, Qunatum Mechanics: Concepts and Application, Wiley Publications 2016.	
	Shankar, Principles of Quantum Mechanics, Plenum Press, 1994.	
Refere	nce books:	
1. L.I	l. Schiff, Quantum Mechanics, Tata McGraw Hill, New Delhi	
	D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, Berlin.	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Yes
projectors	
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and	Yes
internets	
Simulation	No

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

AssessmentCompoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Yes	Yes	Yes	No	No
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment	Yes	Yes	Yes	Yes	Yes

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

	Mapping of Course Outcomes onto Program Outcomes						
Course			Program	n Outcomes			
Outcome #	a	b	с	d	e	f	
1	Н	Н	Н	L	М	L	
2	Н	Н	М	L	L	L	
3	Н	М	М	L	L	L	
4	Н	М	М	L	L	L	
5	Н	Н	Н	L	Н	L	

Mapping of Course Outcomes onto Program Outcomes

Course		Course Objectives				
Outcome #	а	b	с	d	e	
1	Н	М	М	М	L	
2	М	Н	М	М	L	
3	М	М	Н	L	L	
4	М	М	Н	L	L	
5	М	М	L	L	Н	

	Mapping Between COs and Course Delivery (CD) methods						
		Course	Course Delivery				
CD	Course Delivery methods	Outcome	Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8				
CD2	Tutorials/AssignmentsCO2CD1, CD2 and C						
CD3	Seminars CO3 CD1, CD2 and C						
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8				
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8				
CD6	Industrial/guest lectures						
CD7	Industrial visits/in-plant training						
CD8	Self- learning such as use of NPTEL materials and internets						
CD9	Simulation						

Week	Lect.	Tent	Modul	Topics to be covered	Text	Cos	Actual	Methodolog	Remarks
No.	No.	ative	e		Book /	mapped	Content	yused	by
		Date			Refere		covered		faculty if
			No.		nces				any
1	L1		Ι	Linear vector space	T2	CO-1		PPT Digi	
								Class/Chal	
								k Board	
	L2-L3			Dirac Bra-Ket	T2	CO-1		PPT Digi	
				notations				Class/Chal	
								k-Board	
2	L4-6			Determination of	T1	CO-1		PPT Digi	
				eigen-values and				Class/Chal	
				eigen-functions using				k-Board	
				matrix epresentations.					
-				±		~~ .			
3	L7-8			Coordinate and	T1	CO-1		PPT Digi	
								Class/Chal	

			momentum			k-Board
			representation			
3-4	L9- L10		Uncertainty principle	Т3	CO-1	PPT Digi Class/Chal k-Board
4	L11	II	Linear harmonic oscillator	T3	CO-2	PPT Digi Class/Chal k-Board
4-5	L12- 13		Heisenberg and quantum mechanical treatments.	Т3	CO-2	PPT Digi Class/Chal k-Board
5	L14		Asymptotic behaviour, energy levels,	T1	CO-2	PPT Digi Class/Chal k-Board
5	L15		correspondence with classical theory.	T1	CO-2	PPT Digi Class/Chal k-Board
6	L16- 17		Spherically symmetric potential in three dimensions,		CO-2	PPT Digi Class/Chal k-Board
6-7	L18- 19		hydrogen atom, wave functions, eigenvalues, degeneracy, etc.	T1, T2, T3	CO-2	PPT Digi Class/Chal k-Board
7	L20- 21	III	Theory of angular momentum, symmetry, invariance and conservation laws,	T2	CO-3	PPT Digi Class/Chal k-Board
8	L22- 23		relation between rotation and angular momentum.	T2	CO-3	PPT Digi Class/Chal k-Board
8-9	L24- 25		Commutation rules, eigenvalues and eigen functions of the angular momentum.	T1	CO-3	PPT Digi Class/Chal k-Board
9	L26- 27		Stern-Gerlach experiment, spin, spin operators	T1	CO-3	PPT Digi Class/Chal k-Board
10	L28		Pauli's spin matrices. Spin states of two spin-1/2 particles.	T1, T2, T3	CO-3	PPT Digi Class/Chal k-Board
10	L29		Addition of angular momenta, Clebsch- Gordon coefficients.	T1, T2, T3	CO-3	PPT Digi Class/Chal k-Board
10	L30		Principleofindistinguishablityofidentical particles,	ŕ	CO-3	PPT Digi Class/Chal k-Board
11	L31		Pauli's exclusion principle	T3	CO-3	PPT Digi Class/Chal

						k-Board
11	L29	IV	Scattering Theory, differential and total scattering cross- section laws	T2	CO-4	PPT Digi Class/Chal k-Board
11	L30		partialwaveanalysisandapplicationtosimplecases	T2	CO-4	PPT Digi Class/Chal k-Board
12	L31		Integral form of scattering equation	T1	CO-4	PPT Digi Class/Chal k-Board
12	L32- 33		Born approximation validity and simple applications	T2	CO-4	PPT Digi Class/Chal k-Board
13	L34	V	Variational Principle, WKB approximation	T2	CO-5	PPT Digi Class/Chal k-Board
13	L35		solution near a turning point	T2	CO-5	PPT Digi Class/Chal k-Board
13	L36		connectionformula,tunnellingthroughbarrier	T2	CO-5	PPT Digi Class/Chal k-Board
14	L37		boundary conditions in the quasi classical case	T2	CO-5	PPT Digi Class/Chal k-Board

Course code: PH 405 Course title: Modern Computational Techniques & Programming Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: 2 L: 2 T: 0 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Code: PH405	Title: Modern Computational Techniques & Programming	L-T-P-C [2-0-0-2]
Course (Dbjectives:	
The idea	behind the course is to teach students to solve problem in physics using MAPLE and MATLAB. In	this regard
the objec	ives are to	
1. T	each to calculate various errors which arise while solving different equations.	
	rain them to solve systems of linear equations.	
	each them the concept of interpolation.	
	nstruct them to calculate integrals and differentials using different numerical methods. Train them to solve partial differential equations numerically.	
-	Outcomes: After completion of the course, students should be able to	
	stimate errors while solving equations.	
	ffectively use methods like matrix inversion, Gauss elimination and LU decomposition to solve line	ear
	quations.	
3. E	nrich a given set of data points using interpolation methods like cubic spline, Newton's divided diff	ference,
e	tc.	
4. N	lumerically differentiate and integrate expressions.	
5. S	olve equations from physics like heat equation, diffusion equation, etc. numerically.	
Module-1	Approximation Methods, Errors and Roots of Equations, Accuracy and precision, Truncation and round-off errors, Bracketing Methods (false position, bisection), Iteration Methods	[8]
	(Newton-Raphson and secant).	
Aodule-2	Systems of linear algebraic equations Gauss elimination, matrix inversion and LU decomposition methods.	[4]
Module-3	Curve fitting and Interpolation Least squares regression, Linear, multiple linear and nonlinear regressions, Cubic spline. Newton's divided difference and Lagrange interpolating polynomials.	[6]
Module-4	Numerical differentiation and integration, Divided difference method for differentiation, Newton-Cotes formula, Trapezoidal and Simpson's rules, Romberg and Gauss quadrature methods.	[5]
Module-5	Ordinary and Partial differential equations, Euler's method and its modifications, Runge-Kutta methods, Boundary value and Eigen value problems. Finite difference equations, Elliptic equations, Laplace's equation and solutions, Parabolic equations, Solution of the heat conduction equation	[12]
Text bo	oks:	
	troductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India (1983)	
Referen	ce books:	
	umerical Analysis, V. Rajaraman	
	umerical Methods for Engineering, S.C. Chopra and R.C. Canale, McGraw-Hill (1989).	
	Jumarical Mathada for Scientists and Engineers, Prantica Hall of India (1089)	

R3: Numerical Methods for Scientists and Engineers, Prentice Hall of India (1988).

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Υ
Tutorials/Assignments	Υ
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Υ
Simulation	Υ

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	C05
End Sem Examination Marks					
Quiz 1					
Quiz 2					
Quiz 3					

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes					
	а	b	с	d	e	
1	Н	L	L	L	L	
2	L	Н	L	L	L	
3	L	L	Н	L	L	
4	L	L	L	Н	L	
5	L	L	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	a	b	с	d	e	f
1	Н	Н	Н	М	Н	Н
2	Н	Н	Н	М	Н	Н
3	Н	Н	Н	М	Н	Н
4	Н	Н	Н	М	Н	Н
5	Н	Н	Н	М	Н	Н

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD9			
CD2	Tutorials/Assignments	CO2	CD1, CD2and CD9			
CD3	Seminars	CO3	CD1, CD2 and CD9			
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD9			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD9			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Week	Lect.	Tent	Ch	Topics to be covered	Text	COs	Actual	Methodol	Remarks
No.	No.	ative	•		Book /	map	Content	ogy	by
		Date	No.		Refere	ped	covered	used	faculty if
					nces				any
1-3	L1-			Approximation Methods, Errors	T1, R1	1		PPT Digi	
	L12			and Roots of Equations, Accuracy				Class/Cho	
				and precision, Truncation and				ck	
				round-off errors, Bracketing				-Board	
				Methods (false position, bisection),					
				Iteration Methods (Newton-					
				Raphson and secant).					
3-5	L13-			Systems of linear algebraic	T1	2			
	L24			equations Gauss elimination,					
				matrix inversion and LU					
				decomposition methods.					
5-8	L25-			Curve fitting and Interpolation	T1, R2	3			
	LL36			Least squares regression, Linear,					
				multiple linear and nonlinear					
				regressions, Cubic spline.					
				Newton's divided difference and					
				Lagrange interpolating					
				polynomials.					
8-10	L37-			Numerical differentiation and	T1, R1	4			
	L48			integration, Divided difference					
				method for differentiation,					
				Newton-Cotes formula,					

		Trapezoidal and Simpson's rules, Romberg and Gauss quadrature methods.			
10-14	L49- L60	Ordinary and Partial differential equations, Euler's method and its modifications, Runge-Kutta methods, Boundary value and Eigen value problems. Finite difference equations, Elliptic equations, Laplace's equation and solutions, Parabolic equations, Solution of the heat conduction equation	5		

Course code: PH 406 Course title: Modern Computational Techniques & Programming Lab Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: 2L: 0 T: 0 P: 4 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Name of Teacher: **Title: Modern Computational Techniques & Programming Lab** L-T-P-C [0-0-4-2] 1. Evaluate f(0.8) using Taylor's series for f(x), where $f(x) = 5x^4 - 2x^2 + 3x - 2$ 2. Find the truncation error by comparing the following functions with their values calculated using zeroth, first,...,seventh order Taylor's expansion: a) $sin(\pi/3)$ b) $\frac{1}{1-0.1}$ 3. Let $u = \frac{5xy^3}{z^2}$. If $\Delta x = \Delta y = \Delta z = 0.01$ and x = y = z = 2, calculate the maximum relative and absolute errors. 4. Find the roots of the function $10\sin(x) = 2x^2 + 1.$ Maple is not able to find an exact (symbolic) solution of the equation. There are two general approaches to obtaining an approximate solution that you might consider in a case like this; graphical and numerical. 5. Solve the following set of linear equation by (i) Gauss elimination (ii) Matrix inversion and (iii) LU decomposition methods. x + 3y - 2z = 103x + 5y + 6z = 7

$$2x + 4y + 3z = 8$$

6. Fit the given set of data points to a gaussian function of the form $a_0 * exp^{-(x^2-a_1)}$:

(-3, 0.0188), (-2.68, 0.1112), (-2.37, 0.5468), (-2.05, 2.2223), (-1.74, 7.3486), (-1.42, 19.8502), (-1.11, 43.9048), (-0.79, 79.6264), (-0.47, 118.49122), (-0.16, 144.6785), (0.16, 144.6785), (0.4737, 118.4912), (0.7895, 79.6264), (1.11, 43.9048), (1.42, 19.8502), (1.74 7.3486), (2.05, 2.2223), (2.37, 0.5468), (2.68, 0.1112), (3, 0.01877)

Find the values of a_0 and a_1 .

7. Using the table below, find f(x) as a polynomial in x for data points provided below: (-1,5), (2,-6), (5,4), (6, 9), (7,10), (9,13), (11, 16), (13,18)

8. Using the values of x and y provided in the table below, obtain dy/dx and d^2x/d^2y for x = 1.2.

x	Y
1.0	2.7188
1.2	3.3289
1.4	4.0068
1.6	4.9538
1.8	6.0489
2.0	7.4567
2.2	9.2258
2.4	11.8976

9. Evaluate the integral $\int_0^1 \frac{x^3}{e^x - 1}$ using trapezoidal and Simpson's rules correct to five decimal places. Which method gives the most accurate result?

10. A solid of revolution is formed by rotating about the *x*-axis the area between the *x*-axis, the lines x = 0 and x = 1, and a curve through the points with the following coordinates:

x	Y
0.00	1.0000
0.25	0.9900
0.50	9600
0.75	0.9100
1.00	0.8400

11. Solve the following differential equation (overdamped Langevin equation):

$$\gamma \frac{dx}{dt} = -kx + \sqrt{2k_BT} \,\xi(t),$$

where , *T* and *k* are constants, and $\xi(t)$ is a random variable sampled from a normal distribution. Take $k_B = 1$. Start with the initial condition x(t = 0) = 0.

12. Solve Laplace equation in Cartesian coordinates, in a region defined by a parallelepiped of dimensions L_1 , L_2 and L_3 . The equation is

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0.$$

The potential vanishes on 5 faces of the parallelepiped. On the 6th face at $z = L_3$, the potential is a known function f(x, y).

13. Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$

Subject to the initial conditions: $u = sin(\pi x)$ at t = 0 for $0 \le x \le 1$ and u = 0 at x = 0 and x = 1 for t > 0.

14. Consider a system of 100 identical particles interacting via a Lennard-Jones potential:

$$U_{LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right] ,$$

which is terminated and shifted at $r = r_{cut} = 2.5\sigma$, so that the truncated potential \bar{U}_{LJ} is defined as,

$$\bar{U}_{LJ}(r) = \begin{cases} U_{LJ}(r) - U_{LJ}(r_{\text{cut}}) & \text{if } r < r_{\text{cut}} \\ 0 & \text{if } r > r_{\text{cut}} \end{cases}$$

All the quantities are defined in terms of reduced Lennard-Jones units with mass m, interaction parameter ϵ and length scale σ having unit values. Using NVT simulations, plot the equilibrium energy of the system against temperature.

References:

- 1. Numerical Mathematical Analysis, J.B. Scarborough, John Hopkins (1966).
- 2. Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India (1983)
- 3. Numerical Methods for Engineering, S.C. Chopra and R.C. Canale, McGraw-Hill (1989).
- 4. Numerical Methods for Scientists and Engineers, Prentice Hall of India (1988).
- Electromagnetics and Calculation of Fields, Nathan P-Ida and J.P.A. Bastos, Springer-Verlag (1992).

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution		
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)		
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)		

Course code: PH 407 Course title: Modern Physics Lab Pre-requisite(s): Co- requisite(s): Credits: 2L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

Modern Physics Lab

L-T-P-C [0-0-4-2]

Name of the Experiment

- 1. To determine specific charge of electron by Thomson's method/circular trajectory method. (Thomson's experiment)
- 2. To Verify the inverse Square law using Planck's constant measuring instrument.(Inverse square law)
- 3. Determination of Planck's constant using Light Emitting Diode (LEDs) (Planck's constant)
- 4. Verification of energy quantisation by Franck-Hertz Experiment. (Franck-Hertz Experiment)
- 5. Study of the voltage and current of the solar cells in series and parallel combinations. (Characteristic of Solar cell)
- 6. To measure the charge of electron and show that it is quantised with the smallest value of 1.6× 10-19 coulombs (Millikan's oil drop experiment)
- 7. To study the variation of count rate with applied voltage and thereby determine the plateau, the operating voltage and slope of plateau (G M Counter)
- 8. To observe the dielectric constant by comparison of electrical conductivity of different materials to that of a metal.(Dielectric constant)

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Semester II

COURSE INFORMATION SHEET

	COURSE INFORMATION SHEET	
	de: PH 408	
	le: Statistical Physics	
	site(s): Mathematical Physics	
	site(s): Quantum Physics	
Credits:	4L: 3 T: 1 P: 0	
Class sche Class: I.M	dule per week:	
Semester /		
Branch: P		
Name of T		
Code:	Title: Statistical Physics	L-T-P-C
PH 408		[3-1-0-4]
Course O	bjectives	
	understand the dependence of equilibrium properties of various systems on their microscopic cons	stituents
	d compute thermodynamic parameters by using classical statistics.	5000000
	learn to use methods of quantum statistics to obtain properties of systems made of microscopic pa	orticles
	ich either obey Fermi-Dirac statistics or Bose-Einstein statistics.	ationes
	grasp the concepts of first order and second order phase transitions and critical phenomena.	
	understand phase transition arising in Ising model.	
	learn to obtain the properties of out-of-equilibrium systems using concepts from equilibrium phys	vice
	itcomes: Students should be able to	5105.
	e various ensemble theories to calculate the thermodynamic properties of different systems.	
	mpute properties of systems behaving as ideal Fermi gas or ideal Bose gas.	
	assify transitions as first order or second order.	••
	e student should be able to reproduce the exact solution of Ising model in one dimension and solve	e it using
	an field theory.	
	derstand the approach required to predict the evolution of non-equilibrium systems.	503
Module-1	Formalism of Equilibrium Statistical Mechanics	[8]
	Concept of phase space, Liouville's theorem, basic postulates of statistical mechanics,	
	ensembles: microcanonical, canonical, grand canonical and their partition functions,	
	connection to thermodynamics, fluctuations, applications of various ensembles, equation of state for a non-ideal gas, Van der Waals' equation of state, Meyer cluster expansion, virial	
	coefficients.	
Module-2	Quantum Statistics	[8]
Module 2	Formalism of Fermi-Dirac and Bose-Einstein statistics. Applications of the formalism to: (a)	[0]
	Ideal Bose gas, Debye theory of specific heat, properties of black-body radiation, Bose-	
	Einstein condensation, degeneracy, BEC in a harmonic potential. (b) Ideal Fermi gas,	
	properties of simple metals, Pauli paramagnetism, electronic specific heat	
Module-3	Phase Transitions and Critical Phenomena	[8]
	First and Second order Phase transitions, Diamagnetism, paramagnetism, and	
	ferromagnetism, Landau theory, critical phenomena, Critical exponents, scaling hypothesis.	
Module-4	Ising Model : Ising Model, mean-field theory, exact solution in one dimension.	[6]
Module-5	Nonequilibrium Systems: Correlation of space-time dependent fluctuations, fluctuations and	[10]
	transport phenomena, Diffusion equation, Random walk and Brownian motion, Langevin	
	theory, fluctuation dissipation theorem, Fokker-Planck equation.	
Text book		
	ical Physics, Landau and Lifshitz, Pergamon Press	
Reference		
R1: Statisti	cal Physics, R. K. Patharia, Pergamon Press	

R2: Statistical Physics, Kerson Huang, John Wiley and Sons R3: Statistical Physics, S. K. Ma, World Scientific Publishing, Singapore

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	C05
End Sem Examination Marks	\checkmark				\checkmark
Quiz 1	\checkmark				
Quiz 2					
Quiz 3					

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #		Program Outcomes					
	a	b	с	d	e		
1	Н	L	L	L	L		
2	L	Н	L	L	L		
3	L	L	Н	L	L		
4	L	L	L	Н	L		
5	L	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	а	b	с	d	e	f
1	Н	Н	Н	М	Н	Н
2	Н	Н	Н	М	Н	Н

3	Н	Н	Н	М	Н	Н
4	Н	Н	Н	М	Н	Н
5	Н	Н	Н	М	Н	Н

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 andCD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tent	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remar
No.	No.	ative	No.		Book /	mappe	Content	used	ks by
		Date			Refere	d	covered		faculty
					nces				if any
1-3	L1- L8			Concept of phase space, Liouville's theorem, basic postulates of statistical mechanics, ensembles: microcanonical, canonical, grand canonical and their partition functions, connection to thermodynamics, fluctuations, applications of various ensembles, equation of state for a non-ideal gas, Van der Waals' equation of state, Meyer cluster expansion, virial coefficients.	T1	1		PPT Digi Class/Chock -Board	
3-6	L9- L16			Formalism of Fermi-Dirac and Bose-Einstein statistics. Applications of the formalism to: (a) Ideal Bose gas, Debye theory of specific heat, properties of black-body radiation, Bose-Einstein condensation, degeneracy, BEC in a harmonic potential. (b) Ideal Fermi gas, properties of simple metals, Pauli paramagnetism, electronic specific heat	T1, R1, R2	2			
6-8	L17- L24			First and Second order Phase transitions, Diamagnetism,	T1,R2 3	3			

		paramagnetism, and ferromagnetism, Landau theory critical phenomena, Critica exponents, scaling hypothesis.			
8-10	L25- L30	Ising Model, mean-field theory exact solution in one dimension.	T1, R3	4	
11-14	L31- L40	Correlation of space-time dependent fluctuations fluctuations and transpor phenomena, Diffusion equation Random walk and Browniar motion, Langevin theory fluctuation dissipation theorem Fokker-Planck equation.		5	

Course code: PH 409 **Course title: Atomic and Molecular Spectroscopy Pre-requisite(s): Modern Physics Co- requisite(s):** Credits: **4**L: 3 T: 1 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level: VIII / II **Branch: PHYSICS**

Name of Teacher:

Code:	Title: Atomic and Molecular Spectroscopy	L-T-P-C
PH 409		[3-1-0-4]
Course	Objectives	
This c	ourse enables the students:	
А.	A. To learn about the intricacies of spectra of Hydrogen-like atoms	
В.	To understand the details of rotational, vibrational and Raman spectra of molecu	ıles.
C.	To know about the different regions of spectra, and the corresponding instrumen	ntations.
D.	To learn about NMR spectra and its application	
E.	. To get a feeling of the principles of mass spectroscopy and ionization methods.	

Course Outcomes

	he completion of this course, students will be:	
1.	Able to deal with problems related to Hydrogen-like atomic spectra	
2.	Having knowledge about the rotational, vibrational and Raman spectroscopy of molecul	es
3.	Able to comprehend the instrumentation techniques that are used in different regions	s of
	spectra	
4.	Understanding NMR spectra and visualize the physical phenomenon	
5.	Learning about mass spectroscopy and its usage	
Module-1	Atomic Physics: Quantum states of an electron in an atom; Electron spin; Stern-Gerlach experiment; Spectrum of Hydrogen, helium and alkali atoms; Relativistic corrections for	[10]
	energy levels of hydrogen; Hyperfine structure and isotopic shift; Spectral terms, L-S and J-J coupling schemes, Singlet-Triplet separation for interaction energy of L-S coupling. Lande	
	Interval rule, Zeeman, Paschen Back & Stark effect; width of spectral lines	
Module-2	Molecular Spectroscopy: Types of molecular spectroscopy, applications, Rotational, vibrational and electronic spectra of diatomic and polyatomic molecules; Born Oppenheimer	[12]
	approximation, Frank – Condon principle and selection rules. Molecular hydrogen, Fluorescence and Phosphorescence, Instrumentations of IR and Microwave Spectroscopy and	
	Applications. Raman Effect, Rotational Raman spectra. Vibrational Raman spectra. Stokes and anti-Stokes lines and their Intensity difference, Instrumentation and applications.	
Module-3	Characterization of electromagnetic radiation, regions of spectrums, spectra representation, basic elements if practical spectroscopy, resolving power, width and intensity of spectral transition, Fourier transform spectroscopy, concept of stimulated emission.	[10]
Module-4	NMR Spectroscopy: Nuclear spin, nuclear resonance, saturation, spin-spin and spin-lattice	[8]
	relaxations, chemical shift, de shielding, coupling constant, instrumentation and applications.	
Module-5	Principle and applications of Mass Spectroscopy, Thomson's method of determining e/m of electrons, Aston mass spectrograph, Dempster's mass spectrometer, Ionization Methods,	[10]
	instrumentation and applications.	

Text books:

- 1. Introduction to Atomic Spectra", H.E. White, McGraw-Hill.
- 2. Fundamentals of Molecular Spectroscopy" C. N. Banwell, Tata McGraw-Hill
- 3. Atomic Physics", G. P. Harnwell & W.E. Stephens, McGraw-Hills Book Company, Inc.
- 4. Modern Spectroscopy", J. M. Hollas, John Wiley

Reference books:

- 1. "Physics of Atoms and Molecules" by Bransden & Joachain, Pearson
- 2. "Introduction to Spectroscopy" by Pavia et. al., Cengage Learning India Pvt. Ltd.

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination					
Marks					
End Sem Examination					
Marks					
Quiz I					
Quiz II					

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Н	-	L	L	-
В	-	Н	Н	-	-
С	L	Н	Н	-	-
D	-	-	L	Н	-
Е	-	-	-	_	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes				
	а	b	с	d	e	f
1	Н	М	Н	М	L	М
2	Н	Н	Н	М	Н	М
3	L	Н	М	М	Н	М
4	L	М	М	М	Н	М
5	М	М	М	М	М	М

Week	Lect.	Tentative	Ch.	Topics to be covered	Гext	COs	Actual	Methodology	Remarks by
No.	No.	Date	No.	Toples to be covered	Book /	mapped	Content	used	faculty if any
					Refere		covered		
					nces				
1	L1-			Atomic Physics:	T2, R1	1		PPT Digi	
	L3			Quantum states of an				Class/Choc	
				electron in an atom;				k	
				Electron spin; Stern-					
				Gerlach experiment;				-Board	
				Spectrum of					
				Hydrogen, helium and					
				alkali atoms;					
				Relativistic					
				corrections for energy					
				levels of hydrogen					
2	L4-			Hyperfine structure	T2, R1	1			
	L6			and isotopic shift;					
				Spectral terms, L-S					
				and J-J coupling					
				schemes, Singlet-					
				Triplet separation for					
				interaction energy of					
				L-S coupling					
3	L7-			Lande Interval rule,		1			
	L9			Zeeman, Paschen					
				Back & Stark effect;					
				width of spectral lines					
4	L10-			Molecular	T2, R1	2			
	L12			Spectroscopy: Types					
				of molecular					
				spectroscopy,					
				applications, Rotational, vibrational					
				and electronic spectra					
				of diatomic and					
				polyatomic molecules;					
				Born Oppenheimer					
				approximation, Frank					
				– Condon principle					
				and selection rules.					
5	L13-			Molecular hydrogen,	T2, R1	2			
	L15			Fluorescence and		_			
				Phosphorescence,					
				Instrumentations of IR					
				and Microwave					
				Spectroscopy and					
				Applications. Raman					
				Effect					

6	L16-	Rotational Raman	T2, R1	2		
0	L16- L19	spectra. Vibrational	12, K1			
	L19	±				
		Raman spectra. Stokes and anti-Stokes lines				
		and their Intensity				
		difference,				
		Instrumentation and				
		applications.				
7	L20-		T2, R1	3		
	L22	electromagnetic				
		radiation, regions of				
		spectrums, spectra				
		representation, basic				
		elements if practical				
		spectroscopy				
8	L23-	resolving power,	T2	3		
	L25	width and intensity of				
		spectral transition,				
		Fourier transform				
		spectroscopy, concept				
		of stimulated				
		emission.				
9	L26-	NMR Spectroscopy:	T2, R2	4		
	L29	Nuclear spin, nuclear				
		resonance, saturation,				
		spin-spin and spin-				
		lattice relaxations				
10	L30-	chemical shift, de	T2, R2	4		
	L33	shielding, coupling				
		constant,				
		instrumentation and				
		applications.				
11	L34-	Principle and	R2	5		
	L37	applications of Mass				
		Spectroscopy,				
		Thomson's method of				
		determining e/m of				
		electrons, Aston mass				
		spectrograph,				
12	L38-	Dempster's mass	R2	5		
12	L38- L41	spectrometer,		5		
		Ionization Methods,				
		instrumentation and				
		applications.				
		applications.				

Course code: PH 410 Course title: Electronic Devices & Circuits Pre-requisite(s): Digital and Analog Systems Co- requisite(s): Credits: 3L: 3 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VIII / II Branch: PHYSICS Name of Teacher:

Code: PH 410

Title: Electronic Devices & Circuits

L-T-P-C
[3-0-0-3]

Course Objectives:

- To impart knowledge about a To impart knowledge about a variety of special, power and microwave solid state electronic devices, their structure and the underlying physical principles.
- To expose the students to the integrated circuit chip development technologies and associated processes
- Amplifiers would be dealt with in all its expanse and rigor to give a good feel of the associated design and mathematical intricacies.
- A rigorous treatment on integrated circuit operational amplifiers is to be delivered to supplement their understanding on amplifiers
- Linear and non-linear applications of op-amps are introduced to add to the knowledge on the variety of circuits encompassing all major class of applications.
- Nanoelectronic devices and concepts are introduced to give a feel of the future electronics devices and the quantum effects that manifest.

Course Outcomes:

- Understanding the physics of the devices their characteristics and applications, to be able to use them in electronic circuits
- Students would develop an insight into the technologies that go into an IC chip that they would be extensively using during and after the course
- In depth understanding would enable the students to appreciate the beauty of the subject and design amplifiers that are technically sound.
- Students would develop a comprehensive understanding of contemporary integrated circuit amplifier design.
- Students would be aware of various signal conditioning, processing and generation techniques thus being better equipped to understand their use in larger and complex systems.
- Students would enjoy the new and stimulating ideas behind the future novel devices and would also appreciate the link between electronics and the quantum effects that come into play.

Module-1	Electronic Devices	8
	Varactor diode, photo-diode, Schottky diode, solar cell, Principle of Operation and I-V	
	Characteristics of JFET, MOSFET. Thyristors (SCR, LASCR, Triac and Diac) Microwave	
	semiconductor devices: Tunnel diode, IMPATT, Gunn effect and Gunn diode.	
Module-2	Integrated circuits: Monolithic IC's, Hybrid IC's. Materials for IC fabrication (Si and GaAs),	8
	Crystal growth and wafer preparation, processes Epitaxy, Vapour phase epitaxy (VPE), Molecular	
	beam epitaxy (BME), MOCVD Oxidation, Ion implantation, Optical lithography, electron beam	
	lithography, Etching processes.	
Module-3	Amplifiers using discrete devices	12
	Amplifiers using BJTs, FETs, MOSFETs and their analysis. Feedback in amplifiers,	
	characteristics of negative feedback amplifiers, input resistance, output resistance, method of	
	analysis of a feedback amplifier, feedback types and their analyses, Bode plots, two-pole and	
	three-pole transfer function with Feedback, approximate analysis of a multipole feedback	
	amplifier, stability, gain and phase margins, compensation, dominant-pole compensation, pole-	
	zero compensation.	
Module 4	Operational amplifiers	10
	Differential Amplifier, emitter-coupled differential amplifier, transfer characteristics of a	
	differential amplifier, current mirror and active load, Measurement of op-amps parameters,	
	frequency response of op-amps, dominant-pole compensation, pole-zero compensation, lead	

	compensation, step response of op-amps.	
Module 5	Applications of Op-Amps	12
	Linear: instrumentation amplifier, precision rectifiers, active filters (low-pass, high-pass, band-pass, band-reject/ notch), Analog computation circuits	
	Nonlinear: Comparators, Schmitt trigger, multivibrators, AMV and MMV using 555 timer, waveform generation, D/A converters, binary weighted, A/D converters, simultaneous, counter type, dual slope converter.	
	Single electron devices: Quantum point contact, Coulomb blockade, Resonant tunneling transistor, Single electron transistor (SET).	
Text bo		
•	rsics of Semiconductor Devices- S. M. Sze	
T2: Sol	id State Electronic Devices- B. G. Streetman, PHI	
T3: VL	SI Technology, S. M. Sze Mc Graw Hill	
	grated Electronics, Jacob Millman and Christos Halkias, -Tata McGraw Hill Publication omas L. Floyd. ELECTRONIC. DEVICES. 9 th Edition. Prentice Hall.	

T6: Louis Nashelsky and Robert Boylestad, Electronic Devices and Circuit Theory

T7: Khan and Dey, A First course in Electronics, PHI

T8: Operational amplifiers and Linear Integrated Circuits- R. A. Gayakwad, PHI.

T9: Linear Integrated Circuits- D. R. Choudhary and S. B. Jain, New Age Publications

Reference books:

R1: Operational amplifier and Linear Integrated Circuits- R. F. Coughlin, F. F. Driscoll, PHI

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5	CO6	CO7
Quiz-I			\checkmark				
Quiz-II							
Quiz-III						\checkmark	
Assignment							
End Sem Exam		\checkmark				\checkmark	

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u>

Mapping between Course Objectives and Course Outcomes									
Course Objectives	1	2	3	4	5	6			
А	Η	Н	Н	Н	Н	Н			
В	Η	Н	Н	L	Н	Н			
С	Η	L	Н	L	М	L			
D	Η	М	М	Н	Н	М			
Е	Η	Η	Н	Η	Н	М			
F	Η	Н	Н	L	М	Н			
G	Η	Н	L	М	L	L			

Mapping of Course Outcomes onto Program Outcomes

0

Man.........

Course Outcome #	Program Outcomes							
	а	b	с	d	e	f	g	
1	Н	Н	Н	Н	Н	М	Η	
2	Н	Н	Η	Н	Н	М	Η	
3	Н	Н	Н	Н	Н	М	Η	
4	Н	Н	Η	Н	Н	М	Η	
5	Н	Н	Н	Н	Н	М	Η	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2				
CD2	Tutorials/Assignments		CO2	CD1 and CD2				
CD3	Seminars		CO3	CD1 and CD2				
CD4	Mini projects/Projects		CO4	CD1 and CD2				
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2				
CD6	Industrial/guest lectures		CO6	CD1 and CD2				
CD7	Industrial visits/in-plant training		-	-				
CD8	Self- learning such as use of NPTEL materials and internets		-	-				
CD9	Simulation		-	-				

Week	Lect.	Fentative	Ch.	Fopics to be covered	Гext	COs	Actual	Methodol	Remark	S
No.	No.	Date	No.		Book / Refere	mapped	Content covered	ogy used	by faculty	if
					nces				any	
1	L1		Mod	Varactor diode,	T1					
			ule-1	Schottky diode,						
	L2			photo-diode,	T1					
	L3			solar cell,	T1					
	L4			Principle of	T1, T2,					
	L5			Operation and I-V	T4					
				Characteristics of						
				JFET, MOSFET.						
	L6			Thyristors (SCR,	T1, T4					
	L7			LASCR, Triac and						
				Diac)						

	TO			
	L8		Tunnel diode,	T1
			IMPATT, Gunn	
			effect and Gunn	
	LO	M. 1	diode.	
	L9	Mod ule-	Integrated circuits:	11, 13
		II	Monolithic IC's,	
		11	Hybrid IC's. Materials for IC	
			fabrication (Si and	
			GaAs)	
	L10		Crystal growth and	T1 T3
	210		wafer preparation,	
			processes Epitaxy,	
			Vapour phase	
			epitaxy (VPE)	
	L11		Molecular beam	T1, T3
			epitaxy (BME),	
			MOCVD Oxidation	
	L12		Ion implantation	T1, T3
	L13		Optical lithography	T1, T3
	L14		electron beam	
			lithography, Etching	
			processes	
	L15	Mod	Amplifiers using	T4, T5,
		ule-	discrete devices	T6
		III	Amplifiers using	
			BJTs	
	L16		Amplifiers using	
			FETs, MOSFETs	T6
			and their analysis	
	L17			T4, T5,
			amplifiers,	T6
			characteristics of	
			negative feedback	
	1.10		amplifiers	
	L18		input resistance,	
	I 10	_	output resistance,	T6 T4 T5
	L19		method of analysis of a feedback	
			amplifier	
	L20		feedback types and	T4, T5,
	L20		their analyses, Bode	
			plots, two-pole and	
			three–pole transfer	
			function with	
			Feedback,	
			approximate analysis	
			of a multipole	
			feedback amplifier	
	L21		stability, gain and	T4, T5,
			phase margins	T6
· · · · ·				

	1.00			T 4 T 7		
1	L22		compensation,	T4, T5,		
			dominant-pole	T6		
			compensation, pole-			
	1.00		zero compensation	T 4		
	L23	Mod	Operational	T4,		
		ule-	amplifiers	T7		
		IV	Differential			
			Amplifier,			
	L24		emitter-coupled	Τ4,		
	L25		differential amplifier	T7		
		-		-		
	L26	_		T7 T 0		
	L27		current mirror and	T7, T9		
		_	active load			
	L28		transfer	T4, T7		
			characteristics of a			
			differential amplifier			
	L29		Measurement of op-	T4, T7		7
			amps parameters,			
			frequency response			
			of op-amps			
	L30		dominant-pole	T4, T9		
			compensation, pole-			
			zero compensation,			
			lead compensation,			
			step response of op-			
			amps.			
-			÷ *			
	L31	Mod	Applications of Op-	T5		
	L31		Applications of Op- Amps	15		
	L31	Mod ule- V	Amps	15		
	L31	ule-	Amps Linear:	15		
	L31	ule-	Amps Linear: instrumentation	15		
		ule-	Amps Linear: instrumentation amplifier			
	L32	ule-	Amps Linear: instrumentation amplifier Precision rectifiers	T5,T9		
		ule-	Amps Linear: instrumentation amplifier			
	L32	ule-	Amps Linear: instrumentation amplifier Precision rectifiers	T5,T9		
	L32	ule-	AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass,high-pass,	T5,T9		
	L32	ule-	AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-	T5,T9		
	L32	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch),	T5,T9		
	L32	ule-	AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-	T5,T9		
	L32 L33	ule-	AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computationcircuits	T5,T9 T5,T9		
	L32	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear:	T5,T9		
	L32 L33	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators,	T5,T9 T5,T9		
	L32 L33 L34	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger	T5,T9 T5,T9 T5,T9		
	L32 L33	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV	T5,T9 T5,T9		
	L32 L33 L34	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555	T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer	T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform	T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A	T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary	T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D	T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D converters,	T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D converters, simultaneous,	T5,T9 T5,T9 T5,T9 T5,T9		
	L32 L33 L34 L35	ule-	Amps Linear: instrumentation amplifier Precision rectifiers Active filters (low- pass, high-pass, band-pass, band- reject/ notch), Analog computation circuits Nonlinear: Comparators, Schmitt trigger multivibrators, AMV and MMV using 555 timer Waveform generation, D/A converters, binary weighted, A/D converters,	T5,T9 T5,T9 T5,T9 T5,T9		

L37	Mod ule- VI	Singleelectrondevices:Quantumpoint contact	T2, T1
L38		Coulomb blockade	T2, T1
L39		Resonant tunneling transistor	T2, T1
L40	-	Singleelectrontransistor (SET).	T2, T1

Course code: PH 411

Course title: Condensed Matter Physics Pre-requisite(s): Quantum Mechanics

Co- requisite(s):

Credits: **3** L: 3 T: 0

P: 0 Class schedule per week:

Class: M.Sc.

Semester / Level: II

Branch: PHYSICS

Name of Teacher: Dr S K Rout

Course Objectives

This course enables the students:

1	4.	To relate crystal structure to symmetry, recognize the correspondence between real and reciprocal space.
I	3.	Acquire knowledge of the behaviour of electrons in solids based on classical and quantum theories.
(С.	To become familiar with the different types of magnetism and magnetism based phenomenon.
Ι	D.	To develop an understanding of the dielectric properties and ordering of dipoles in ferroelectrics.
I	E.	To get familiarized with the different parameters associated with superconductivity and the theory of
		superconductivity.

Course Outcomes

After the completion of this course, students will be:

1.	Able to correlate the X-ray diffraction pattern for a given crystal structure based on the corresponding
	reciprocal lattice.
2.	Able to explain how the predicted electronic properties of solids differ in the classical free electron theory,
	quantum free electron theory and the nearly free electron model.
3.	Able to explain various magnetic phenomena and describe the different types of magnetic ordering based
	on the exchange interaction.
4.	Able to differentiate between ferroelectric, anti-ferroelectric, piezoelectric and pyroelectric materials.
5.	Able to differentiate between type-I and type-II superconductors and their theories.

Code:PH 411	Title : Condensed Matter Physics	L-T-P-C
		[3-0-0-3]
Module-1	CRYSTAL DIFFRACTION AND RECIPROCAL LATTICE Revision of concepts,	[8]
	crystal structure, Bravais Lattice, lattice translation vector, symmetry operations, simple	
	crystal structures, Miller indices, lattice planes, Braggs' law, reciprocal lattice to SC,	
	BCC, FCC, Laue's equation and Bragg's law in terms of reciprocal lattice vector,	
	diffraction and the structure factor, Ewald's construction, structure determination using	
	Laue's method, powder crystal diffraction, rotating crystal method, scattered wave	
	amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc, fcc), atomic	
	form factor.	
Module-2	ENERGY BAND THEORY	[8]
	Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well,	
	Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron	
	theory, density of states, Fermi-Dirac statistics, effect of temperature on Fermi	
	distribution function, electrons in a periodic potential, Bloch's theorem, Kronig Penney	
	Model, construction of Brillouin zone, reduced zone scheme, concept of energy band,	
	energy band structure of conductors, semiconductors and insulators.	
Module-3	MAGNETISM	[8]
	Magnetic Susceptibility, diamagnetism, paramagnetism, the ground state of an ion and	
	Hund's rules, adiabatic demagnetization, crystal fields, orbital quenching, Jahn-Teller	
	effect, nuclear magnetic resonance, electron spin resonance, Mossbauer spectroscopy,	
	magnetic dipolar interaction, exchange interaction, ferromagnetism, antiferromagnetism,	
	ferrimagnetism, spin glasses.	
Module-4	DIELECTRICS AND FERROELECTRICS	[8]

	Macroscopic Maxwell equation of electrostatics, theory of local field, theory of polarisability, dielectric constant, Claussius-Mosotti relation, optical properties of ionic crystals, dielectric breakdown, dielectric losses, ferroelectric, anti-ferroelectric, piezoelectric, pyroelectric, frequency dependence of dielectric properties, classification of ferroelectric crystal, ferroelectric phase transitions, relaxor ferroelectrics.	
Module-5	SUPERCONDUCTIVITY Basic properties of superconductors, phenomenological thermodynamic treatment, London equation, penetration depth, superconducting transitions, order parameter, Ginzburg-Landau theory, Cooper pair, electron-phonon interaction, BCS theory, coherence length, flux quantization, Josephson junction, high T _c superconductors, mixed state.	[8]
	: to Solid State Physics 8 th Edition , Charles Kittel, John Wiley and Sons, 2005. Physics, Neil W. Ashcroft, N. David Mermin, Saunders College Publishing, 1976.	

References:

- Condensed Matter Physics 2nd Edition, Michael. P Marder, John Wiley and Sons, 2010.
 Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen Blundell, Oxford University Press, 2001.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Yes	Yes	Yes	No	No
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment	Yes	Yes	Yes	Yes	Yes

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Outcome #	Program Outcomes					
	a	b	с	d	e	f
1	Н	Н	Н	L	L	М
2	Н	Н	Н	L	М	L
3	Н	Н	Н	L	М	L
4	М	Н	М	L	М	L
5	М	Н	Н	L	L	L

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Course Objective						
	а	b	С	d	e		
1	Н	L	М	М	М		
2	L	Н	М	М	L		
3	L	М	Н	L	М		
4	L	L	М	Н	L		
5	L	М	М	L	Н		

	Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods		Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1,CD2 and CD8			
CD2	Tutorials/Assignments		CO2	CD1,CD2 and CD8			
CD3	Seminars		CO3	CD1,CD2 and CD8			
CD4	Mini projects/Projects		CO4	CD1,CD2 and CD8			
CD5	Laboratory experiments/teaching aids		CO5	CD1,CD2 and CD8			
CD6	Industrial/guest lectures						
CD7	Industrial visits/in-plant training						
	Self- learning such as use of NPTEL materials and						
CD8	internets						
CD9	Simulation						

We	Lect.	Tent	Modul	Topics to be covered	Text	COs	Actual	Methodology	Remar
ek	No.	ative	e		Book /	map	Content	used	ks by
No.		Date	No.		Refere	ped	covered		faculty
					nces				if any
1	L1		Ι	Revision of concepts, crystal	T1, T2	1, 2		PPT Digi	
				structure, Bravais Lattice,				Class/Chalk	
								-Board	
1	L2			lattice translation vector,	T1, T2			PPT Digi	
				symmetry operations, simple				Class/Chalk	
				crystal structures, Miller indices,				-Board	
				lattice planes, Braggs' law,					
1	L3-			reciprocal lattice to SC, BCC,	T1, T2			PPT Digi	
	L4			FCC, Laue's equation and Bragg's				Class/Chalk	
				law in terms of reciprocal lattice				-Board	
				vector,					

2	L5		diffraction and the structure	T1, T2	PPT Digi
			factor,		Class/Chalk
			,		-Board
2	L6		Ewald's construction,	T1, T2	PPT Digi
			,	,	Class/Chalk
					-Board
2	L7		structure determination using	T1, T2	PPT Digi
2	27		Laue's method, powder crystal	11, 12	Class/Chalk
			diffraction, rotating crystal		-Board
			method,		Dourd
3	L8		scattered wave amplitude, Fourier	T1, T2	PPT Digi
5	20		analysis of the basis, structure	11, 12	Class/Chalk
			factor of lattices (sc, bcc,fcc),		-Board
			atomic form factor.		Douid
4	L11	II	Classical free electron theory,	T1, T2	PPT Digi
	211	11	wave mechanical treatment of	11, 12	Class/Chalk
			electron in 1D and 3D well		-Board
			Wiedemann-Franz law, quantum		Dourd
			theory of thermal conductivity,		
			failure of free electron theory		
4	L12-		density of states, Fermi-Dirac	T1, T2	PPT Digi
-	13		statistics, effect of temperature on	11,12	Class/Chalk
	15		Fermi distribution function		-Board
5	L14-		electrons in a periodic potential,	T1, T2	PPT Digi
5	15		Bloch's theorem, Kronig Penney	11, 12	Class/Chalk
	15		Model, construction of Brillouin		-Board
			zone, reduced zone scheme,		-Board
			concept of energy band,		
5	L16		Energy band structure of	T1, T2	PPT Digi
			conductors, semiconductors and		Class/Chalk
			insulators.		-Board
	L17	III	Magnetic Susceptibility,	T1, T2,	PPT Digi
			diamagnetism, Paramagnetism,	R2	Class/Chalk
			The ground state of an ion and		-Board
			Hund's rules, adiabatic		
			demagnetization		
	L18		Crystal fields, orbital quenching	T1, T2,	PPT Digi
				R2	Class/Chalk
					-Board
	L19		Jahn-Teller effect Nuclear	T1, T2,	PPT Digi
			magnetic resonance	R2	Class/Chalk
					-Board
l	L20-		Electron spin resonance	T1, T2,	PPT Digi
	21		Mossbauer spectroscopy,	R2	Class/Chalk
	21		mossouder specifoscopy,	112	-Board
	L22		Magnetic dipolar interaction,	T1, T2,	PPT Digi
			Exchange interaction,	R2	Class/Chalk
			Zachunge internetion,		-Board
	L23-		Ferromagnetism, anti-	T1, T2,	PPT Digi
	L23- L24		ferromagnetism, Ferrimagnetisms,	R2	Class/Chalk
			Spin glasses.	112	-Board
	L25	IV	Macroscopic Maxwell equation of	T1, T2,	PPT Digi
		1 4	electrostatics	R1 R1	Class/Chalk
			ciccu ostanes		-Board
		I			-Doald

L26		Theory of local field, theory of	T1, T2,	PPT Digi
		Polarisability, dielectric constant,	R1	Class/Chalk
		Claussius-Mosotti relation		-Board
L27		Optical properties of ionic	T1, T2,	PPT Digi
		crystals.	R1	Class/Chalk
				-Board
L28-		Dielectric breakdown, dielectric	T1, T2,	PPT Digi
29		losses, ferroelectric, anti-	R1	Class/Chalk
		ferroelectric.		-Board
L30-		Piezoelectric, Pyroelectric,	T1, T2,	PPT Digi
31		frequency dependence of		Class/Chalk
		dielectric properties.		-Board
L32		Classification of ferroelectric	T1, T2,	PPT Digi
		crystal, ferroelectric phase	R1	Class/Chalk
		transitions, relaxor ferroelectrics.		-Board
L33	V	Basic properties of	T1, T2,	PPT Digi
		Superconductors,	R1	Class/Chalk
		Phenomenological		-Board
		thermodynamic treatment		
L34-		London equation, penetration	T1, T2,	PPT Digi
35		depth	R1	Class/Chalk
				-Board
L36		Superconducting transitions, order	T1, T2,	PPT Digi
		parameter, Ginzburg-Landau	R1	Class/Chalk
		theory		-Board
L37		Cooper pair, electron-phonon	T1, T2,	PPT Digi
		interaction, BCS theory	R1	Class/Chalk
				-Board
L38		Josephson junction	T1, T2,	PPT Digi
			R1	Class/Chalk
				-Board
L39		Coherence length, Flux	T1, T2,	PPT Digi
		quantization	R1	Class/Chalk
				-Board
L40		High T _c superconductors, mixed	T1, T2,	PPT Digi
		state.	R1	Class/Chalk
				-Board

Course code: PH 412 Course title: Electronics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

	lectronics Lab
	L-T-P-C
	[0-0-4-2]
List of Experiments:	
1. Verification of truth tables of OR, NOT an	d AND gates using NAND gates
2. Verification of truth tables of OR, NOT an	d AND gates using NOR gates
3. Realization of XOR and XNOR gates usin	g NAND and NOR gates
4. Design and verification of a 2 bit binary ha	lf adder
5. Design and verification of a 2- bit binary f	ull adder
6. Design of a half subtractor and verification	of its truth table
7. Design of a half subtractor and verification	of its truth table
8. Design and implementation of clocked R-S	S flipflops using NAND gates
9. Design and implementation of clocked J-K	flipflops using NAND gates
10. Design and testing of monostable vibrator	using IC 555 timer
11. Design and testing of astable multivibrator	using IC 555 timer
12. Design and testing of Schmidt Trigger usin	ng IC 741
13. Design and testing of modulo 9 ripple cou	nter using IC CD4029.
14. Design and testing of CMOS switch and 2	1 multiplexer using IC 4066.

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Course code: PH 413 Course title: Condensed Matter Physics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Condensed Matter Physics Lab

L-T-P-C [0-0-4-2]

List of experiments:

- 1. To study the permeability of a ferrite substance as a function of frequency. (Take atleast 20 data)
- 2. To study the relative permittivity of a dielectric material as a function of temperature. (Take atleast 20 data).
- 3. Analysis of XRD data using JCPDS software.
- 4. Analysis of FESEM data using ImageJ software to calculate density function.
- 5. Analysis of XRD data using CheckCell software.
- 6. Measurement of resistance of a semiconductor as a function of temperature.
- 7. Measurement of susceptibility using lock in amplifier.
- 8. Synthesis of a ceramic sample using a programmable furnace.
- 9. Analysis of XRD data using FullProf software.
- 10. Design of crystal structure using VESTA software.

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Semester III

COURSE INFORMATION SHEET

Course code: PH 501 Course title: Nuclear and Particle Physics Pre-requisite(s): Modern Physics Co- requisite(s): Credits: 4L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: IX / III Branch: PHYSICS Name of Teacher:

Cod PH			L-T-P-C 3-1-0-4]
	Module	Course Objective:	
	1	To impart the knowledge regarding the fundamental and basics of Nucleus and its	7
		models.	
	2	To provide the knowledge of the Two-nucleus problem, concept of nuclear force.]
	3	To acquire knowledge about the nucleus by the study of scattering of particles.]
	4	To have a good understanding of interaction of charged particles with matter.	7
	5	To have an elementary idea of particles and their classification.	

	Course Name : Nuclear and Particle Physics	
Module	Course Outcome:	
1	Student will have an idea developed about the nucleus.	
2	Student will have a concept and nature of nuclear force.	
3	Student will learn about the method and analysis of Scattering process.	
4	Student will have an idea about the interaction of particles with matter.	
5	Student will understand te nature, interaction etc of the elementary particles.	
I	Nuclear Models Liquid drop Model, semi-empirical mass formula, transitions between odd A isobars, transitions between even isobars, odd-even effects and magic numbers, Shell nodel, collective model.	
	Two nucleon problem, The deuteron, ground state of deuteron, nature of nuclear forces, excited state of deuteron, spin dependence of nuclear force, meson theory of nuclear force	
	Scattering, Cross section, differential cross section, scattering cross section, nucleon nucleon scattering, proton-proton and neutron-neutron scattering at low energies.	
I	nteraction of radiation with matter, Interaction of charged particles with matter, stopping power of heavy charged particles, energy loss of electrons, absorption of gamma rays, photoelectric effect, Compton effect and pair production.	
(e	Classification of elementary particle, Eightfold way, Baryon octate and meson octate, Quark model, Baryon Decuplet, meson nonlet, Intermediate vector Boson, Strong electromagnetic and week interactions, standard model, lepton classification and quark classification.	

- 1. Nuclear Theory-Roy and Nigam
- 2. Introductory Nuclear Physics- Kenneth S-Krane
- 3. Nuclear Physics: D. Halliday
- 4. Elements of Nuclear Physics: Pandya and Yadav
- 5. Introduction to Elementary Particle: David Griffiths

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark	\checkmark	
Quiz II					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Η	Μ	L	L	L
В	Μ	Н	L	L	L
С	Μ	L	Н	L	L
D	L	L	L	Н	L
E	L	Μ	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes											
Outcome #	A b c D E f g h I									J	k	1	
1	Н	Η	L	Μ	Μ	Ν							
2	Н	Η	L	Μ	Μ	Н							
3	Н	Η	Μ	Μ	Μ	H							

4	Н	Η	Μ	Μ	Μ	H			
5	Н	Η	L	Μ	Μ	H			

	Mapping Between COs and Course Delivery (CD) methods										
CD	Course Delivery methods	Course Outcome	Course Delivery Method								
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2								
CD2	Tutorials/Assignments	CO2	CD1 CD2								
CD3	Seminars	CO3	CD1 CD2								
CD4	Mini projects/Projects	CO4	CD1 CD2								
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2								
CD6	Industrial/guest lectures										
CD7	Industrial visits/in-plant training										
CD8	Self- learning such as use of NPTEL materials and internets										
CD9	Simulation										

Week	Lect.	Tentative	Ch.	Topics	to	be	Text	COs	Actual	Methodology	Remarks	by
No.	No.	Date	No.	covered			Book	mapped	Conten	Used	faculty	if
							/		t		any	
							Refere		covere		5	
							nces		d			
1	L1-			Nuclear	Mo	odels	T1 R1					
	L2			Liquid		drop						
				Model,	S	emi-						
				empirical	1	mass						
				formula,								
	L3-			transition	S		T1 R1					
	L4			between	odd	l A						
				isobars,								
				transition								
				between		even						
				isobars,								
	L5-			odd-even		fects	T1 R1					
	L8			and		nagic						
				numbers,		Shell						
				model, d model. I		ctive						
	L9-			Two		leon	T1 T2					
	L9- L11			problem,	nuc	The	1112					
	LII			deuteron,	ar							
				state of de	-							
	L12-			nature of			T1-T2					
	L12 L13			forces,		cited	1114					
	210			state of de								
	L14-			spin de			T1 T2					
	L15			of nuclear								
	L-16			meson tl			T1 T2					
				nuclear fo	•							
	L17-			Scattering		Cross	T1 T2					
	L20			section,	-		R1					

r			1	1	1
	differential cross				
	section, scattering				
	cross section,				
L20-	nucleon nucleon	T1 T2			
L24	scattering, proton-	R1			
	proton and				
	neutron-neutron				
	scattering at low				
	energies				
1.25		T1 R1			
L25-		IIKI			
L28	radiation with				
	matter, Interaction				
	of charged				
	particles with				
	matter,				
L29-	stopping power of	T1 R1			
L32	heavy charged				
	particles, energy				
	loss of electrons,				
	absorption of				
	gamma rays,				
	photoelectric				
	effect, Compton				
	effect and pair				
	production				
L33-	Classification of	T1 T3			
L35	elementary				
	particle,				
L36-	Eightfold way,	T1 T3			
L38	Baryon octate and				
	meson octate,				
	Quark model,				
	Baryon Decuplet,				
	meson nonlet,				
	Intermediate				
	vector Boson				
1.20		T1 T2			
L39-	Strong	T1 T3			
L40	electromagnetic				
	and week				
	interactions,				
	standard model,				
	lepton				
	classification and				
	quark				
	classification.				
				I	1

Course code: PH 502 **Course title: Advanced Quantum Mechanics Pre-requisite(s): Quantum Mechanics Co- requisite(s):** Credits: 4L: 3 T:1 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level:IX / III

Branch: PHYSICS Name of Teacher:

1 vanne	U .	i cacii	
Code:	PH	502	

ode: PH 502	Title: Advanced Quantum Mechanics	[L-T-P-C
Module	Course Objectives	[3-1-0-4]
1	Course Objective:	
1	To learn how to apply Perturbation Theory (Time Independent) in non-degenerate and degenerate situations.	
2	To apply approximate method in Quantum Mechanics to treat molecules.	
3	To learn how to apply semi-classical method to treat the interaction of atoms with field.	
4	To learn how to treat Two –level systems Quantum Mechanically.	
5	To learn the basics of relativistic quantum Mechanics.	
-	1	
Module	Course Outcome:	
1	Will be able to solve and analyse various quantum mechanical problem related to Time	
	Independent Perturbation Theory.	
2	Will be able to treat molecules quantum mechanically .	
3	Will be able to apply semi-classical method to treat atom field interactions.	
4	Will be able to treat Two- Level System Quantum Mechanically.	
5	Will be able to understand the central concept and principles of relativistic Quantum	
	Mechanics.	
Module-1	Perturbation theory, time-independent perturbation theory (non-degenerate and degenerate) and applications. Stark effect and other simple cases. Relativistic perturbation to hydrogen atom. Energy levels of hydrogen including fine structure, Lamb shift and hyperfine splitting. Zeeman effect (normal and anomalous) time, first and second order, the effect of the electric field on the energy levels of an atom (Stark effect)	15
Module-2	Quantum mechanics of molecules, Born-Oppenheimer approximation	5
Module-3	Time-dependent perturbations, first order transitions, Semi- classical theory of interaction of atoms with field. Quantization of radiation field. Hamiltonian of field and atom, Fermi golden rule, the Einstein's A & B coefficients.	10
Module-4	Atom field interaction, density matrix equation, closed and open two-level atoms, Rabi oscillations.	10
Module-5	Relativistic wave equations: Klein-Gordon equation for a free particle and particle under the influence of an electromagnetic potential, Dirac's relativistic Hamiltonian, Dirac's relativistic wave equation, positive and negative energy states, significance of negative energy states.	10
Book:		
-	um Mechanics by L. I. Schiff. (Tata McGraw Hill, New Delhi)	
Reference		, Berlin
2. Quant		
-	tbook of Quantum Mechanics by P. T. Mathews (Tata McGraw Hill)	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Mid Sem Examination Marks	25
End SemExamination Marks	50
Quiz	10+10
Teacher's assessment	5

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	
Quiz I			\checkmark	\checkmark	
Quiz II					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Н	L	Μ	Μ	L
В	L	Η	L	L	L
С	М	L	Η	М	L
D	М	L	Μ	Н	L
Е	L	L	L	L	Η

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes										
Outcome #	a	В	c	d	e	f		h	i	j	k	1
1	Н	Н	Н	Μ	Н	Н						
2	Н	Η	Н	Μ	Н	Н						
3	Н	Η	Н	Μ	Н	Н						
4	Н	Η	Н	Μ	L	Н						
5	Н	Н	Н	Μ	Μ	Н						

	Mapping Between COs and Course Delivery (CD) methods								
			Course	Course Delivery					
CD	Course Delivery methods		Outcome	Method					

CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2
CD2	Tutorials/Assignments	CO2	CD1 CD2
CD3	Seminars	CO3	CD1 CD2
CD4	Mini projects/Projects	CO4	CD1 CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2
CD6	Industrial/guest lectures		
CD7	Industrial visits/in-plant training		
CD8	Self- learning such as use of NPTEL materials and internets		
CD9	Simulation		

Week	Lect.	Tent	С	Topics to be covered	Text	COs	Actual	Method	Remark
No.	No.	ative	h.		Book /	map	Content	ology	s by
		Date	Ν		Refere	ped	covered	Used	faculty
			0.		nces				if any
1	L1-L6			Perturbation theory, time-	T1-				
				independent perturbation theory	T2-R1				
				(non-degenerate and degenerate)					
				and applications.					
	L7-L9			Stark effect and other simple	T1-				
				cases. Relativistic perturbation to	T2_R				
				hydrogen atom.	1				
	L10-			Energy levels of hydrogen	T1 T2				
	L12			including fine structure, Lamb	R1				
				shift and hyperfine splitting					
	L13-	1		Zeeman effect (normal and	T1 T2				
	L15			anomalous) time, first and second	R1				
				order, the effect of the electric					
				field on the energy levels of an					
				atom (Stark effect)					
	L16-			Quantum mechanics of molecules,	T1 T3				
	L20			Born-Oppenheimer approximation	R1				
	L21-			Time-dependent perturbations,	T1 T3				
	L21 L24			first order transitions, Semi-	R1				
				classical theory of interaction of					
				atoms with field.					
	L25-			Quantization of radiation field.	T1 T2				
	L28			Hamiltonian of field and atom,	R1				
	L29-			Fermi golden rule, the Einstein's	T1 T2				
	L30			A & B coefficients.					
	L31-			Atom field interaction, density	T1 T2				
	L34			matrix equation,					
	L35-			closed and open two-level atoms,	T1 T2				
	L38			Rabi oscillations.	Т3				
	L39-	1		Relativistic wave equations:	T1 T2				
	L44			Klein-Gordon equation for a free	Т3				
				particle and particle under the					
				influence of an electromagnetic					
				potential,					
	L44-			, Dirac's relativistic Hamiltonian,	T1 T2				

L50		Dirac's relativistic wave equation, positive and negative energy states, significance of negative energy states.	Т3		

Course code: PH 503			
Course title: Lasers P	hysics a	and Applica	ations
Pre-requisite(s): Wav	es and	Optics	
Co- requisite(s):			
Credits: 3 L: 3	T: 1	P: 0	
Class schedule per we	ek:		
Class: I.M.Sc.			
Semester / Level: IX /	III		
Branch: PHYSICS			
Name of Teacher:			

extives enables the students: To identify conditions for lasing phenomenon and properties of the laser. To discuss stable, unstable resonators and cavity modes. To compare continuous and pulsed lasers. To classify different types of lasers with respect to design and working principles To illustrate various applications of laser e.g. holographic non-destructive testing. comes mpletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	1-0
enables the students: To identify conditions for lasing phenomenon and properties of the laser. To discuss stable, unstable resonators and cavity modes. To compare continuous and pulsed lasers. To classify different types of lasers with respect to design and working principles To illustrate various applications of laser e.g. holographic non-destructive testing. comes npletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
To identify conditions for lasing phenomenon and properties of the laser. To discuss stable, unstable resonators and cavity modes. To compare continuous and pulsed lasers. To classify different types of lasers with respect to design and working principles To illustrate various applications of laser e.g. holographic non-destructive testing. comes mpletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
To discuss stable, unstable resonators and cavity modes. To compare continuous and pulsed lasers. To classify different types of lasers with respect to design and working principles To illustrate various applications of laser e.g. holographic non-destructive testing. comes npletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
To classify different types of lasers with respect to design and working principles To illustrate various applications of laser e.g. holographic non-destructive testing. comes npletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
To illustrate various applications of laser e.g. holographic non-destructive testing. comes mpletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
comes npletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
npletion of this course, students will be: To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
To evaluate conditions for lasing phenomenon and properties of the laser. To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	
To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable one To evaluate Q-switching and the mode-locked lasing phenomenon.	•
To evaluate Q-switching and the mode-locked lasing phenomenon.	
To appraise different type of lasers with respect to design and working principles	
To appraise unreferr type of fasers with respect to design and working principles.	
To assess applications of a laser for measurement of distance, holography and medical surgeries etc.	
absorption. Population inversion, gain oscillation, gain saturation, threshold, rate equation, 3 and 4 level systems, laser line shape, hole burning, Lamb dip, output power. Properties of laser:	
Theory of resonator. Stable and unstable resonator, Optical cavities, Cavity modes, longitudinal	[10]
	[5]
Different type of lasers, design (in brief) and functioning of different lasers - Ruby laser, Nd: YAG laser, He-Ne laser, CO_2 laser, Argon ion laser, Dye laser, Excimer laser. Free electron laser	
Measurement with laser, alignment, targeting, tracking, velocity measurement, surface quality measurement. Measurement of distance (interferometric, pulse echo, Beam modulation). laser gyroscope, Holographic nondestructive testing (NDT). Application in communication. Material Processing: cutting, welding, drilling and surface treatment. Medical Applications, Laser trapping.	[10]
velto; Principles of Lasers, Springer (2004) r Fundamentsls: William T. Silfvast, Cambridge University Press (1998) imoda, Introduction to laser Physics, Springer Verlag, Berlin (1984) r Electronics: J.T.Verdeyen, 3rdEd, Prentice Hall (1994)	
r	To appraise different type of lasers with respect to design and working principles. To assess applications of a laser for measurement of distance, holography and medical surgeries etc. Interaction of radiations with atoms and ions: Spontaneous and Stimulated emissions, Stimulated absorption. Population inversion, gain oscillation, gain saturation, threshold, rate equation, 3 and 4 level systems, laser line shape, hole burning, Lamb dip, output power. Properties of laser: coherence, monochromaticity, divergence. Theory of resonator. Stable and unstable resonator, Optical cavities, Cavity modes, longitudinal and transverse modes of the cavity. Continuous wave, Pulsed, Q- switched and Modelocked lasers. Different type of lasers, design (in brief) and functioning of different lasers - Ruby laser, Nd: YAG laser, He-Ne laser, CO ₂ laser, Argon ion laser, Dye laser, Excimer laser. Free electron laser Measurement with laser, alignment, targeting, tracking, velocity measurement, surface quality measurement. Measurement of distance (interferometric, pulse echo, Beam modulation). laser gyroscope, Holographic nondestructive testing (NDT). Application in communication. Material Processing: cutting, welding, drilling and surface treatment. Medical Applications, Laser trapping. //elto; Principles of Lasers, Springer (2004) Fundamentsls: William T. Silfvast, Cambridge University Press (1998) moda, Introduction to laser Physics, Springer Verlag, Berlin (1984)

R3 Laser Applications in Surface Science and Technology; H.G.Rubahn; John Wiley & Sons (1999)

1. R4 Optical Methods in Engineering Metrology: Ed D.C.Williams; Chapman & Hall

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

<u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

DII CCI ASSESSIIICIII	
Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks					
Quiz I					
Quiz II					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
Α	Н	Μ	Μ	L	Μ
В	М	Н	Μ	L	L
С	L	L	Η	L	L
D	-	L	L	Н	L
Е	L	Μ	L	L	Η

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						
	a	b	с	d	e	f		
1	Н	Н	Н	Н	L	Н		
2	Н	Н	Н	Н	М	Н		
3	Н	Н	Н	М	L	М		
4	Н		Н	Н	L	М		
5	М	Н	Н	Н	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures	-	-			
CD7	Industrial visits/in-plant training	-	-			
CD8	Self- learning such as use of NPTEL materials and internets	_	-			
CD9	Simulation	_	_			

Week No.	Lect. No.	Tent ative Date	Ch. No.	Topics to be covered	Text Book / Refere nces	COs mapp ed	Actual Content covered	Methodology used	Remarks by faculty any	
1	L1-L2		1	Interaction of radiations with atoms and ions	T1, T2,	1,2		PPT Digi Class/Chock -Board		
	L3-L7			SpontaneousandStimulatedemissions,Stimulatedabsorption.Populationinversion,gain oscillation		1,		Digi Class/Chock -Board		
	L8- L10			gain saturation, threshold, rate equation, 3 and 4 level systems,		1,2		Digi Class/Chock -Board		
	L11- L14			laser line shape, hole burning, Lamb dip, output power.		1,2,3		Digi Class/Chock -Board		
	L15			Properties of laser: coherence, monochromaticity, divergence.		1,2		Digi Class/Chock -Board		
	L16- L18			Theory of resonator. Stable and unstable resonator,		1		Digi Class/Chock -Board		
	L19- L25			Optical cavities, Cavity modes, longitudinal and transverse modes of the cavity.		2		Digi Class/Chock -Board		
	L26- L30			Continuous wave, Pulsed, Q- switched and Modelocked lasers.		3		Digi Class/Chock -Board		
	L31-35			Different type of lasers, design (in brief) and functioning of different lasers -		4		Digi Class/Chock -Board		

L36- L40	Ruby laser, Nd: YAG laser, He-Ne laser, CO_2 laser, Argon ion laser, Dye laser, Excimer laser. Free electron laser	4	Digi Class/Chock -Board
L41- L45	Measurement with laser, alignment, targeting, tracking, velocity measurement, surface quality measurement.	5	Digi Class/Chock -Board
L46- L50	Measurement of distance (interferometric, pulse echo, Beam modulation). laser gyroscope, Holographic nondestructive testing (NDT). Application in communication. Material Processing: cutting, welding, drilling and surface treatment. Medical Applications, Laser trapping.		Digi Class/Chock -Board

Course code: PH 513 Course title: Laser Physics Lab Pre-requisite(s): Laser Physics and Applications Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr K. Bose

Laser Physics Lab	
	L-T-P-C
To determine the wavelength of sodium light using Michelson Interferometer	[0-0-4-2]
Demonstrate interference fringe pattern using Mach Zhender interferometer.	
Study of mercury spectrum using grating and spectrometer.	
Determine the coherence length of a diode laser using a Michelson Interferometer.	
Perform Faraday Effect experiment and find verdet constant of flint glass.	
To study the birefringence with respect to applied voltage in an electro optic crystal.	
To determine the Kerr constant of the liquid (Nitro Benzene)	
Study of hydrogen spectrum using grating and spectrometer.	
To find the velocity of ultrasonic wave in a liquid using ultrasonic diffraction appara	tus.
	To determine the wavelength of sodium light using Michelson Interferometer Demonstrate interference fringe pattern using Mach Zhender interferometer. Study of mercury spectrum using grating and spectrometer. Determine the coherence length of a diode laser using a Michelson Interferometer. Perform Faraday Effect experiment and find verdet constant of flint glass. To study the birefringence with respect to applied voltage in an electro optic crystal. To determine the Kerr constant of the liquid (Nitro Benzene)

Course Assessment tools & Evaluation procedure

Assessment Tool	% Contribution
Progressive Evaluation	60 (Day to day performance: 30, Quiz: 10, Viva: 20)
End Sem Examination	40 (Experiment Performance: 30, Quiz: 10)

Semester IV

PE- VI & VII

Two papers from the same Group A or B or C or $\,$ D or E

Project from the same Group A or B or C or D or E

PE-V

Group A- Theoretical and Computational Physics:

	Iumerical Methods for Physicists heory of Solids	
L	<u>COURSE INFORMATION SHEET</u>	
Course title Pre-requisi Co- requisi Credits: Class scheo Class: I.M.	le: PH 504 e: Numerical Methods for Physicists ite(s): Mathematical Physics ite(s): 4L: 4 T: 0 P: 0 lule per week: Sc. Level: PE V HYSICS	
Group		
Code: PH 504	Title: Numerical Methods for Physicists	L-T-P-C [4- 0-0- 4]
11 304	Theory & Programming using C for solving problems on following topics:	[+- v-v- 4]
Cours	e Objectives	
	course enables the students:	
А.	To learn about optimization techniques	
B.	To understand the concepts of functional approximations	
C.	To know about algebraic eigenvalue problems	
D.	To gain knowledge on integral equations	
E.	To gain familiarity with the numerical solutions of partial differental equations	
	the completion of this course, students will be: Able to perform optimization via coding Able to do construct programs on functional approximations Solving eigenvalue problems numerically	
4.	Comfortable in dealing with integral equations	
5.	Numerically able to solve partial differential equations	
M-114		F401
Module-1	Optimization Golden Section Search, Brent's Method, Methods Using Derivative, Minimization in Several Dimensions, Quasi-Newton Methods, Direction Set Methods, Linear Programming	[10]
Module-2	Functional Approximations	[10]
	Choice of Norm and Model, Linear Least Squares, Nonlinear Least Squares, Discrete Fourier Transform, Fast Fourier Transform (FFT), FFT in Two or More Dimensions, Functional Approximations	
Module-3	Algebraic Eigenvalue Problems	[10]
	Introduction,Power Method, Inverse Iteration, Eigenvalue Problem for a Real Symmetric Matrix , QL Algorithm for a Symmetric Tridiagonal Matrix, Algebraic Eigenvalue Problem	
Module-4		[10]
	Introduction, Fredholm Equations of the Second Kind, Expansion Methods, Eigenvalue Problem, Fredholm Equations of the First Kind, Volterra Equations of the Second Kind, Volterra Equations of the First Kind	

Module-5	Module-5 Partial Differential Equations						
	Wave Equation in Two Dimensions, General Hyperbolic Equations, Elliptic Equations, Successive Over-Relaxation Method, Alternating Direction Method, Fourier Transform Method, Finite Element Methods, Algorithms for Vector and Parallel Computers						
References							
2. "Numerie Cambric	cal methods for Scientists and Engineers" by H. M. Antia, Springer Science and Business Media. cal Recipes in C" by William H. Press, Saul A. Teukolsky, William T. Vetterling & Brian P. lge University Press.	Flannery,					
3. "Program	ming in C# A Primer" by E Balagurusamy, McGraw Hill Education.						

Course Assessment tools & Evaluation procedure

Direct Assessment							
Assessment Tool	% Contribution during CO Assessment						
Assignment	10						
Seminar before a commitee	10						
Three Quizzes	30 (10+10+10)						
End Sem Examination Marks	50						

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination					
Marks					
End Sem Examination					
Marks					
Quiz I					
Quiz II					

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	L	-	-	-
В	М	Н	L	-	М
C	М	L	Н	-	М
D	М	L	L	Н	М
E	М	L	L	L	Н

Course Outcome #	Program Outcomes						
	a	b	c	d	e	f	
1	L	Μ	Μ	Μ	L	М	
2	L	М	Μ	Μ	L	Μ	
3	L	Н	Μ	Μ	L	Μ	
4	L	Н	Μ	Μ	Н	Μ	
5	L	Н	Μ	Μ	Н	Μ	

Week	Lect	Tentati	Ch.	Topics to be covered	Text	Cos	Actual	Methodolo	Remar
No.	No.	ve Date	No.		Book / Referenc es	map ped	Content covered	gyused	ks by faculty if any
1	L1- L3			Golden Section Search, Brent'sMethod, MethodsUsingDerivative	T1,T2,T3	1		Board, Computers	
2	L4- L6			inimization in Several Dimensions, Quasi-Newton Methods	T1,T2,T3	1		Board, Computers	
3	L7- L9			Direction Set Methods, Linear Programming	T1,T2,T3	1		Board, Computers	
4	L10- L12			Choice of Norm and Model, Linear Least Squares, Nonlinear Least Squares	T1,T2,T3	2		Board, Computers	
5	L13- L15			Discrete Fourier Transform, Fast Fourier Transform (FFT),	T1,T2,T3	2		Board, Computers	
6	L16- L18			FFT in Two or MoreDimensions,FunctionalApproximations	T1,T2,T3	2		Board, Computers	
7	L19- L21			Introduction,Power Method, Inverse Iteration,	T1,T2,T3	3		Board, Computers	
8	L22- L24			Eigenvalue Problem for a Real Symmetric Matrix , QL Algorithm for a Symmetric Tridiagonal Matrix	T1,T2,T3	3		Board, Computers	
9	L25- L27			Algebraic Eigenvalue Problem	T1,T2,T3	3		Board, Computers	
10	L28- L30			Introduction,FredholmEquations of the Second Kind,Expansion Methods	T1,T2,T3	4		Board, Computers	
11	L31- L33			Eigenvalue Problem, Fredholm Equations of the First Kind	T1,T2,T3	4		Board, Computers	
12	L34- L36			VolterraEquationsoftheSecondKind,VolterraEquations of the First Kind	T1,T2,T3	4		Board, Computers	
13 ^{T1,T} 2,T3	L37- L39			WaveEquationinTwoDimensions,GeneralHyperbolicEquations,EllipticEquations		5		Board, Computers	
14	L40- L42			Successive Over-Relaxation Method, Alternating Direction Method, Fourier Transform Method		5		Board, Computers	
15	L43- L45			FiniteElementMethods,AlgorithmsforVectorand	T1,T2,T3	5		Board, Computers	

		Parallel Computers			

Course code: PH 505 Course title: Theory of Solids Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Group A

Option 3

Code: PH 505	Title: Theory of Solids				
Course Ob	jectives : This course enables the students				
А.	To become familiar with classification of solids using band theory.				
В.	To be familiarized with the change in density of states as a function of physical dimension of solid				
C.	To become familiar with the electrical behaviour of dielectric materials and understand the field c induced by dielectrics.	charge			
D.	To become familiar with the theory behind the magnetic properties of materials.				
E.	To understand the different optical processes and photophysical properties of solids.				
Course Ou	tcomes : After the completion of this course, students will be				
1.	Able to classify materials as metals, insulators and semiconductors and sketch the band diagram f	for each.			
2.	Able to classify material as 0D, 1D, 2D and 3D on the basis of density of states and correlate the properties with physical dimensions.	physical			
3.	Able to describe the different dielectric properties and be familiar with the experimental methods investigation of dielectrics.	for			
4.	Able to apply the theories to estimate the magnetic properties of materials.				
5.	Able to correlate the results of different optical experiments with the theory.				
Module-1 Module-2	Band TheoryReview of Concepts: (Bloch theorem and Bloch function, Kronig Penney model), Construction of Brillouin zones (1 and 2 dimensions), Extended, reduced and periodic zone scheme, Effective mass of an electron, Nearly free electron model, Tight binding approximation, Orthogonalized plane wave method, Pseudo-potential method, Classification of conductor, semiconductor and insulators.Electron Statistics	[8]			
Module-2	Fermi-Dirac distribution, Fermi energy, Density of States, Classification of solids (0D, 1D, 2D, 3D) on the basis of density of states and k-space, effect of temperature on Fermi distribution function.	[6]			
Module-3	Dielectrics Matter in a.c. field, Propagation of e.m. wave in matter on the basis of Maxwell's equation, Relaxations and resonances, Kramer's-Kronig relation, Mechanical analogue of relaxation, Debye relation, Argand diagram, Influence of local field and d.c. conductivity and multiple relaxation times, Special diagram (cole-cole arc), Heterogeneous dielectrics (Maxwell- Wagner effect), Dipole relaxation of defects in crystal lattices, Space charge polarization and relaxation, Resonances: Linear oscillator model and one dimensional polar lattices, Ferroelectricity, Microscopic theory of Ferroelectricity, Phase transition of ferroelectrics (1 st , 2 nd and relaxor kind), Hysteresis loop, Recoverable energy, Piezoelectricity and transducers.	[10]			
Module-4	MagnetismMagnetic interactions, Exchange interaction, Direct exchange, Indirect exchange, Doubleexchange, Helical order, Frustration, Spin glasses, Landau theory of ferromagnetism,Heisenberg and Ising models, Excitations, Magnons, Bloch T ^{3/2} law, Measurement of spinwaves, Magnetism of the electron gas, Spin density waves, Kondo effect.	[8]			

Module-5	Optical properties	[8]
	Classification of optical process, optical coefficient, complex refractive index, propagation	
	of light in a dense optical medium, atomic oscillator, vibrational oscillator, free electron	
	oscillator, dipole oscillator model, inter band absorptions, excitons, concept of excitons,	
	free excitons, free excitons in external field, luminescence, light emission from solids,	
	interband luminescence, photoluminescence, electroluminescence, luminescence centres,	
	phonons, optical properties of metals.	
Text book		

Text book

- 1. Introduction to Solid State Physics 8thEdition, Charles Kittel, John Wiley and Sons, 2005.
- Solid State Physics, Neil W. Ashcroft, N. David Mermin, Saunders College Publishing, 1976 2.

References:

- 1. Optical properties of Solids: Anthony Mark Fox, Oxford Master Series in Physics, Oxford University Press (2001).
- 2. Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen Blundell, Oxford University Press (2001).

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Yes
projectors	
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and	Yes
internets	
Simulation	No

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Yes	Yes	Yes	No	No
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment	Yes	Yes	Yes	Yes	Yes

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome # Program Outcomes		
	Course Outcome #	Program Outcomes

	а	b	с	d	e	f
1	Н	М	М	L	М	L
2	Н	М	М	L	L	L
3	М	Н	Н	L	М	М
4	Н	Н	Н	L	М	М
5	М	Н	Н	L	М	М

Course Outcome #	Course Objectives					
	a	b	с	d	e	
1	Н	М	L	L	М	
2	М	Н	L	L	L	
3	L	L	Н	L	М	
4	L	L	L	Н	L	
5	М	L	М	М	Н	

Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Method	Delivery		
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2 a	and CD8		
CD2	Tutorials/Assignments		CO2	CD1, CD2 a	and CD8		
CD3	Seminars		CO3	CD1, CD2 a	and CD8		
CD4	Mini projects/Projects		CO4	CD1, CD2 a	and CD8		
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 a	and CD8		
CD6	Industrial/guest lectures			÷			
CD7	Industrial visits/in-plant training						
CD8	Self- learning such as use of NPTEL materials and internets						
CD9	Simulation						

Week	Lect.			Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	ative Date			Book / Refere		Content covered	used	by faculty if
					nces				any
1	L1-L2		Ι	Review of Concepts: (Bloch theorem and Bloch function,	T1, T2	1, 2		PPT Digi Class/Chalk -Board	
1	L3			KronigPenneymodel)ConstructionofBrillouinzones(1)and2dimensions)	T1, T2			PPT Digi Class/Chalk -Board	
1	L4-L5			Extended, reduced and periodic zone scheme Effective mass of an electron,	T1, T2			PPT Digi Class/Chalk -Board	
2	L6			Nearly free electron model	T1, T2			PPT Digi Class/Chalk -Board	

2	L7		Tight binding approximation	T1, T2	PPT Digi
2				11, 12	Class/Chalk
					-Board
2	L8-L9		Orthogonalized plane wave	T1, T2	PPT Digi
2	L0-L)		method,Pseudo-potential	11, 12	Class/Chalk
			method		-Board
2	I 10			T1 T2	
3	L10		Classification of conductor,	T1, T2	PPT Digi Class/Chalk
			semiconductor and insulators		-Board
4	T 11	TT		T1 T2	
4	L11	II	Fermi-Dirac distribution	T1, T2	PPT Digi
					Class/Chalk -Board
4	T 10 10			T 1 T 2	
4	L12-13		Fermi energy	T1, T2	PPT Digi
					Class/Chalk
-	X 1 4 1 6			T1 T 2	-Board
5	L14-16		Density of States,	T1, T2	PPT Digi
			Classification of solids (0D,		Class/Chalk
			1D, 2D, 3D) on the basis of		-Board
			density of states		
5	L17		k-space	T1, T2	PPT Digi
					Class/Chalk
					-Board
6-7	L18-20		Effect of temperature on	T1, T2	PPT Digi
			Fermi distribution function.		Class/Chalk
					-Board
	L21	III	Matter in a.c. field,	T1, T2	PPT Digi
			Propagation of e.m. wave in		Class/Chalk
			matter on the basis of		-Board
			Maxwell's equation		
	L22		Relaxations and resonances	T1, T2	PPT Digi
					Class/Chalk
					-Board
	L23		Kramer's-Kronig relation,	T1, T2	PPT Digi
			Mechanical analogue of		Class/Chalk
			relaxation		-Board
	L24		Debye relation, Argand	T1, T2	PPT Digi
			diagram	,	Class/Chalk
			B		-Board
	L25	—	Influence of local field and	T1, T2	PPT Digi
			d.c. conductivity and multiple		Class/Chalk
			relaxation times		-Board
	L26		Special diagram (cole-cole	T1, T2	PPT Digi
			arc), Heterogeneous		Class/Chalk
			dielectrics (Maxwell-Wagner		-Board
			effect)		
	L27		· · · · · · · · · · · · · · · · · · ·	T1, T2	
	L2/		Ferroelectricity, Microscopic	11, 12	PPT Digi Class/Chalk
			theory of Ferroelectricity		-Board
	1.20		Dhaga transition f	T1 T2	
	L28		Phase transition of	T1, T2	PPT Digi Class/Chalk
			ferroelectrics $(1^{st}, 2^{nd})$ and		-Board
			relaxor kind),		-Boalu

L29		Hysteresis loop, Recoverable	T1, T2	PPT Digi
		energy,		Class/Chalk
				-Board
L30		Piezoelectricity and	T1, T2	PPT Digi
		transducers.		Class/Chalk
				-Board
L31	IV	Magnetic interactions,	T1, T2,	PPT Digi
		Exchange interaction	R2	Class/Chalk
				-Board
L32		Direct exchange, Indirect	T1, T2,	PPT Digi
		exchange	R2	Class/Chalk
		C		-Board
L33-34		Double exchange, Helical	T1, T2,	PPT Digi
		order, Frustration, Spin		Class/Chalk
		glasses		-Board
L35		Landau theory of	T1, T2,	PPT Digi
135		ferromagnetism,	R2	Class/Chalk
		ienomagnetism,		-Board
L36-37		Heisenberg and Ising models,	T1, T2,	PPT Digi
1250 57		Excitations,	R2	Class/Chalk
		Excitations,		-Board
L38		Magnons, Bloch T ^{3/2} law,	T1, T2,	PPT Digi
200			R2	Class/Chalk
			112	-Board
L39		Measurement of spin waves	T1, T2,	PPT Digi
207			R2	Class/Chalk
			R2	-Board
L40		Spin density waves, Kondo	T1, T2,	PPT Digi
		effect.	R2	Class/Chalk
		eneed		-Board
L41	V	Classification of optical	T1, T2,	PPT Digi
		process, optical coefficient	R1	Class/Chalk
		F, -F		-Board
L42		complex refractive index,	T1, T2,	PPT Digi
		propagation of light in a		Class/Chalk
		dense optical medium		-Board
L43		atomic oscillator, vibrational	T1, T2,	PPT Digi
		oscillator	R1	Class/Chalk
		osemator		-Board
L44-45		free electron oscillator, dipole	T1, T2,	PPT Digi
		oscillator model	R1	Class/Chalk
		osemator moder		-Board
L46		inter band	T1, T2,	PPT Digi
		absorptions, excitons, concept	R1	Class/Chalk
		of excitons, free excitons,		-Board
		free excitons in external field		
			T1, T2,	PPT Digi
I 47	1	luminescence, light emission		Class/Chalk
L47		£		
L47		from solids	R1	
				-Board
L47 L48		from solids interband luminescence, photoluminescence	T1, T2, R1	

L49	electroluminescence,luminesc ence centres	T1, T2, R1	PPT Digi Class/Chalk -Board	
L50	phonons, optical properties of metals.	T1, T2, R1	PPT Digi Class/Chalk -Board	

Group B- Condensed Matter Physics:

1. Theory of Solids

2. Functional Materials

COURSE INFORMATION SHEET

Course code: PH 505 Course title: Theory of Solids Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Group B

Option 1

Same given As above(in Group A)

COURSE INFORMATION SHEET

Course code: PH 506 Course title: Functional Materials Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Option 2

Code: PH 506	Title: Functional Materials	L-T-P-C [4-0-0-4]
Module-1	Introduction to Metals, Alloys, Ceramics, Polymers and Composites, Phase rules Fe-C phase diagram, Steels, cold, hot working of metals, recovery, recrystallization and grain growth, Structure, properties.	[8]
Module-2	Processing and applications of ceramics. Classification of polymers, polymerization, structure, properties, additives, products, processing and applications. Quasicrystals, Conducting Polymers; Properties and applications composites.	[12]
Module-3	Advanced Materials: Smart materials, ferroelectric, piezoelectric, biomaterials (some basic information), superalloys, aerospace materials, shape memory alloys, optoelectronic materials, Materials for photodiode, light emitting diode (LED), Photovoltaic/Solar cell and meta materials	[10]
Module-4	Nanostructured Materials: Nanomaterials classification (Gleiter's Classification)–property changes done to size effects, Quantum dot, wire and well, synthesis of nanomaterials, ball milling.	[8]
Module-5	Liquid state processing -Sol-gel process, Vapour state processing –CVD, MBE, Aerosol processing, fullerene and tubules, formation and characterization of fullerenes and tubules, single wall and multiwall carbon tubules, electronic properties of tubules, applications: optical lithography, MOCVD, super hard coating.	[12]

2. T2: Biomaterials Science, An Introduction to Materials in Medicine , Edited by B.D. Ratner, A.S.

Hoffman, F.J. Sckoen, and J.E.L Emons, Academic Press, second edition, 2004

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Assessment Components	CO1	CO2	CO3	CO4	CO5
Quizes	Yes	Yes	Yes	Yes	Yes
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment					

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #			Program O	utcomes		
	a	b	С	d	e	f
1	Н	Н	Н	L	М	L
2	М	Н	Н	L	L	L
3	Н	М	М	М	М	М
4	М	Н	М	М	Н	М
5	Н	Н	Н	L	Н	L

Course Outcome #	Course Objectives				
	А	В	С	D	Е
1	Н	М	М	М	М
2	L	Н	L	L	М
3	L	М	Н	М	М
4	Н	L	Н	Н	L
5	Н	М	М	L	Н

	Mapping Between COs and Course Delivery (CD) methods					
CD	Course Delivery methods	Course	Course Delivery Method			
		Outcome				
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8			
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8			
CD3	Seminars	CO3	CD1, CD2 and CD8			
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Week	Lect.	Fentativ	Modu	Fopics to be covered	Гext	COs	Actual	Methodology	Remarks
No.	No.	e	le.		Book /	mapped	Content	used	by
		Date	No.		Refere		covered		faculty if
					nces				any

1	L1	Ι	Introduction to Metals, Alloys	T1	PPT Digi
1		1			Class/Chal
					k-Board
1	L2		Ceramics	T1, T2	PPT Digi
1	L		Cerannes	11, 12	Class/Chal
					k-Board
1	L3-		Polymers and Composites, Phase	T1, T2	PPT Digi
1	L3- L4		rules	11, 12	Class/Chal
	L/4		Tutes		k-Board
2	L5		Fe-C phase diagram	T1	PPT Digi
2	LJ		re-e phase diagram	11	Class/Chal
					k-Board
2	L6-		Steels, cold, hot working of metals,	T1	PPT Digi
2			recovery, recrystallization and grain	11	Class/Chal
	L8				k-Board
-	T.O.		growth, Structure, properties.		
2	L9-		Processing and applications of	T1	PPT Digi
	L10		ceramics.		Class/Chal
					k-Board
3	L11-		Classification of polymers,	T1	PPT Digi
	L13		polymerization, structure,		Class/Chal
		II	properties		k-Board
3	L14-		additives, products, processing and	T1	PPT Digi
	L16		applications.		Class/Chal
					k-Board
3	L17-		Quasicrystals	T1	PPT Digi
	L18				Class/Chal
					k-Board
4	L19-		Conducting Polymers; Properties	T1	PPT Digi
	L20		and applications composites.		Class/Chal
					k-Board
4	L21-		Advanced Materials: Smart	T1	PPT Digi
	22		materials,		Class/Chal
					k-Board
5	L23-		Ferroelectric, piezoelectric,	T1	PPT Digi
	24				Class/Chal
					k-Board
5	L25-		Biomaterials (some basic	T2	PPT Digi
	L26		information), superalloys,		Class/Chal
		III			k-Board
6	L27-		Aerospace materials, shape memory	T1	PPT Digi
	L28		alloys,		Class/Chal
					k-Board
6-7	L29-		Optoelectronic materials, Materials	T1	PPT Digi
	L30		for photodiode, light emitting diode		Class/Chal
			(LED), Photovoltaic/Solar cell and		k-Board
			meta materials		
	L31-	IV	Nanostructured Materials:	T1	PPT Digi
	L31- L32	1 4	Nanomaterials classification	**	Class/Chal
	L32		(Gleiter's Classification)		k-Board
	1.22			T1	
	L33-		Property changes done to size	T1	PPT Digi
	L35		effects,		Class/Chal
	L 2C		Overture det mins and 11	T1	k-Board
	L36-		Quantum dot, wire and well,	T1	PPT Digi

L38				Class/Chal
				k-Board
L39-		synthesis of nanomaterials, ball	T2	PPT Digi
L40		milling.		Class/Chal
				k-Board
L41-		Liquid state processing -Sol-gel	T1, T2	PPT Digi
L43		process, electronic properties of		Class/Chal
		tubules, applications		k-Board
L44-		Vapour state processing -CVD,	T1	PPT Digi
L46	V	MBE		Class/Chal
				k-Board
L47-		Aerosol processing, fullerene and	T1	PPT Digi
L48		tubules,		Class/Chal
				k-Board
L49-		Formation and characterization of	T1	PPT Digi
L50		fullerenes and tubules, single wall		Class/Chal
		and multiwall carbon tubules		k-Board

- Group C <u>Photonics:</u> 1. Fiber and Integrated Optics 2. Quantum & Nonlinear Optics

C	-		COURSE INFORMATION SHEET		
			H 507 iber and Integrated Optics		
): Waves and Optics		
	equisi				
Cred			4 L: 4 T: 0 P: 0		
			per week:		
	5: I.M.				
			el: PE V		
	ch: Pl				
	e of To				
			Group C Option : 1		
				LTDO	
	ode:		Title: Fiber and Integrated Optics	L-T-P-C	
	PH 507			[4-0-0-4]	
Cour		·	ives : This course enables the students:		
	А.		o understand the light propagation phenomenon through fiber optic cable		
	В.		o understand various loss mechanism of signal while travelling through an optical	fiber.	
	C. To understand the basic working principle of waveguides and its design parameters.				
	D. To identify waveguides for applications in fiber optics communication systems				
	Е	To	o understand the principle of working of fiber based sensors for various application	n purposes.	
Cou	rse Ou	itcon	mes : After the completion of this course, students will be:		
	1.	Ał	ble to illustrate the principle of fiber optics communications.		
	2.		ble to distinguish between various loss mechanism in fiber optics communication s	system.	
	3.	Ał	ble to utilize the idea of waveguide for different application purpose.	-	
	4.	Ał	ble to categorise different waveguides for the utilization in optics communication	system	
	5.		ble to interpret different fiber sensors and their respective application and ca		d this
		teo	chnique for other new application.		
Modu	ıle-1	Prin	nciple of light propagation in fibers, step-index and graded index fibers; sin	ngle mode,	5
			ltimode and W-profile fibers. Ray optics representation, meridional and skew rays.	U U	
			rture and acceptance angle.		
Modu	ıle-2	Dis	persion, combined effects of material and other dispersions - RMS pulse	widths and	10
			quency response, birefringence. Attenuation in optical fibers. Material disp		
			veguide dispersion in single-mode fibers, Inter and intramodal dispersion in g		
		fibe	ers		
Modu	ıle-3	The	eory of optical waveguides, planar, rectangular, symmetric and asymmetric v	vaveguides,	12
		cha	nnel and strip loaded waveguides. Anisotropic and segmented waveguides. Step	-index and	
		grad	ded index waveguides, guided and radiation modes. Arrayed waveguide devices.	Fabrication	
		of in	ntegrated optical waveguides and devices.		
Modu	ıle-4	Wa	ave guide couplers, transverse couplers, grating couplers, tapered couplers, prisi	n couplers,	13
		fibe	er to waveguide couplers. Multilayer planar waveguide couplers, dual channel	directional	
		cou	plers, Butt coupled ridge waveguides, Branching waveguide couplers. Direction	al couplers,	
		opti	ical switch; phase and amplitude modulators, filters, etc. Y-junction, power splitter	·s	
Modu	ıle-5		er optics sensors, intensity modulation, phase modulation sensors, fiber Bra		12
			sors. Measurement of current, pressure, strain, temperature, refractive index, liqui		
		Tim	ne domain and frequency domain dispersion measurement, fibre lasers and fibre ox	roscone	

Text books:

- T1: Introduction to Fiber Optics: A.K. Ghatak and K. Thayagarajan, Cambridge University press
- T2: Integrated Optics: Theory and Technology; R. G. Hunsperger; Springer
- T3: Optical Fiber Sensors, John Dakin and Brain Culshaw, Arctech House Inc
 - **Reference books: R1:**

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks			\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark	\checkmark	
Quiz II				\checkmark	\checkmark

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5	
Α	Н	Μ	Μ	Μ	L	
В	Μ	Η	Μ	Μ		
С	Μ	Μ	Н	Μ	L	
D	L	Μ	Н	Η	М	
Е	М	М	Н	Н	Н	

Mapping of Course	Outcomes onto	Program Outcome	C C
mapping of Course	Outcomes onto	1 rogram Outcome	

Course	Program Outcomes
Course	Tiogram Outcomes

Outcome #	a	b	с	d	e	f
1	М	Н	Н		L	Н
2	М	Н	М		М	Н
3	М	Н	Н	L	L	М
4	М	М	Н	L	М	М
5	М	М	М	L	Н	Н

	Mapping Between COs and Course Delivery (CD) methods					
		Course	Course Delivery			
CD	Course Delivery methods	Outcome	Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2			
CD2	Tutorials/Assignments	CO2	CD1 and CD2			
CD3	Seminars	CO3	CD1 and CD2			
CD4	Mini projects/Projects	CO4	CD1 and CD2			
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Week	Lect.	Fentativ	Ch.	Fopics to be covered	Гext	Cos	Actual	Methodolog	Remark
No.	No.	e	No.		Book/	mapped	Content	y used	s by
		Date			References		covered		aculty if
									any
	L1-L2			Principle of light	T1, T2	CO1		PPT Digi	
				propagation in fibers,				Class/Choc	
				step-index and graded				k-oard	
				index fibers; single mode,					
				multimode and W-profile					
				fibers					
	L3-L5			Ray optics representation,	T1, T2	CO1		PPT Digi	
				meridional and skew rays.				Class/Choc	
				Numerical aperture and				k-Board	
				acceptance angle.					
	L6-L7			Dispersion, combined	T1, T2	CO2		PPT Digi	
				effects of material and				Class/Choc	
				other dispersions				k-Board	
	L8-			RMS pulse widths and	T1, T2	CO2		PPT Digi	
	L11			frequency response,				Class/Choc	
				birefringence. Attenuation				k-oard	
				in optical fibers.					
	L12-			Material dispersion and	T1, T2	CO2		PPT Digi	
	L15			waveguide dispersion in				Class/Choc	
				single-mode fibers, Inter				k-Board	
				and intramodal dispersion					
				in graded-index fibers					
	L16-			Theory of optical	T1, T2	CO3		PPT Digi	

L19	woveguides planar			Class/Choc
	waveguides, planar, rectangular, symmetric and asymmetric waveguides, channel and strip loaded waveguides	E1 E2		k-Board
L20- L23	Anisotropicandsegmentedwaveguides.Step-indexandgradedindexand radiation modes	T1, T2	CO3	PPT Digi Class/Choc k-Board
L24- L27	Arrayed waveguide devices. Fabrication of integrated optical waveguides and devices.	T1, T2	CO3	PPT Digi Class/Choc k-Board
L28- L31	Wave guide couplers, transverse couplers, grating couplers, tapered couplers, prism couplers, fiber to waveguide couplers	T1, T2	CO4	PPT Digi Class/Choc k-Board
L32- L35	Multilayer planar waveguide couplers, dual channel directional couplers , Butt coupled ridge waveguides , Branching waveguide couplers	T1, T2	CO4	PPT Digi Class/Choc k-Board
L36- L39	Directional couplers optical switch; phase and amplitude modulators	T1, T2	CO4	PPT Digi Class/Choc k-Board
L40	filters, Y-junction, power splitters	T1, T2	CO4	PPT Digi Class/Choc k-Board
L41- L44	Fiber optics sensors, intensity modulation, phase modulation sensors, fiber Bragg grating sensors	Τ3	CO5	PPT Digi Class/Choc k-Board
L45- L48	Measurement of current, pressure, strain, temperature, refractive index, liquid level etc.	Т3	CO5	PPT Digi Class/Choc k-Board
L49- L52	Time domain and frequency domain dispersion measurement, fibre lasers and fibre gyroscope.	Т3	CO5	PPT Digi Class/Choc k-Board

COURSE INFORMATION SHEET

Course code: PH 508 **Course title: Quantum and Nonlinear Optics Pre-requisite**(s): Waves and Optics **Co- requisite(s):** Credits: **4**L: 4 T: 0 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level: PE V **Branch: PHYSICS** Name of Teacher Group C

Option 2

Code: PH 508	Titles: Quantum and Nonlinear OpticsL-T-P-C[4-0-0-4]						
	enables the students:						
A.	To identify the phenomenon of the nonlinear optical interaction of light with matter						
<u>А.</u> В.	To examine higher harmonic generations, two-photon absorption and stimulated	scatterir					
D.	phenomenon	scatterin					
C.	To formulate nonlinear optics in two-level approximations						
	D. To analyse intensity dependent phenomenon						
E	To identify nonlinear optical phenomenon for applications in optical devices						
Course Out	comes After the completion of this course, students will be:						
1.	Able to judge non-linear optical phenomenon						
2.	Apply knowledge of nonlinear optical phenomena in higher harmonic generations, t	wo-photo					
	absorption and stimulated scattering phenomenon						
3.	To solve nonlinear optical interaction problem in two-level system						
4.	To evaluate intensity dependent material properties like refractive indices and self-focussing						
5.	To design non-linear optical devices						
Module-1	Nonlinear Optical Phenomena: Introduction to nonlinear optics, description of	10					
	nonlinear optical interaction, phenomenological theory of nonlinearity, nonlinear						
	optical susceptibilities. Sum and difference frequency generation, second harmonic						
	generation, coupled wave equation						
Module-2	Manley-Rowe relations, phase matching of SHG, quasi phase matching, electric	10					
	field induced SHG (EIFISH), optical parametric amplification, third harmonic						
	generation, two-photon absorption. Stimulated Raman scattering and stimulated						
	Brillouin scattering.						
Module-3	Two level atoms: nonlinear optics in two level approximations, density matrix	10					
	equation, closed and open two-level atoms, steady state response in monochromatic						
	field, Rabi oscillations, dressedatomic state, optical wave mixing in two level						
	systems, photon echo, self-induced transparency, optical nutation, free induction						
	decay.						
Module-4	tensity dependent phenomena: intensity dependent refractive index, self-focusing,	12					
	self-phase modulation, spectral broadening, optical continuum generation by short						
	optical pulse. Optical phase conjugation, application of OPC in signal processing.						
	Self-induced transparency, spatial and temporal solitons, solitons in Kerr media,						
	photorefractive and quadratic solitons, Soliton pulses, optical vortices. Pulse						
Module-5	compression.	8					
Module-3	Nonlinear guided wave optical devices: nonlinear planar waveguide, nonlinear channel waveguide, nonlinear directional coupler, nonlinear mode sorter, nonlinear	o					
	Mach-Zehnder interferometer and logic gate, Nonlinear loop mirror						
Book:	mach-zemider metrerometer and logic gate, Nonmitedi 100p mintoi						
	amentals of Nonlinear Optics; P.E.Powers, CRC Press Francis and Taylor (2011)						
	iples of Nonlinear Optics; Y.R.Shen						
	inear Optics: Robert Boyd, Academic press						
	ics of Nonlinar Optics: Guang- Sheng –He and $\$\phi$ ng-Hao Lin; World scientific.						
	Level Resonances in Atoms: Allen and I H Emberly John Wiley						

R2. Two Level Resonances in Atoms; Allen and J.H. Emberly, John Wiley.

Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment					
Assessment Tool	% Contribution during CO Assessment				
Assignment	10				
Seminar before a commitee	10				
Three Quizzes	30 (10+10+10)				
End Sem Examination Marks	50				

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination Marks					
Quiz I					
Quiz II					

Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5	
А	Η	М	Μ	L	М	
В	Μ	Н	Μ	L	L	
С	L	L	Н	L	L	
D	-	L	L	Н	L	
E	L	М	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					
	a	b	с	d	e	f
1	Н	Н	Н	Н	L	Н
2	Н	Н	Н	Н	М	Н
3	Н	Н	Н	М	L	М
4	Н	М	Н	Н	L	М
5	М	Н	Н	Н	Н	Н

Mapping Between COs and Course Delivery (CD) methods

CD	Course Delivery methods	Course Outcome	Course Delivery Method
	Lecture by use of boards/LCD projectors/OHP		
CD1	projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2
CD6	Industrial/guest lectures	-	-
CD7	Industrial visits/in-plant training	-	-
	Self- learning such as use of NPTEL materials and		
CD8	internets	-	-
CD9	Simulation	-	-

Week No.	Lect. No.	Tentativ e Date	Ch. No	Topics to be covered	Text Book / Refere Nces	COs mappe d	Actual Conte nt cover ed	Methodolog y used	Remark s by faculty if any
1	L1-L10		1	Nonlinear Optical Phenomena: Introduction to nonlinear optics, description of nonlinear optical interaction, phenomenological theory of nonlinearity, nonlinear optical susceptibilities. Sum and difference frequency generation, second harmonic generation, coupled wave equation	T1, T2,	1,2		PPT Digi Class/Chock -Board	
	L11- L20			Manley-Rowe relations, phase matching of SHG, quasi phase matching, electric field induced		2		Digi Class/Chock -Board	

<u>г г</u>	1		I	I	
		SHG (EIFISH), optical			
		parametric			
		amplification, third			
		harmonic generation,			
		two-photon absorption.			
		Stimulated Raman			
		scattering and			
		stimulated Brillouin			
		scattering.			
L21-		Two level atoms:	3	Diai	
			5	Digi	
L30		nonlinear optics in two		Class/Chock	
		level approximations,		-Board	
		density matrix equation,			
		closed and open two-			
		level atoms, steady state			
		response in			
		monochromatic field,			
		Rabi oscillations,			
		dressed			
		atomic state, optical			
		· 1			
		wave mixing in two			
		level systems, photon			
		echo, self-induced			
		transparency, optical			
		nutation, free induction			
		decay			
L31-		Intensity dependent	4	Digi	
L42		phenomena: intensity		Class/Chock	
		dependent refractive		-Board	
		index, self-focusing,		-Boald	
		self-phase modulation,			
		-			
		spectral broadening,			
		optical continuum			
		generation by short			
		optical pulse. Optical			
		phase conjugation,			
		application of OPC in			
		signal processing. Self-			
		induced transparency,			
		spatial and temporal			
		solitons, solitons in Kerr			
		media, photorefractive			
		and quadratic solitons,			
		Soliton pulses, optical			
		vortices. Pulse			
		compression			
L43-		Nonlinear guided wave	5	Digi	
L50		optical devices:		Class/Chock	
		nonlinear planar		-Board	
		waveguide, nonlinear			
		channel waveguide,			
		nonlinear directional			
		coupler, nonlinear mode			
		sorter, nonlinear Mach-			
		Zehnder interferometer			
		and logic gate,			
		Nonlinear loop mirror			

Group D – <u>Electronics:</u>

- **1. Instrumentation and Control**
- 2. Physics of Low dimensional Semiconductors

COURSE INFORMATION SHEET

Course code: PH 509 **Course title: Instrumentation and Control Pre-requisite**(s): **Co- requisite(s): Credits: 4** L: 4 T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V **Branch: PHYSICS** Name of Teacher: Dr. Dilip Kumar Singh

		Group : D Option 1					
C	ode:	Title: Instrumentation and Control	L-T-P-C				
Pł	H 509		4-0-0-4				
		jectives					
This c		enables the students:					
	A.	Course on <i>Instrumentation and control</i> intends to impart knowl measurement, data acquisition and control for experiments.	ledge of				
	B.	The first module of the course addresses basics of measurements like	e range.				
		resolution, reproducibility, accuracy and precision.					
	C.	Module-2 of the course introduces various types of sensors and their	working				
		to record changes in the different physical parameters.	6				
	D.	The techniques of signal conditioning and noise reductions for acqui	ired data				
		are subject of Module-3.					
	E.	Last two units covers working and theory of different types of correc	tion and				
		regulating elements used in control systems.					
		tromes mpletion of this course, students will be: Learners would develop understanding of various experimental par measurements like range, resolution, reproducibility and precision. Through this course, students would develop an insight into funda sensors / transducers, data acquisition and processing, noise minim control systems for automation. This course is expected to enable students to design and understand hard for developing equipment for data acquisition, data conditioning and con Course would enable students to grasp understanding of instrume automation of various physical process monitoring and control.	imentals of ization and lwares used ntrol.				
М	odule	1 Measurement basics:	5				
		Range, resolution, linearity, hysteresis, reproducibility and calibration, accuracy and precision.	drift,				
Μ	odule		10				
		Sensor Systems, characteristics, Instrument Selection, Measurer Issues and Criteria, Acceleration, Shock and Vibration Sen					

	Interfacing and Designs, Capacitive and Inductive Displacement	
	Sensors, Magnetic Field Sensors, Flow and Level Sensors, Load	
	Sensors, Strain gauges, Humidity Sensors, Accelerometers,	
	Photosensors, Thermal Infrared Detectors, Contact and Non-contact	
	Position sensors, Motion Sensors, Piezoresistive and Piezoelectric	
	Pressure Sensors, Sensors for Mechanical Shock, Temperature Sensors	
	(contact and non-contact)	
Module-3	Signal conditioning	15
	Types of signal conditioning, Amplification, Isolation, Filtering,	
	Linearization, Classes of signal conditioning, Sensor Signal	
	Conditioning, Conditioning Bridge Circuits, D/A and A/D converters	
	for signal conditioning, Signal Conditioning for high impedance sensors	
	Grounded and floating signal sources, single-ended and differential	
	measurement, measuring grounded signal sources, ground loops, signal	
	circuit isolation, measuring ungrounded signal sources, system isolation	
	techniques, errors, noise and interference in measurements, types of	
	noise, noise minimization techniques	
Module-4	Actuators	4
	Correction and regulating elements used in control systems, pneumatic,	
	hydraulic and electric correction elements.	
Module-5	Control System	16
	Open loop and closed loop (feedback) systems and stability analysis of	10
	these systems, Signal flow graphs and their use in determining transfer	
	functions of systems; transient and steady state analysis of linear time	
	invariant (LTI) control systems and frequency response. Tools and	
	techniques for LTI control system analysis: root loci, Routh-Hurwitz	
	criterion, Bode and Nyquist plots. Control system compensators:	
	elements of lead and lag compensation, elements of Proportional-	
	Integral-Derivative (PID) control. State variable representation and	
	solution of state equation of LTI control systems.	
Text books		
	• nic Instrumentation -H. S. Kalsi, Tata McGraw-Hill Education, 2010	
	hic Instrumentation -W. Bolton	
	nentation: Electrical and Electronic Measurements and Instrumentation	Λν
	ientation. Electrical and Electronic Measurements and instrumentation	-A. N .
Sawhney,		
T4 Madam	Electronic Instrumentation & Macaurament Techniques, Helfrist & Comm	
14. Modern	Electronic Instrumentation & Measurement Techniques -Helfrick & Coope	51

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Y
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment	
Assessment Tool	% Contribution during CO Assessment

Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination Marks					
Quiz I					
Quiz II				\checkmark	

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4
Α	Н	Н	Н	Н
В	Н	Н	L	L
С	Н	Н	Н	L
D	Н	L	Н	L
E	Н	Н	Н	L
F	Н	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes				
	а	b	с	d	e	f
1	Н	Н	Н	L	Н	Н
2	Н	Н	Н	L	Н	Н
3	Н	Н	Н	L	Н	Н
4	Н	Н	Н	L	Н	М

Mapping Between COs and Course Delivery (CD) methods

Mapping Detween COs and Course Denvery (CD) methods				
CD	Course Delivery methods	Course Outcome	Course Delivery	
			Method	
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2	
CD2	Tutorials/Assignments	CO2	CD1 and CD2	
CD3	Seminars	CO3	CD1 and CD2	
CD4	Mini projects/Projects	CO4	CD1 and CD2	
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2	
CD6	Industrial/guest lectures	CO6	CD1 and CD2	
CD7	Industrial visits/in-plant training	-	-	
CD8	Self- learning such as use of NPTEL materials and	-	-	
	internets			
CD9	Simulation	-	-	

Week No.	Lect. No.	Tentative Date	Ch No	Topics to be covered	Text Book / Refere nces	Cos mapped	Actual Content covered	Method ology used	Remarks by faculty if any
1	L1			Measurement basics: Range,	T1, T4				
	L2			resolution, linearity,	T1, T4				
	L3			hysteresis, reproducibility	T1, T4				
	L4			drift, calibration,	T1, T4				
	L5			accuracy and precision.	T1, T4				
	L6			Sensors Sensor Systems, characteristics,	T1, T4				
	L7			InstrumentSelection,MeasurementIssuesCriteria,					
	L8			Acceleration, Shock and Vibration Sensors, Interfacing and Designs,	T1, T4				
	L9			CapacitiveandInductiveDisplacementSensors,Magnetic Field Sensors,					
	L10			Flow and Level Sensors, Load Sensors, Strain gauges, Humidity Sensors, Accelerometers,					
	L11 Photosensors, Thermal Infra Detectors,		Photosensors, Thermal Infrared Detectors,	T1, T4					
	L12			Contact and Non-contact Position sensors, Motion Sensors,					
	L13			Piezoresistive and Piezoelectric	T1, T4				
	L14			Pressure Sensors, Sensors for Mechanical Shock,	T1, T4				
	L15			Temperature Sensors (contact and non-contact)	T1, T4				
	L16			Signal conditioning Types of					
	L17]	signal conditioning,					
	L18				T1, T4				
	L19				T1, T4				
	L20				T1, T4				
	L21		Classes of signal conditioning, Sensor Signal Conditioning,		T1, T4				
	L22]	Conditioning Bridge Circuits,	T1, T4				
	L23				T1, T4				
	L24			and A/D converters for signal conditioning,	,				
	L25			Signal Conditioning for high impedance sensors Grounded and floating signal sources,					
	L26			single-ended and differential	T1, T4				

	measurement,
L27	measuring grounded signalT1, T4
	sources, ground loops, signal
	circuit isolation,
L28	measuring ungrounded signalT1, T4
	sources,
L29	system isolation techniques,T1, T4
	errors, noise and interference in
	measurements,
L30	
L30	types of noise, noiseT1, T4 minimization techniques
L31	Actuators T1, T4
251	Correction and regulating
L32	elements used in controlT1, T4
	systems,
L33	pneumatic, hydraulic and T1, T4
L34	electric correction elements. T1, T4
L35	Control System T1, T4
100	Open loop and closed loop
	(feedback) systems
L36	stability analysis of these T1, T4
	systems,
L37	Signal flow graphs and their useT1, T4
	in determining transfer
	functions of systems;
L38	transient and steady stateT1, T4
	analysis of linear time invariant T1, T4
L39	(LTI) control systems and
L40	frequency response. Tools and techniques for LTIT1, T4
L40 L41	control system analysis: rootT1.T4
L41 L42	
L43	Bode and Nyquist plots. T1, T4
L44	T1, T4
L45	Control system compensators:T1, T4
L46	elements of lead and lagT1, T4
L47	compensation, T1, T4
L48	elements of Proportional-T1, T4
L49	Integral-Derivative (PID)T1, T4
	control.
L50	State variable representation T1, T4
	and solution of state equation of
	LTI control systems.

COURSE INFORMATION SHEET

Course code: PH 510 Course title: Physics of Low dimensional Semiconductors Devices Pre-requisite(s): Co- requisite(s): Credits: 4L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher: Group : D

Option	<u>2</u>
---------------	----------

Code:	Title: Physics of Low dimensional Semiconductors Devices	L-T-P-C		
PH 510	Devices	4-0-0-4		
Course Object	Course Objectives			

This course enables the students:

Course on "Physics of Low dimensional Semiconductors" contains information about functionality and working of devices with miniaturized size.
The first module includes introduction to various types of semiconductor nanostructures and effect of dimension on their properties.
The properties, growth and band-engineering of heterostrutres is planned to be covered in Unit-2.
Unit-3 contains Quantum wells and Low-dimensional systems, while Unit-4 addresses physics of Tunneling transport and Low-dimensional systems.
The electronic and optical properties of Two-dimensional electron gas (2DEG) and their applications is subject of Unit-5.

Course Outcomes

After the completion of this course, students will be:

	1.	Learners would gain knowledge about working and application	of various Low-dimensional
	Semiconductors.		
2. An understanding about Heterostructures, Quantum wells: Low-dimensional systems, Tunne			•
	transport, Quantum-Hall effect and their electronic and optical applications would update learner		
		with recent electronic and optical technologies in use.	
	3.	Knowledge about Physics and applications of Two-dimensional electronic electr	con gas (2-DEG) would enable
		them to grasp the pace of advancing field of 2D-Semiconductors and	their applications for ultrathin
		devices.	
Modu	ıle-1	Introduction to Semiconductor Nanostructures	6
		Introduction, Semiconductor quantum dot and quantum wire,	
		Density of states for 0-D, 1D and 2D nanostructures. Two-	
		dimensional semiconductors.	
Modu	ıle-2	Hetrostructures	8
		General properties and growth of hetrostructures, Band	
		engineering, Layered structures, Quantum wells and barriers,	
		Doped hetrostructures, Wires and dots, Optical confinement,	
		Effective mass approximation and Effective mass theory in	
		hetrostructures.	
		•••	

Module-3	Quantum wells and Low-Dimensional Systems	12
	Infinite deep square well, square well of finite depth, parabolic	
	well, triangular well, Low-dimensional systems, Occupation of	
	subbands, Quantum wells in hetrostructures.	
Module-4	Tunneling transport and Quantum Hall effect	12
	Potential step, T-Matrices, Resonant tunneling, Superlattices and	
	minibands, Coherent transport in many channels, Tunneling in	
	hetrostructures, Schrodinger equation with electric and magnetic	
	fields, Quantum hall effect	
Module-5	Two-Dimensional electron gas (2DEG)	12
	Revision of approximate methods, scattering rates: the golden	
	rule, Absorption in a quantum well, Electronic structure of a	
	2DEG, Optical properties of quantum wells: Kane model, bands in	
	a quantum well, Interband and intersubband transitions in a	
	quantum well, Optical gain and lasers, Excitons	
Text Boo	k	
[T1] John H.	Davies, The Physics of Low-Dimensional Semiconductors an Introduction	on, Cambridge University
Press.		
[T2] Thomas	s Heinzel, Mesoscopic electronics in solid state nanostructures, Wiley-VC	Ή
[T3] Jan G.	Korvink, Andreas Greiner, Semiconductors for micro and Nanotechnolo	bgy – An Introduction for
Engineers	s. Wiley-VCH	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Y
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizzes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Quiz1	\checkmark				
Quiz II				\checkmark	
Assignment	\checkmark			\checkmark	
End Sem Examination				\checkmark	\checkmark

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Η	Η	Η	Η	Η
В	Η	Η	Η	L	L
С	Н	Н	L	Н	Η

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes						
Outcome #	а	b	с	d	e	f		
1	Н	Н	Н	Μ	Н	Н		
2	Н	Н	Н	Μ	Н	Н		
3	Н	Н	Н	М	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods		Course Outcome	Course Delivery Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2						
CD2	Tutorials/Assignments		CO2	CD1 and CD2						
CD3	Seminars		CO3	CD1 and CD2						
CD4	Mini projects/Projects		CO4	CD1 and CD2						
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2						
CD6	Industrial/guest lectures		-	-						
CD7	Industrial visits/in-plant training		-	-						
CD8	Self- learning such as use of NPTEL materials and internets		-	-						
CD9	Simulation		-	-						

Week	Lect.	Fentative	Ch.	Fopics to be covered	Гext	Cos	Actual	Method	Remarks
	No.	Date	No.		Book /		Content		by faculty
No.					Refere		covered	used	if any
					nces				
1	L1		Ch1	Introduction to					
				Semiconductor	T1, T2,				
	L2			Nanostructures	T3				
				Introduction, Semiconductor	-				
				quantum dot and quantum wire,					
	L3			Density of states for 0-D, 1D	T1, T2,				
			1	and 2D nanostructures.	T3				1
	L4				-				
	L5		1	Two-dimensional	T1, T2,		1		
	1		1	semiconductors.	Т3				

	1	1	I	1				
	IC							
	L6	C1 0		T 1 T 2				
	L7	Ch2	Hetrostructures	T1, T2	,			
			General properties and growth	T3				
			of hetrostructures					
	L8	_	Band engineering	T1, T2				
	20			T3	,			
	L9		Layered structures	T1, T2				
				T3	·,			
	L10	_	Quantum wells and barriers	T1, T2	,			
	210		Quantum wens and barriers	T3	·,			
	L11		Doped	T1, T2	,			
	LII		Doped	T1, 12 T3	"			
			hetrostructures, Wires and dots	15				
	L12	_	Optical confinement,	T1, T2				
			-ruear commentant,	T3	,			
	L13	-	Effective mass approximation	T1, T2	2			
		-	and Effective mass theory in	T1, 12 T3	·,			
	L14		hetrostructures.	15				
	L15	Ch3	Quantum wells and Low-					
			Dimensional Systems	T1, T2				
	L16		U U	T3	,			
			Infinite deep square well,	15				
	L17		square well of finite depth,	T1, T2	2,			
				T3				
	L18		parabolic well,	T1, T2	2,			
				Т3				
	L19							
	L20		triangular well,	T1, T2	,			
				Т3				
	L21							
	L22			T1, T2	,			
	L23		Low-dimensional systems,	Т3				
			Occupation of subbands,					
	L24							
	L25		Quantum wells in	· ·				
			hetrostructures.	Т3				
	L26							
	L27	Ch4	Tunneling transport and	T1, T2				
			Quantum Hall effect Potential	Т3				
			step					
	L28		T-Matrices	T1, T2				
				Т3				
	L29		Resonant tunneling	T1, T2				
				Т3				
	L30		Superlattices and minibands	T1, T2	,			
				Т3				
L	1	1	1	1	1	1	1	

L31		Coherent transport in many channels				
L32		channels	Т3			
L33		Tunneling in hetrostructures	T1, T			
L34			Т3			
L35		Schrodinger equation with	T1, T	72,		
L36		electric and magnetic fields	T3			
L37		Quantum hall effect	T1, T	72,		
L38			Т3			
 L38 L39	Ch5	Two-Dimensional electron gas				
L39	CIIS	(2DEG)				
		Revision of approximate methods				
L40		scattering rates: the golden rule	T1, T			
L41			T3			
L42		Absorption in a quantum well	T1, T	72,		
		1 1	T3			
L43						
L44		Electronic structure of a 2DEG,	T1, T			
L45		Optical properties of quantum wells: Kane model	Т3			
L46		bands in a quantum well	T1, T	72,		
			T3			
L47		Interband and intersubband	T1, T			
L48		transitions in a quantum well	T3			
L49		Optical gain and lasers,	T1, T	72,		
		Excitons	Т3			
J						

Group E- Plasma Sciences:

- 1. Introduction to Plasma Physics
- 2. Plasma Processing of Materials

COURSE INFORMATION SHEET

Course code: PH 511 Course title: Introduction to Plasma Physics Pre-requisite(s): Co- requisite(s): Credits: 4 L:4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level:PE V Branch: PHYSICS Name of Teacher:

Group : E Option 1

Module	Course Objective:			
1.	To impart the knowledge about the fundamental and basics of Plasma Physics.			
2. To learn about the charged particle motion in electric and magnetic field.				
3.	To provide the knowledge about the ionization process and diffusion.			
4.	To learn about the basic Plasma Diagnostic Methods.			
5.	To learn how to use plasma for various application.			
Module	Course Outcome			
1.	Will have an idea about the basis of Plasma (Fourth State of Matter).			
2. Will be able to visualize the motion of charged particles in electric a magnetic field.				
3. Will have knowledge about the ionization and diffusion of Plasma.				
4.	Will be able to measure the different plasma parameters.			
5.	Will be familiar with different applications of Plasma.			
	The fourth state of matter, collective behavior, charge neutrality, space and time scale, concept of plasma temperature, Classification of Plasma, Debye shielding, Debye length, plasma frequency, plasma parameters and criteria for plasma state.	[8]		
	Single particle dynamics, charged particle motion in electric field, magnetic field and in combined electric and magnetic field, Basics of $E \times B$ drift, Drift of guiding centre, gradient drift, curvature drift and magnetic mirror.	[8]		
	Ionization by collision, Townsends theory of collision ionization, The breakdown potential, Thermal ionization and excitation, concepts of diffusion, mobility and electrical conductivity, Ambipolar diffusion.	[8]		
	Basic plasma diagnostics, Single probe method, Double probe method, Optical emission spectroscopy (basic idea), Abel inversion.	[8]		
	Controlled Thermonuclear fusion, Tokamak, Laser Fusion, MHD Generator, Industrial applications of plasma.	[8]		

3. The Fourth State of Matter- Introduction to Plasma Science, S. Eliezer and Y. Eliezer, IoP Publishing Ltd., 2001.

4. Elementary Plasma Physics, L. A. Arzimovich, Blaisdell Publishing Company, 1965

5. Plasmas- The Fourth State of Matter, D. A. Frank- Kamenetskii, Macmillan Press, 1972

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark			
End Sem Examination Marks	\checkmark			\checkmark	
Quiz I				\checkmark	
Quiz II					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	Μ	L	Μ	L
В	М	Н	L	L	L
С	М	L	Н	L	L
D	М	L	L	Η	L
Е	L	L	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes										
Outcome #	a	В	С	d	e	f	g	h	Ι	j	k	1
1	Μ	Η	Μ	Μ	Μ	Н						
2	М	Η	Μ	Μ	Μ	Н						
3	Μ	Η	Μ	Μ	Μ	Н						
4	Μ	Η	Μ	Μ	Μ	Н						
5	Μ	Н	L	Μ	Μ	Н						

	Mapping Between COs and Course Delivery (CD) methods							
			Course	Course Delivery				
CD	Course Delivery methods		Outcome	Method				

CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2
CD2	Tutorials/Assignments	CO2	CD1 CD2
CD3	Seminars	CO3	CD1 CD2
CD4	Mini projects/Projects	CO4	CD1 CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2
CD6	Industrial/guest lectures		
CD7	Industrial visits/in-plant training		
CD8	Self- learning such as use of NPTEL materials and internets		
CD9	Simulation		

Week		Tentat	Ch.	Topics to be covered	Text	COs	Actual	Methodolo	Remarks
No.	No.	ive	No.		Book /	mapped	Content	gy used	by
		Date			Refere		covered		faculty
					nces				if any
1	L1-			The fourth state of matter,	T1 R1				
	L2			collective behavior, charge					
				neutrality,					
	L3-			space and time scale, concept	T1 R1				
	L4			of plasma temperature,					
	L5-			Classification of Plasma,	T1 R1				
	L6			Debye shielding, Debye					
				length,					
	L7-			plasma frequency, plasma	T1 R1				
	L8			parameters and criteria for					
				plasma state.					
	L9-			Single particle dynamics,	T1T2				
	L10			charged particle motion in	R1				
				electric field,					
	L11-			magnetic field and in	T1T2				
	L12			combined electric and	R1				
				magnetic field,					
	L13-			Basics of $E \times B$ drift, Drift of	T1T2				
	L14			guiding centre,	R1				
	L15-			Basics of $E \times B$ drift, Drift of	T1T2				
	L16			guiding centre,	R1				
	L17-			Ionization by collision,	T2 R1				
	L20			Townsends theory of collision					
				ionization, The breakdown					
				potential,					
	L21-			Thermal ionization and	T2 R1				
	L24			excitation, concepts of					
				diffusion, mobility and					
				electrical conductivity,					
				Ambipolar diffusion					
	L25-			Basic plasma diagnostics,	T2 R1				
	L28			Single probe method, Double					
	0			probe method,					
	L29-			Optical emission spectroscopy	T2 R1				
	L32			(basic idea), Abel inversion					
					T 1 D1		+	+	
	L33-			Controlled Thermonuclear	T1 R1				

L37-	Laser Fusion, MHD Generator,	T1 R1	
L40	Industrial applications of		
	plasma.		

COURSE INFORMATION SHEET

Course code: PH 512 Course title: Plasma Processing of Materials Course code: SAP Course title: Plasma Processing of Materials Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: 0x Class: I.M.Sc. / M.Sc. Semester / Level: Branch: Physics Name of Teacher: Dr. Sanat Kr. Mukherjee

Group : E Option 2

Code: PH 512	Title: Plasma Processing of Materials	L-T-P-C [4-0-0-4]
Course Ob	jectives	
This course	enables the students to:	
А.	Defineplasma and its parameters	
В.	Outline the design principles of high and low-pressure plasma torches.	
C.	Identify the processes of measurement of plasma parameters.	
D.	Outline the industrial applications of low temperature plasma	
E.	Explain arc plasma-based systems and illustrate their industrial applications	
Course Ou		
After the co	mpletion of this course, students will be able to:	
1.	Define plasma, classify it into various types in terms of the plasma parameters and explain the v types of reactions involved in a plasma.	arious
2.	Demonstrate the construction and working of high and low-pressure plasma torches.	
3.	Illustrate the various processes of measurement of plasma parameters.	
4	Outlinevarious plasma processes, such as, plasma etching, plasma ashing, plasma polymerizatio	n, etc.,
	and their associated techniques such as, sputtering, nitriding, etc.	
5.	Illustrate arc plasma based applications like, plasma spraying, plasma waste processing, plasma	cutting,
	etc.	
M - 1-1- 1	Discuss the forest state of method Discuss Description Delay is the discuss of the time of	[0]
Module-1	Plasma-the fourth state of matter, Plasma Parameters, Debye length, Plasma oscillations &	[8]
	frequency, Plasma Sheath, Interaction of electromagnetic wave with plasma, Concept about	
	plasma equilibrium, Industrial Plasmas, Cold and thermal plasma, Plasma Chemistry,	
	Homogeneous and Heterogeneous reaction, Reaction rate coefficients, Plasma Surface interaction.	
Module-2	Design principles and construction of plasma torches and thermal plasma reactors, Efficiency	[8]
	of plasma torches in converting electrical energy in to thermal energy, Designing aspects of	
	low pressure plasma reactors.	
Module-3	Measurements of Plasma parameters, Electrical probes, Single and double Langmuir probe,	[8]
	Magnetic probe, Calorimetric measurements, Enthalpy Probes, Spectroscopic techniques.	
Module-4	Plasma Etching Anisotropic etching, plasma cleaning, surfactants removal, plasma ashing,	[15]
	plasma polymerization, Plasma sputtering and PECVD Thin film coatings, magnetron	
	sputtering, RF PECVD, MW PECVD, plasma nitriding.	
Module-5	Module 5:Plasma Spraying Non-transferred plasma torches, powder feeder, optimization of	[6]
	spraying processes, spherodization, Arc plasmas, Plasma torches, plasma waste processing,	
	Synthesis of materials and metallurgy in arc plasmas, Plasma cutting and Welding.	

- 1. Introduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984
- 2. Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004
- 3. The Fourth State of Matter- Introduction to Plasma Science, S. Eliezer and Y. Eliezer, IoP Publishing Ltd., 2001.

Reference books:

- 1. Elementary Plasma Physics, L. A. Arzimovich, Blaisdell Publishing Company, 1965
- 2. Plasmas- The Fourth State of Matter, D. A. Frank- Kamenetskii, Macmillan Press, 1972

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

AssessmentCompoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Yes	Yes	Yes	No	No
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment	Yes	Yes	Yes	Yes	Yes

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes							
Outcome #	a	b	с	d	e	f			
1	Н	Н	Н	L	М	L			
2	Н	Н	М	L	L	L			
3	Н	М	М	L	L	L			
4	Н	М	М	L	L	L			
5	Н	Н	Н	L	Н	L			

Course	Course Objectives						
Outcome #	а	b	с	d	e		

1	Н	М	М	М	L
2	М	Н	М	М	L
3	М	М	Н	L	L
4	М	М	Н	L	L
5	М	М	L	L	Н

Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course	Course Delivery			
		Outcome	Method			
	Lecture by use of boards/LCD projectors/OHP					
CD1	projectors	CO1	CD1, CD2 and CD8			
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8			
CD3	Seminars	CO3	CD1, CD2 and CD8			
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
	Self- learning such as use of NPTEL materials and					
CD8	internets					
CD9	Simulation					

Week No.	Lect.		ModuleNo.		Гext	Cos	Actual	Methodology	
	No.	ive Date			Book / Refere nces	mapped	Content covered	used	byfaculty if any
1-2	L1-2		Ι	Plasma-the fourth state of matter,PlasmaParameters, Debye length	T2	CO-1		PPT Digi Class/Chal k-Board	
	L3-4			Plasma oscillations & frequency, Plasma Sheath, Interaction of electromagnetic wave with plasma, Concept about plasma equilibrium	T2	CO-1		PPT Digi Class/Chal k-Board	
2	L5			Industrial Plasmas, Cold and thermal plasma,	T1	CO-1		PPT Digi Class/Chal k-Board	
2-3	L6			PlasmaChemistry,HomogeneousandHeterogeneousreaction	T1	CO-1		PPT Digi Class/Chal k-Board	
3	L7-8			Reaction rate coefficients, Plasma Surface interaction		CO-1		PPT Digi Class/Chal k-Board	
4	L9-12		Ш	Design principles and construction of plasma torches and thermal plasma reactors	T3	CO-2		PPT Digi Class/Chal k-Board	
5	L13-			Efficiency of plasma	T1	CO-2		PPT Digi	

	14		torches in converting electrical energy in to thermal energy			Class/Chal k-Board
5-6	L15- 16	III	Measurements of Plasma parameters	T1	CO-3	PPT Digi Class/Chal k-Board
7	L17- 18		Electrical probes, Single and double Langmuir probe		CO-3	PPT Digi Class/Chal k-Board
8	L19- 20		Magneticprobe,CalorimetricmeasurementsEnthalpyProbes,	T2	CO-3	PPT Digi Class/Chal k-Board
8-9	L21- 22		Spectroscopic techniques.	T1, T2,	CO-3	PPT Digi Class/Chal k-Board
9-10	L23- 25	IV	Plasma Etching Anisotropic etching	T1, T2,	CO-4	PPT Digi Class/Chal k-Board
10-11	L26- 28		plasma cleaning, surfactants removal	T1, T2,	CO-4	PPT Digi Class/Chal k-Board
11-12	L29- 31		plasma ashing, plasma polymerization	T1, T2,	CO-4	PPT Digi Class/Chal k
12	L32- 33		PlasmasputteringandPECVDThinfilmcoatings	T1, T2,	CO-4	-Board PPT Digi Class/Chal k-Board
13	L34- 35		magnetron sputtering	T1, T2,	CO-4	PPT Digi Class/Chal k-Board
13	L36		, RF PECVD, MW PECVD	T1, T2,	CO-4	PPT Digi Class/Chal k-Board
14	L37		plasma nitriding	T1, T2,	CO-4	PPT Digi Class/Chal k-Board
14	L40	V	Plasma Spraying Non- transferred plasma torches	T1, T2,	CO-5	PPT Digi Class/Chal k-Board
14	L41		powder feeder, optimization of spraying processes	T2	CO-5	PPT Digi Class/Chal k-Board
15	L42		spherodization, Arc plasmas, Plasma torches	T1, T2,	CO-5	PPT Digi Class/Chal k-Board
15	L43- 44		plasma waste processing, Synthesis of materials and metallurgy in arc plasmas	T2	CO-5	PPT Digi Class/Chal k-Board
16	L45		Plasma cutting and	T2	CO-5	PPT Digi

	Welding		Class/Chal	
			k-Board	

PE-VI to VII

Group A- Theoretical and Computational Physics:

- **1.** Theoretical and Computational Fluid Dynamics
- 2. Theoretical and Computational Condensed Matter Physics
- 3. Nonlinear Dynamics and Chaos

COURSE INFORMATION SHEET

Course code: PH 514 Course title: Theoretical and Computational Fluid Dynamics
Pre-requisite(s):
Co- requisite(s):
Credits: 4 L: 2 T: 0 P: 4
Class schedule per week:
Class: I.M.Sc.
Semester / Level: PE VI//VII
Branch: PHYSICS
Name of Teacher:
Group : A Option 1

Group . A		
Code:	Title: Theoretical and Computational Fluid Dynamics	L-T-P-C
PH 514	Theory & Programming using C for solving problems on following topics:	
		[2- 0-4- 4]
Course O	bjectives	L.
This cour	se enables the students:	

1113 000	se chables the students.
А.	To learn the techniques of model atomic and molecular systems.
В.	To receive explanation of methods to deal with the different ensembles used in Statistical Mechanics.
C.	To obtain training on numerical methods used for integrations in Fluid Dynamics.
D.	To discuss ways to analyze the accuracy of correlation functions and equilibrium averages.

Course Outcomes

After the completion of this course, students will be:

1.	Learning about common models used to describe atoms and molecules	
2.	Able to prepare codes for transforming between different ensembles.	
3.	Develop a good handle on relevant numerical integrations.	
4.	Achieve competence in the estimation of errors involved in computing correlation functions a equilibrium averages.	and
Module-1	Model systems and interaction potentials: Atomic systems, Molecular systems, Lattice systems, Calculating the potential, Constructing an intermolecular potential, Studying small systems: periodic and spherical boundary conditions.	[11]
Module-2	Statistical Mechanics: Statistical ensembles, Transformation between ensembles, Fluctuations, Time correlations, Transport coefficients.	[9]
Module-3	Molecular dynamics: Finite difference methods, Verlet algorithm, Linear and nonlinear molecules, Checks on accuracy.	[7]
Module-4	Monte Carlo methods: Monte Carlo integration, Importance sampling, Metropolis method, Molecular liquids.	[9]
Module-5	Analyzing results: Time correlation functions, Fast Fourier transform, Estimation of errors in equilibrium averages and fluctuations, Errors in time correlation functions.	[9]
	nces: puter Simulation of Liquids" by Allen and Tildesley, Oxford Science Publications . Art of Molecular Dynamics Simulation" by D. C. Rappaport, Cambridge University Press.	

Direct Assessment	ssessment tools & Evaluation procedure
Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks					
End Sem Examination					
Marks					
Quiz I					
Quiz II					

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4
А	Н	М	М	М
В	М	Н	М	М
С	М	L	Н	М
D	L	М	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #			Program	Outcomes		
	а	b	с	d	e	f
1	Η	Η	М	М	Η	М
2	L	Н	М	М	Н	М
3	L	Η	Н	М	Н	М
4	L	Н	Н	М	Н	М

Week No	Lect. No.	Tent ative Date	Ch. No	Topics to be covered	Text Book / Referen ces	Cos map ped	Actual Content covered	Met hodo logy used	Remark s by faculty if any
1	L1-L3			Model systems and interaction potentials: Atomic systems, Molecular systems	T1,T2	1			
2	L4-L6			Lattice systems, Calculating the potential, Constructing an intermolecular potential,	T1,T2	1			
3	L7-L9			Studying small systems: periodic and spherical boundary conditions	T1,T2	1			
4	L10- L12			Statistical Mechanics: Statistical ensembles	T1,T2	2			
5	L13-			Transformation between ensembles,	T1,T2	2			

	L15	Fluctuations				
6	L16-	Time correlations, Transport	T1,T2	2		
	L18	coefficients.				
7	L19-	Molecular dynamics: Finite	T1,T2	3		
	L21	difference methods, Verlet				
		algorithm				
8	L22-	Linear and nonlinear molecules,	T1,T2	3		
	L24	Checks on accuracy.				
9	L25-	Monte Carlo methods: Monte Carlo	T1,T2	4		
	L27	integration				
10	L28-	Importance sampling, Metropolis	T1,T2	4		
	L30	method				
11	L31-	Molecular liquids.	T1,T2	4		
	L33					
12	L34-	Analyzing results: Time correlation	T1,T2	5		
	L36	functions, Fast Fourier transform				
13	L37-	Estimation of errors in equilibrium	T1,T2	5		
	L39	averages and fluctuations				
14	L40L42	Errors in time correlation functions.	T1,T2	5		

Course code: PH 515 Course title: Theoretical and Computational Condensed Matter Physics Pre-requisite(s): Co- requisite(s): Credits: 4L: 2 T: 0 P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : A Option 2

Code:Title: Theoretical and Computational Condensed Matter PhysicsH 515Theory & Programming using C for solving problems on following topics:				
Course Obje	ctives:			
The course ai	ms to give students the basic concepts of condensed matter physics and to prepare them to form	ulate the		
problems in c	condensed matter physics so that these can be solved on a computer. The main objectives of the c	course are		
1. To te	ach how Monte-Carlo techniques can be used to solve various physical systems.			
2. To gi mode	ve concepts of first order phase transitions, second order phase transitions and mean field theory el.	using Isin		
3. To te	ach the equilibrium properties and time evolution of simple fluids.			
4. To p	ovide the concept on computation of free energies of solids and how to obtain them numerically	.		
5. To in	troduce the method of dissipative particle dynamics.			
Program Ou	tcomes:			
After taking t	he course the student should be able to			
1. Use l	Monte-Carlo simulation to obtain the equilibrium configuration of a physical system.			
2. Diffe	rentiate between first order and second order phase transitions and appreciate the efficiency of n	nean field		
theor	у.			
3. Calcu	late transport coefficients and space-time correlation function of simple fluids.			
4. Com	pute the free energy of perfect or imperfect solids numerically.			
5. Unde	erstand the fundamentals of dissipative particle dynamics technique.			
Module-1	Random Systems	[10]		
	Generation of Random Numbers, Introduction to Monte Carlo Methods: Integration, Random Walks, Self-Avoiding Walks, Random Walks and Diffusion, Diffusion, Entropy, and the Arrow of Time, Cluster Growth Models, Fractal Dimensionalities of Curves, Percolation			
Module-2	Statistical Mechanics, Phase Transitions, and the Ising Model	[10]		
	The Ising Model and Statistical Mechanics, Mean-Field Theory, The Monte Carlo Method, The Ising Model and Second-Order Phase Transitions, First-Order Phase Transitions			
Module-3	Equilibrium and Dynamical properties of simple fluids	[10]		
	Thermodynamic measurements, Structure, Packing studies, Cluster analysis, Transport coefficients Measuring transport coefficients, Space-time correlation functions			
Module-4	Free Energies of Solids	[10]		
	Thermodynamic Integration, Free Energies of Solids, Free Energies of Molecular Solids,			
	Vacancies and Interstitials, Numerical Calculations			
Module-5	Dissipative Particle Dynamics	[10]		
T / 1 T	Justification of the Method, Implementation of the Method, DPD and Energy Conservation			
	nputation Physics" by Nicholas J. Giordano, Pearson Addison-Wesley			
T2: "The	Art of Molecular Dynamics Simulation" by D. C. Rappaport, Cambridge University Press.			

R1: "Understanding Molecular Simulation" by Daan Frenkel, Academic Press.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Y

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	C05
End Sem Examination Marks					
Quiz 1					
Quiz 2					
Quiz 3				\checkmark	

Indirect Assessment –

- Student Feedback on Faculty
 Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes							
	а	b	с	d	e			
1	Н	L	L	L	L			
2	L	Н	L	L	L			
3	L	L	Н	L	L			
4	L	L	L	Н	L			
5	L	L	L	L	Н			

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Η	М	Н	Н	
2	Н	Н	Η	М	Н	Н	
3	Н	Η	Η	М	Н	Н	
4	Н	Н	Н	М	Н	Н	
5	Н	Н	Н	М	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2 and CD9				
CD2	Tutorials/Assignments		CO2	CD1, CD2and CD9				
CD3	Seminars		CO3	CD1, CD2 and CD9				
CD4	Mini projects/Projects		CO4	CD1, CD2 and CD9				
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 and CD9				
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect	Tenta	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remar
No.		tive	No.		Book /	mapp	Content	used	ks by
	No.	Date			Refere	ed	covered		faculty
					nces				if any
1-3	L1-			Generation of Random	T1, T2	1		PPT Digi	
	L10			Numbers, Introduction to Monte				Class/Chock	
				Carlo Methods: Integration,				-Board	
				Random Walks, Self-Avoiding					
				Walks, Random Walks and					
				Diffusion, Diffusion, Entropy,					
				and the Arrow of Time, Cluster					
				Growth Models, Fractal Dimensionalities of Curves,					
				Percolation					
3-5	L11-			The Ising Model and Statistical	T1, R1	2			
	L20			Mechanics, Mean-Field Theory,	,				
				The Monte Carlo Method, The					
				Ising Model and Second-Order					
				Phase Transitions, First-Order					
				Phase Transitions					
6-8	L21-			Thermodynamic measurements,	T1, T2,	3			
	L30			Structure, Packing studies,	R1				
				Cluster analysis, Transport					
				coefficients Measuring transport					

		coefficients, correlation function	Space-time s				
8-10	L31- L40	Thermodynamic Free Energies of Energies of Mole Vacancies and Numerical Calculati	Solids, Free cular Solids, Interstitials,	T1, T2	4		
11-14	L41- L50	Justification of t Implementation of DPD and Energy Co	the Method,		5		

Course code: PH 516 Course title: Nonlinear Dynamics and Chaos Pre-requisite(s): Classical Dynamics Co- requisite(s): Credits: 4L: 2 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Code: PH 516	Title: Nonlinear Dynamics and Chaos			
Course O	bjectives: The objective of the course is to			
	ain students to calculate fixed points and do stability analysis of various systems motivated from ysics/biology.			
-	ve a clear concept of bifurcation and some examples of the phenomenon.			
	ach them to plot limit cycles of various differential equations on computer using C language.			
4. Te	ach properties of limit cycles taking examples from physics.			
5. Tr	ain students to solve problems on coevolution and the impact of environment on population growth neepts from physics.	n using		
Course O	utcomes: The student should be able to			
1. M	odel physical or biological systems computationally and obtain their fixed points, saddle points, att	ractors, etc		
2. Co	ompute the evolution of phase space as various parameters are changed.			
	sualize limit cycles of various nonlinear systems graphically.			
4. Sc	lve problems related to oscillators, viz., relaxation oscillators, weakly nonlinear oscillators, etc.			
5. Sc	lve simple models of population growth of multiple-species on computer.			
Module-1	Flows on the Line & Circle	[12]		
	 Fixed Points and Stability, Population Growth, Linear Stability Analysis, Existence and Uniqueness, Impossibility of Oscillations, Potentials, Solving Equations on the Computer, Uniform Oscillator, Nonuniform Oscillator, Overdamped Pendulum, Fireflies, Superconducting Josephson Junctions 			
Module-2	Bifurcations Saddle-Node Bifurcation, Transcritical Bifurcation, Laser Threshold, Pitchfork Bifurcation, Overdamped Bead on a Rotating Hoop, Imperfect Bifurcations and Catastrophes, Insect Outbreak, Chaos	[10]		
Module-3	Phase PlanePhase Portraits, Existence, Uniqueness, and Topological Consequences, Fixed Points and Linearization, Rabbits versus Sheep, Conservative Systems, Reversible Systems, Pendulum, Index Theory	[10]		
Module-4	Limit Cycles Ruling Out Closed Orbits, Poincare-Bendixson Theorem, Lienard Systems, Relaxation Oscillators, Weakly Nonlinear Oscillators	[8]		
Module-5	Population DynamicsMultispecies model: limit cycles and time delays, Randomly Fluctuating Environment, NicheOverlap and Limiting Similarity	[10]		
Strogatz, C	ks: near dynamics and Chaos: with applications to physics, biology, chemistry, and engineering by CRC Press. lity and Complexity in Model Ecosystems" by Robert M May, Princeton University Press.	y Steven		

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Υ
Tutorials/Assignments	Υ
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and	
internets	Y
Simulation	Υ

Direct Assessment							
Assessment Tool	% Contribution during CO Assessment						
Assignment	10						
Seminar before a commitee	10						
Three Quizes	30 (10+10+10)						
End Sem Examination Marks	50						

Assessment Compoents	CO1	CO2	CO3	CO4	C05
End Sem Examination Marks					
Quiz 1					
Quiz 2					
Quiz 3					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Objectives onto Course Outcomes

Course Outcome #	Program Outcomes						
	a	b	с	d	e		
1	Н	L	L	L	L		
2	L	Н	L	L	L		
3	L	L	Н	L	L		
4	L	L	L	Н	L		
5	L	L	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Η	М	Н	Н	
2	Н	Н	Η	М	Н	Н	
3	Η	Η	Η	М	Н	Н	
4	Н	Н	Н	М	Н	Н	
5	Н	Н	Н	М	Н	Н	

Mapping Between COs and Course Delivery (CD) methods						
CD	Course Delivery methods	Course Outcome	Course Delivery Method			
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD9			
CD2	Tutorials/Assignments	CO2	CD1, CD2and CD9			
CD3	Seminars	CO3	CD1, CD2 and CD9			
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD9			
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD9			
CD6	Industrial/guest lectures					
CD7	Industrial visits/in-plant training					
CD8	Self- learning such as use of NPTEL materials and internets					
CD9	Simulation					

Week	Lect.	Tent	С	Topics to be covered	Text	COs	Actual	Methodol	Remarks
No.	No.	ative	h.		Book /	map	Content	ogy	by faculty
		Date	Ν		Refere	ped	covered	used	if any
			0		nces				
1-3	L1-			Fixed Points and Stability,	T1, T2	1		PPT Digi	
	L12			Population Growth, Linear				Class/Cho	
				Stability Analysis, Existence				ck	
				and Uniqueness, Impossibility				-Board	
				of Oscillations, Potentials,					
				Solving Equations on the					
				Computer, Uniform Oscillator,					
				Nonuniform Oscillator,					
				Overdamped Pendulum,					
				Fireflies, Superconducting					
1.6	T 10			Josephson Junctions	T 1 T 2	2			
4-6	L13-			Saddle-Node Bifurcation,	T1, T2	2			
	L22			Transcritical Bifurcation, Laser					
				Threshold, Pitchfork					
				Bifurcation, Overdamped Bead					
				on a Rotating Hoop, Imperfect					
				Bifurcations and Catastrophes,					
6.0				Insect Outbreak, Chaos	T 4 T4				
6-8	L23-			Phase Portraits, Existence,	T1,T2	3			
				Uniqueness, and Topological					

	LL3	Consequences, Fixed Po	oints			
	2	and Linearization, Rat				
		versus Sheep, Conserva				
		Systems, Reversible Syste	ems,			
		Pendulum, Index Theory				
9-10	L33-	Ruling Out Closed Or	bits, T1,T2	4		
	L40	Poincare-Bendixson Theorem	rem,			
		Lienard Systems, Relaxa	ation			
		Oscillators, Weakly Nonli	near			
		Oscillators				
11-14	L41-	Multispecies model: 1	limit T1, T2	5		
	L50	cycles and time del	lays,			
		Randomly Fluctua	ating			
		Environment, Niche Ove	erlap			
		and Limiting Similarity				

Course code: PH 517

Course title: Nonconventional Energy Materials

Pre-requisite(s):Student should qualify 'Solid State Physics' or similar paper

Co- requisite(s):Knowledge of Mathematical Physics, Quantum Mechanics, and Statistical Mechanics

Credits: 4L: 4 T: 0 P: 0 Class schedule per week:4 Class: I.M.Sc./ M.Sc. Semester / Level: X/IV Branch:Physics Name of Teacher:

	p:B <u>Option 1</u>	T
Code: PH 517	Title: Nonconventional Energy Materials	L-T-P-C [4-0-0-4]
111317		[4-0-0-4]
Course (Dbjectives	
I his cour	se enables the students: Todefine the current scenario of the conventional sources of energy and importance of	
А	sustainable energy sources.	
В		
С	*	
D	To illustrate the various solar cell technologies.	
E	To explain the other nonconventional energy sources	
Course (Dutcomes	
After the	completion of this course, students will be able to:	
	Explain the current status of conventional sources of energy and list the various sustainable	
1.	energy sources.	
2.		
	generation of photo-voltage and photo-current of PN Junction solar cell.	
3.	Demonstrate the measurement of solar cell parameters and solar cell design for high Isc,	
	design for high Voc, design for high FF.	
4.	Explain the fabrication of wafer based solar cells, thin film solar cell, organic solar cells, dye-	
-	sensitized solar cell, GaAs solar cells, Thermo-photovoltaics and multijunction solar cells.	
5.		
Module-		[5]
	energy, Nuclear energy: nuclear fission, nuclear fusion, Environmental impact of conventional	
	sources of energy, Need for sustainable energy sources, Nonconventional energy sources,	
Module-	Current status of renewable energy sources. 2 Structure of solar cell materials, direct and indirect band gap semiconductor, carrier	[10
wioduic-	concentration and distribution, drift and diffusion current densities, P-N Junction: space charge	[10
	region, energy band diagram, carrier movements and current densities, carrier concentration	
	profile; P-N junction in non-equilibrium condition, I-V Relation, P-N Junction under	
	Illumination, Generation of photovoltage, Light generated current, I-V equation of solar cells.	
Module-		[10
	factor, efficiency; losses in solar cells, Solar Cell Design: design for high Isc, design for high	-
	Voc, design for high FF; Solar spectrum at the Earth's surface, solar simulator: I-V	
	measurement, quantum efficiency measurement, minority carrier lifetime and diffusion length	
	measurement.	
Module-	e e	[15
	formation, ARC and surface passivation, metal contacts—pattern defining and deposition. High	
	efficiency solar cells, Thin Film Solar Cell Technologies: advantages of thin film technologies,	
	thin films solar cell structures, thin film crystalline, microcrystalline, polycrystalline, and	
	amorphous Si solar cells. Emerging solar cell technologies: working principle of organic solar	

	cells, material properties and structure of organic solar cells; Dye-sensitized Solar Cell: working principle, materials and their Properties; GaAs solar cells, Thermo-photovoltaics, multijunction solar cells.					
Module-5	Other nonconventional Energy Sources: Wind Energy: Classification of wind mills, advantages and disadvantage of wind energy; Bio Energy: Bio gas and its compositions, process of bio gas, generation – wet process, dry process, utilization and benefits of biogas technology. Tidal Power: Introduction, classification of tidal power plants, factors affecting the suitability of the site for tidal power plant, advantages and disadvantages of tidal power plants. Fuel Cells: Introduction, working of fuel cell, types of fuel cells, advantages of fuel cell technology. Solar Thermal: Solar collectors, solar cookers, solar water heater.	[10]				
Text/Reference Books:						

1. Solar cells: Operating principles, technology and system applications by Martin A Green, Prentice Hall Inc, Englewood Cliffs, NJ, USA, 1981.

- 2. Semiconductor for solar cells, H J Moller, Artech House Inc, MA, USA, 1993.
- 3. Solis state electronic device, Ben G Streetman, Prentice Hall of India Pvt Ltd., New Delhi 1995.
- 4. Direct energy conversion, M.A. Kettani, Addision Wesley Reading, 1970.
- 5. Hand book of Batteries and fuel cells, Linden, Mc Graw Hill, 1984.

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I	\checkmark	\checkmark	\checkmark		
Quiz II				\checkmark	\checkmark

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome
- **3.** Teacher's assessment

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course	1	2	3	4	5	

Objectives					
А	Н	L	L	L	L
В	М	Н	М	Μ	L
С	М	М	Η	L	L
D	М	L	L	Η	L
Е	М	L	L	L	Η

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes						
Outcome #	a	b	С	d	e	f		
1	L	L	М	Н	L	Н		
2	М	Н	М	Н	Н	Н		
3	М	Н	М	Н	Н	Н		
4	М	Н	М	Н	Н	Н		
5	М	Н	М	Н	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 and CD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2					
CD6	Industrial/guest lectures	-	-					
CD7	Industrial visits/in-plant training	-	-					
CD8	Self- learning such as use of NPTEL materials and internets	-	-					
CD9	Simulation	-	-					

Week	Lect.	Tentativ	Ch.	Topics to be covered	Text	Cos	Actual	Method	Remarks	by
No.	No.	e Date	No.		Book /	mapped	Content	ology	faculty	if
					Referenc		covered	used	any	
					es					
	L1			World energy status, current	R1					
				energy scenario in India,						
				environmental aspects of						
				energy utilization,						
				Classification of energy,						
				Energy Resources, need of						
				renewable energy, non-						
				conventional energy						
				sources.						
	L2,			An overview of	R1					
	L3			developments in Offshore						
				Wind Energy, Tidal Energy,						
				Wave energy systems,						
				Ocean energy,						

L4,	Thermal Energy Conversion, R1	
L5	solar energy, biomass,	
	biochemical conversion,	
	biogas generation,	
	geothermal energy tidal	
	energy, Hydroelectricity.	
	Energy conservation and	
	storage.	
L6-	Solar energy, its importance, R1, R2	
L10	storage of solar energy, T1	
	solar pond, non-convective	
	solar pond, applications of	
	solar pond and solar energy,	
	solar water heater, flat plate	
	collector, solar distillation,	
	solar cooker, solar green	
	houses, solar cell	
L11-	absorption air conditioning. R1, R2	
L11	Need and characteristics of T1	
	photovoltaic (PV) systems,	
	PV models and equivalent	
	circuits, and sun tracking	
X 1 C	systems Di	
L16-	Wind Energy: Fundamentals R1, R2	
L19	of Wind energy, Wind	
	Turbines and different	
	electrical machines in wind	
	turbines, Power electronic	
	interfaces, and grid	
	interconnection topologies.	
L20-	Ocean Energy, Potential R1, R2	
L22	against Wind and Solar,	
	Wave Characteristics, Wave	
	Energy Devices.	
L23-	Tide characteristics and R1, R2	
L25	Statistics, Tide Energy	
123	Technologies, Ocean	
	Thermal Energy, Osmotic	
	Power, Ocean Bio-mass.	
L26-	Biomass energy, resources, R1, R2	
L30	conversion, gasification,	
	liquefaction, production,	
	energy farming,	
L31-	Geothermal Energy: R1, R2	
L33	Geothermal Resources,	
	Geothermal Technologies.	
L34,	small hydro resources. R1, R2	
L35	Layout, water turbines,	
	classifications, generators,	
	status.	
L36-	Direct Energy conversion: R1, R2	
L30- L38	Thermoelectric effects,	
	generators, magneto hydro	

	dynamics generators, Fuel			
	cells			
L39,	photovoltaic generators	R1, R2		
L40	electrostatic mechanical			
	generators, Thin film solar			
	cells, nuclear batteries.			

Course code: PH 518 **Course title: Cryogenic Physics** Pre-requisite(s): **Co- requisite(s):** Credits: **4**L: 4 T: 0 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level:PE VI / VII **Branch: PHYSICS** Name of Teacher: Group : B

Option 2

ode: H 518	Title: Cryogenic Physics						
Course O	jectives : This course enables the students						
А.	To become familiar with low temperature and the principles and methods to produce low temperat	ure.					
В.	To acquire basic understanding of the macroscopic manifestations of quantum phenomenon at low temperatures like superfluidity of He ⁴ , He ³ and superconductivity.						
C.	To acquire basic knowledge of the behaviour of various physical properties at low temperature.						
D.							
Е	ecome conversant with the principles and methods to produce low temperature.						
	atcomes : After the completion of this course, students will be						
1.	Able to explain the physics and production of low temperature.	4					
2.	Able to describe and analyze the macroscopic manifestations of quantum phenomenon at low temp	eratures.					
3.	Able to summarize and apply the knowledge of the behaviour of various physical properties at low temperature.						
4.	Able to discuss and compare various special phenomena observed at low temperatures.						
5.	Compare different methods of producing low temperature.						
Module-1	Quantum Fluids: Introduction to low temperature physics; cryo-liquids; helium-general	[8]					
	properties; superfluid ⁴ He, experimental observation, two-fluid model and Bose-Einstein condensation; normal-fluid and superfluid ³ He; mixtures of ³ He and ⁴ He.						
Module-2	Solids at Low Temperature (Phonons and Electrons):						
	Specific heat of phonons-Debye model, significance of the Debye temperature; specific heat of conduction electrons in simple metals; electrical conductivity, relaxation-time approximation, Matthiessen's rule, electron-phonon scattering, electron-magnon scattering; thermal conductivity of metals; Kondo effect; Heavy Fermion Systems.	[8]					
Module-3	Solids at Low Temperature (Magnetic Moments, Spins): Paramagnetic systems-isolated	[8]					
violatie 5	spins, magnetic contribution to specific heat, Schottky anomaly; spin waves-magnons, ferromagnets, anti-ferromagnets.	[0]					
Aodule-4	Solids at Low Temperature (Introduction to Superconductivity, Shubnikov-de Haas	[8]					
	Oscillations, Colossal Magnetoresistance):						
	Transition temperature, Meissner effect, type-I and type-II superconductors;						
	phenomenological description, London equations; microscopic theory of superconductors;						
	flux quantization; Shubnikov-de Haas (SdH) oscillations, quantization of Bloch electrons in a uniform magnetic field; colossal magnetoresistance (CMR).						
Module-5	Refrigeration: Liquefaction of gases, expansion engines, Joule-Thomson expansion; closed cycle refrigerators, Gifford Mc-Mahon coolers; simple-helium bath cryostats; ³ He- ⁴ He dilution refrigerator; Pomeranchuk cooling; refrigeration by adiabatic demagnetization of a paramagnetic salt and adiabatic nuclear demagnetization.	[8]					
<u>Textbo</u>							
	w-Temperature Physics, Christian Enss and Siegfried Hunklinger, Springer 2005.						
2. M	atter and Methods at Low Temperatures, Frank Pobell, Springer 2007.						

References:

- 1. Introduction to Solid State Physics, Charles Kittel, 8th edition, John Wiley and Sons, 2005. (For SdH oscillations)
- 2. Solid State Physics, Neil W. Ashcroft and N. David Mermin, Harcourt College Publishers, 1976. (For SdH oscillations)

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Yes
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	Yes
Laboratory experiments/teaching aids	Yes
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and internets	Yes
Simulation	No

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

AssessmentCompoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Yes	Yes	Yes	No	No
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment	Yes	Yes	Yes	Yes	Yes

Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
Outcome #	a	b	с	d	e	f	
1	L	Н	Н	L	Н	M	
2	М	Н	Н	L	Н	М	
3	М	Н	Н	L	Н	М	
4	L	Н	Н	L	Н	М	
5	L	Н	Н	L	Н	М	

Course	Course Course Objectives						
Outcome #	a	b	С	d	e		
1	Н	Н	Н	L	L		
2	М	Н	М	М	L		

3	М	М	Н	М	L
4	М	М	Н	Н	L
5	М	L	L	L	Н

	Mapping Between COs and Course Delivery (CD) methods								
			~ ~ ~ ~	Course Delivery					
CD	Course Delivery methods		Course Outcome	Method					
	Lecture by use of boards/LCD projectors/OHP			CD1, CD2, CD4,CD5					
CD1	projectors		CO1	and CD8					
				CD1, CD2, CD4,CD5					
CD2	Tutorials/Assignments		CO2	and CD8					
				CD1, CD2, CD4,CD5					
CD3	Seminars		CO3	and CD8					
				CD1, CD2, CD4,CD5					
CD4	Mini projects/Projects		CO4	and CD8					
				CD1, CD2, CD4,CD5					
CD5	Laboratory experiments/teaching aids		CO5	and CD8					
CD6	Industrial/guest lectures								
CD7	Industrial visits/in-plant training								
	Self- learning such as use of NPTEL materials								
CD8	and internets								
CD9	Simulation								

Week	Lect.	Tentative	Module		Text	COs	Actual	Methodolo	Remarks
				Topies to be covered					
No.	No.	Date	No.		Book /	mapped	Content	gyused	byfacult
					Refere		covered		y if any
					nces				
1-2	L1		Ι	Introduction to low	T1-T2	CO-1		PPT Digi	
				temperature physics,				Class/Chal	
				course objectives,				k-Board	
				grading scheme					
	L2-			Cryoliquids, general	T1-T2	CO-1		PPT Digi	
	L5			properties of He,				Class/Chal	
				Superfluid ⁴ He,				k-Board	
				Experimental					
				Observation, Two					
				fluid model, Bose					
				Einstein Condensation					
2	L6-7			Superfluid and Normal	T1-T2	CO-1		PPT Digi	
				Fluid ³ He.				Class/Chal	
								k-Board	
2	L8			Mixtures of ³ He and	T1-T2	CO-1		PPT Digi	
				⁴ He.				Class/Chal	
								k-Board	
3	L9-		II	Solids at Low	T1-T2	CO-2		PPT Digi	
	L10			Temperature: Phonons				Class/Chal	
				and electrons, specific				k-Board	
				heat of Phonons,					
				Debye model					
3	L11			Specific heat of	T1-T2	CO-2		PPT Digi	
				conduction electrons in				Class/Chal	

			simple metals			k-Board
3-4	L11- L13		Electrical conductivity, relaxation-time approximation, Matthiessen's rule, electron-phonon scattering, electron- magnon scattering	T1-T2	CO-2	PPT Digi Class/Chal k-Board
4	L13- 16		Thermal conductivity of metals; Kondo effect; Heavy Fermion Systems	T1-T2	CO-2	PPT Digi Class/Chal k-Board
5	L17- 20	III	Solids at Low Temperature (Magnetic Moments, Spins) Paramagnetic systems-isolated spins, magnetic contribution to specific heat, Schottky anomaly	T1-T2	CO-3	PPT Digi Class/Chal k-Board
6	L21- 24		Spin waves-magnons, ferromagnets, anti- ferromagnets	T1-T2	CO-3	PPT Digi Class/Chal k-Board
7	L25- 28	IV	Solids at Low Temperature (Introduction to Superconductivity, Shubnikov-de Haas Oscillations , Colossal Magnetoresistance) Transition temperature, Meissner effect, type-I and type- II superconductors; phenomenological description, London equations; microscopic theory of superconductors; flux quantization;	T1-T2	CO-4	PPT Digi Class/Chal k-Board
8	L29- 32		Shubnikov-de Haas (SdH) oscillations, quantization of Bloch electrons in a uniform magnetic field; colossal magnetoresistance (CMR).	T1- T2, R1-R2	CO-4	PPT Digi Class/Chal k-Board
9	L33- 34	V	Refrigeration: Liquefaction of gases, expansion engines, Joule-Thomson expansion	T1-T2	CO-5	PPT Digi Class/Chal k-Board

9	L35-	Closed	cycle [T1-T2	CO-5	PPT Digi
	36	refrigerators,	Gifford			Class/Chal
		Mc-Mahon	coolers;			k-Board
		simple-heliur	n bath			
		cryostats				
10	L37-	³ He- ⁴ He	dilution 7	T1-T2	CO-5	PPT Digi
	40	refrigerator;				Class/Chal
		Pomeranchuk	cooling;			k-Board
		refrigeration	by			
		adiabatic				
		demagnetizat	ion of a			
		paramagnetic	salt and			
		adiabatic	nuclear			
		demagnetizat	ion.			

Course code: PH 519 Course title: Physics of Thin Films Pre-requisite(s): Co- requisite(s): Credits: 4L: 4 T: 0 P: 00 Class schedule per week: 0x Class: I.M.Sc. / M.Sc. Semester / Level:X / IV Branch: Physics Name of Teacher:

Group : B

Option 3

Code		Title: Physics of Thin Films	L-T-P-C	
PH 51	9		[4004]	
		ectives		
This co	ourse	enables the students to:		
	A.	Definevacuum and compare various vacuum pumps and gauges.		
	B.	Outline the thermodynamics of thin films.		
	C. Illustrate the mechanism of thin film formation.			
	D.	Explain various techniques of thin film formation.		
	E.	Summarize various properties of thin films.		
Cours	e Out	comes		
After t	the con	mpletion of this course, students will be able to:		
	1.	Demonstrate various types of pumps and gauges, inspect leak in vacuum and can design a vacuum system.		
	2.	Define the thermodynamical parameters of thin films and can outline interdiffusion in thin films.		
	3.	Demonstrate the stages of thin film formation and can outline the conditions for the formation of amorphous, crystalline and epitaxial films.		
-	4	Illustrate and compare physical vapour deposition (PVD) and chemical vapour deposition (CVD) techniques.		
-	5.	Define various thin film properties and outline the techniques of their determination.		
Modu		Vacuum Science & Technology:	[8]	
Wiodd		Classification of vacuum ranges, Kinetic theory of gases, gas transport and pumping, Conductance and Throughput, Classification of vacuum pumps, single stage and double stage rotary pump, diffusion pump, turbomolecular pump, cryopump and Classification of gauges, Mechanical gauges: McLeod gauge, Thermal conductivity gauges: Pirani gauge and thermocouple gauge, Ionization gauges: Bayard-Alpert gauge, Penning gauge, leak detection.	[0]	
Modu	le-2	Basic Thermodynamics of Thin FilmsSolid surface, interphase surface, Surface energies: Binding energy and Interatomic Potential energy, latent heat, surface tension, Liquid surface energy measurement by capillary effect, by zero creep, magnitude of surface energy, General concept, jump frequency and diffusion flux, Fick's First law, Nonlinear diffusion, Fick's second law, calculation of diffusion coefficient, interdiffusion and diffusion in thin films	[8]	
Modu	le-3	Mechanisms of Film Formation	[8]	
		Stages of thin film formation: Nucleation, Adsorption, Surface diffusion, capillarity theory of nucleation, statistical theory of nucleation, growth and coalescence of islands, grain structure and microstructure of thin films, diffusion during film growth, polycrystalline and amorphous films, Theories of epitaxy, role of interfacial layer, epitaxial film growth, super lattice structures		
Modu	le-4	Methods of Preparation of Thin Films:	[15]	

		Physical vapour deposition: Vacuum evaporation-Hertz- Knudsen equation, evaporation from				
		a source and film thickness uniformity, Glow discharge and plasmas-Plasma structure, DC,				
	RF and microwave excitation; Sputtering processes-Mechanism and sputtering yield,					
	Sputtering of alloys; magnetron sputtering, Reactive sputtering; vacuum arc: cathodic and					
		anodic vacuum arc deposition. Chemical vapour deposition: Thermodynamics of CVD, gas				
		transport, growth kinetics, Plasma chemistry, plasma etching mechanisms; etch rate and				
		selectivity, orientation dependent etching; PECVD.				
Mod	lule-5	Characterization of thin films:				
		Deposition rate, Film thickness and uniformity, Structural properties: Crystallographic				
properties, defects, residual stresses, adhesion, hardness, ductility, electrical		properties, defects, residual stresses, adhesion, hardness, ductility, electrical properties,				
		magnetic properties; optical properties.				
Text	books:					
1.	The	Material Science of Thin Films by Milton Ohring, Academic Press, Inc., 1992.				
2.	Hanc	book of Thin Films by Maissel and Glang				
3.	Thin	Film Phenomena by K. L. Chopra (McGraw Hill, 1969)				
Refe	rence b	ooks:				
1.	1. Thin Film Deposition: Principles & Practice by Donald L. Smith (McGraw Hill, 1995)					
2.	Coating Technology Handbook by D. Satas, A. A. Tracton, Marcel Dekkar Inc. USA.					
3.						
	1972					
1	1/14	•				

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Yes
projectors	
Tutorials/Assignments	Yes
Seminars	No
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and	Yes
internets	
Simulation	No

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

AssessmentCompoents	CO1	CO2	CO3	CO4	CO5	
Mid Sem Examination Marks	Yes	Yes	Yes	No	No	
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes	
Assignment	Yes	Yes	Yes	Yes	Yes	

Indirect Assessment -

- Student Feedback on Faculty
 Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping of Course Outcomes onto Frogram Outcomes							
Course		Program Outcomes					
Outcome #	а	b	с	d	e	f	
1	Н	Н	Н	L	М	L	
2	Н	Н	М	L	L	L	
3	Н	М	М	L	L	L	
4	Н	М	М	L	L	L	
5	Н	Н	Н	L	Н	L	

Mapping of Course Outcomes onto Program Outcomes

Course	Course Objectives						
Outcome #	a b		С	d	e		
1	Н	М	М	М	L		
2	М	Н	М	М	L		
3	М	М	Н	L	L		
4	М	М	Н	L	L		
5	М	М	L	L	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1, CD2 and CD8				
CD2	Tutorials/Assignments		CO2	CD1, CD2 and CD8				
CD3	Seminars		CO3	CD1, CD2 and CD8				
CD4	Mini projects/Projects		CO4	CD1, CD2 and CD8				
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 and CD8				
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tent	Module	Topics	to	be	Text	Cos	Actual	Methodology	Remarks
	No.	ative	No.	covered			Book /	mapped	Content	used	by
No.		Date					Refere		covered		faculty if
							nces				any
1-2	L1-2		Ι	Classifica vacuum Kinetic t gases	ran		T2	CO-1		PPT Digi Class/Chalk- Board	
	L3-4			gas trans pumping, Conducta Throughp	nce	and and	T2	CO-1		PPT Digi Class/Chalk -Board	
2	L5			Classifica vacuum single st	pun	-	T1	CO-1		PPT Digi Class/Chalk- Board	

			double stage			
			rotary pump, diffusion pump,			
			diffusion pump, turbomolecular			
			pump,			
2-3	L6		cryopump and	T1	CO-1	PPT Digi
			Classification of			Class/Chalk-
			gauges,			Board
			Mechanical			
			gauges: McLeod			
3	L7		gauge Thermal		CO-1	PPT Digi
5	L7		conductivity		0-1	Class/Chalk-
			gauges: Pirani			Board
			gauge and			
			thermocouple			
			gauge,			
3	L8		Ionization gauges:	T3	CO-2	PPT Digi
			Bayard-Alpert			Class/Chalk- Board
			gauge, Penning			Board
			gauge, leak			
4	L9	II	detection. Solid surface,	T3	CO-2	PPT Digi
		11	interphase surface	15	0-2	Class/Chalk-
						Board
4	L10		Surface energies:	T1	CO-2	PPT Digi
			Binding energy			Class/Chalk- Board
			and Interatomic			board
5	L11-12		Potential energy	T1	CO-2	PPT Digi
5			latent heat, surface tension, Liquid	11	0-2	Class/Chalk-
			surface energy			Board
			measurement by			
			capillary effect, by			
			zero creep			
5	L13		magnitude of		CO-2	PPT Digi
			surface energy,			Class/Chalk-
			General concept,			Board
			jump frequency			
			and diffusion flux			
6	L14-16		Fick's First law,	T1,	CO-2	PPT Digi
			Nonlinear	T2, T3		Class/Chalk- Board
			diffusion, Fick's second law,			
			second law,			

7	L17-18	III	calculationofdiffusioncoefficient,interdiffusionanddiffusioninthin filmsStages of thin filmformation:Nucleation,	T1	CO-3	PPT Digi Class/Chalk- Board
			Adsorption, Surface diffusion			
7-8	L19-20		capillarity theory of nucleation, statistical theory of nucleation, growth and coalescence of islands		CO-3	PPT Digi Class/Chalk- Board
8	L21-22		grain structure and microstructure of thin films, diffusion during film growth	T2	CO-3	PPT Digi Class/Chalk- Board
9	L23		polycrystalline and amorphous films, Theories of epitaxy	T1, T2,	CO-3	PPT Digi Class/Chalk- Board
9	L24		role of interfacial layer, epitaxial film growth, super lattice structures	T2, T3	CO-3	PPT Digi Class/Chalk- Board
9-10	L25-26	IV	Vacuum evaporation-Hertz- Knudsen equation, evaporation from a source and film thickness uniformity	T1	CO-4	PPT Digi Class/Chalk- Board
10	L27-28		Glow discharge and plasmas- Plasma structure, DC, RF and microwave excitation	T1	CO-4	PPT Digi Class/Chalk- Board
11	L29-30		Sputtering processes- Mechanism and	T2	CO-4	PPT Digi Class/Chalk- Board

			sputtering yield, Sputtering of alloys			
11-12	L31-32		magnetron sputtering, Reactive sputtering	T2	CO-4	PPT Digi Class/Chalk- Board
12	L33-34		vacuum arc: cathodic and anodic vacuum arc deposition. Chemical vapour deposition	T2	CO-4	PPT Digi Class/Chalk- Board
13	L35-36		Thermodynamics of CVD, gas transport, growth kinetics, Plasma chemistry	T2	CO-4	PPT Digi Class/Chalk- Board
14	L37-39		plasma etching mechanisms; etch rate and selectivity, orientation dependent etching; PECVD	T2	CO-4	PPT Digi Class/Chalk- Board
14	L40	V	Deposition rate, Film thickness and uniformity	T2	CO-5	PPT Digi Class/Chalk- Board
15	L41		Structural properties: Crystallographic properties, defects	T2	CO-5	PPT Digi Class/Chalk- Board
15	L42		residual stresses, adhesion, hardness, ductility	T2	CO-5	PPT Digi Class/Chalk- Board
15	L43		electrical properties	T2	CO-5	PPT Digi Class/Chalk- Board
16	L44		magnetic properties;	T2	CO-5	PPT Digi Class/Chalk- Board
16	L45		optical properties	T2	CO-5	PPT Digi Class/Chalk- Board

Course code: PH 520Course title: Theory of Dielectrics and FerroicsPre-requisite(s):Co- requisite(s):Credits:4L: 3 T: 1 P: 0Class schedule per week:Class: I.M.Sc.Semester / Level:PE VI / VIIBranch: PHYSICSName of Teacher:Group : BOption 4

Code: PH 520		Title: Theory of dielectrics and ferroics	L T C P 3-1-0-4				
Cour	se Obj	ectives					
This c	course	enables the students:					
	A.	To become familiar with the concept of polarisation in ideal and non-ideal dielectrics.					
	В.	To be familiarized with electrochemical impedance spectroscopy.					
	C.	To become familiar with the theory of ferroelectricity using domain theory and understand different type of phase transition in ferroelectric materials.	đ				
	D.	To acquire an understanding of the theory of ferromagnetism and know about the differen magnetic ordering.	t types of				
	E.	To become familiar with the concept of multiferroics and different types of mechanisms b multiferroics can be formed.	y which				
		comes mpletion of this course, students will be:					
	1.	Able to differentiate between different type of dielectrics, ferroelectrics and able to interpresent experimental results with different theoretical models.	ret the				
	2.	Able to apply the concept of relaxation, resonance and dispersion in dielectrics using frequency and time domain method.					
	3.	Able to differentiate between different types of ferroelectric materials and able to calculate the					
	4	recoverable energy, efficiency from the hysteresis loop.					
 Able to identify and compare different kinds of magnetic ordering. Able to categorize different types of multiferroics based on the different mechanisms of the different me							
	5.	Able to categorize different types of multiferroics based on the different mechanisms of th origin.					
Modu	ıle_1	Macroscopic theory of dielectrics: Polarisation in dielectrics, Clausius Mosotti relation	[10]				
WIGut	110-1	for ideal dielectrics, Lorentz field, Debye correction to Clausius Mosotti equation,					
		frequency and temperature dependency of dielectrics, Temperature coefficient of dielectrics, dielectric losses. The double well potential model for polarization and					
		determination of depth of potential wells.					
Module-2		Dielectric spectroscopy: introduction to impedance spectroscopy, physical models for equivalent circuit elements, dielectric relaxation in materials with single time constant, distribution of relaxation time, interface and boundary conditions, grain boundary effects. Elementary idea of measurement technique in frequency and time domain methods.					
Module-3		Ferroelectricity: Ferroelectricity, Microscopic theory of Ferroelectricity, Landau primer of ferroelectricity, Phase transition of ferroelectrics (1 st , 2 nd and relaxor kind), soft optical phonons, hysteresis loop, Recoverable energy, Piezoelectricity and energy harvesting, transducer.,					
Module-4		Ferromagnetism: Weiss model of a ferromagnet, magnetic susceptibility, effect of a magnetic field, origin of the molecular field, Weiss model of antiferromagnet, magnetic susceptibility, effect of a strong magnetic field, types of antiferromagnetic order, ferrimagnetism, helical order, spin glasses, frustration.	[10]				
			1				

Module-5	Multiferroics: Ferroic, magnetoelectric, multiferroic, magnetodielectric, magnetoelectric coupling, Type I and Type II Multiferroics, charge-order driven multiferroicity, examples of charge-ordered driven multiferroicity, lone-pair electron multiferroic systems, geometric ferroelectricity, frustrated magnetism triggered ferroelectricity, applications of multiferroics: magnetoelectric switching, multiferroics for spintronics.	[10]						
Textbo	Textbooks:							
1. App	lied Electromagnetism and Materials by Andre Moliton, Springer, 2007							
2. Mag	2. Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen							
Blun	Blundell, Oxford University Press, 2001.							
3. Mult	3. Multiferroic Materials: Properties, Techniques and Applications, Junling Wang, CRC Press, Taylor							
and	Francis group, 2017.							

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Yes
projectors	
Tutorials/Assignments	Yes
Seminars	Yes
Mini projects/Projects	No
Laboratory experiments/teaching aids	No
Industrial/guest lectures	No
Industrial visits/in-plant training	No
Self- learning such as use of NPTEL materials and	Yes
internets	
Simulation	No

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

AssessmentCompoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	Yes	Yes	Yes	No	No
End Sem Examination Marks	Yes	Yes	Yes	Yes	Yes
Assignment	Yes	Yes	Yes	Yes	Yes

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Course Outcome #	Program Outcomes					
	a	b	С	d	e	f
1	М	Н	Н	L	L	М
2	L	Н	Н	L	L	М
3	М	Н	Н	L	L	L
4	Н	М	М	L	L	L
5	М	Н	Н	Н	L	L

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Course Objective						
	а	b	с	d	e		
1	Н	М	М	L	М		
2	М	Н	М	L	М		
3	M	М	Н	L	М		
4	L	L	L	Н	Н		
5	М	М	М	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods	Course Outcome	Course Delivery Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2 and CD8					
CD2	Tutorials/Assignments	CO2	CD1, CD2 and CD8					
CD3	Seminars	CO3	CD1, CD2 and CD8					
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
CD8	Self- learning such as use of NPTEL materials and internets							
CD9	Simulation							

Week	Lect.	Tentative	Mod	Topics to be covered	Text	COs	Actual	Methodolog	Remarks
No.	No.	Date	ule		Book /	map	Content	у	by
			No.		Refere	ped	covered	used	faculty
					nces				if any
1	L1-2		Ι	Macroscopic theory of	T1	1, 2		PPT Digi	
				dielectrics: Polarisation				Class/Chalk	
				in dielectrics,				-Board	
				ClausiusMosotti relation					
				for ideal dielectrics,					
1	L3			Lorentz field, Debye	T1			PPT Digi	
				correction to				Class/Chalk	
				ClausiusMosotti				-Board	
				equation,					
1	L4-			frequency and	T1			PPT Digi	
	L5			temperature dependency				Class/Chalk	
				of dielectrics,				-Board	

2	L6		Temperature coefficient of dielectrics, dielectric	T1	PPT Digi Class/Chalk
			losses.		-Board
2	L7-8		The double well	T1	PPT Digi
-	1,0		potential model for	11	Class/Chalk
			polarization and		-Board
			determination of depth		-Doard
			_		
	10		of potential wells.		
4	L9-	II	Dielectric spectroscopy:	T1	PPT Digi
	10		introduction to		Class/Chalk
			impedance		-Board
			spectroscopy,		
4	L11		physical models for	T1	PPT Digi
			equivalent circuit		Class/Chalk
			elements		-Board
5	L12-		dielectric relaxation in	T1	PPT Digi
-	13		materials with single		Class/Chalk
			time constant,		-Board
			distribution of relaxation		Board
5	T 1 4		time,		
5	L14-		interface and boundary	T1	PPT Digi
	15		conditions, grain		Class/Chalk
			boundary effects.		-Board
6	L16		Elementary idea of	T1	PPT Digi
			measurement technique		Class/Chalk
			in frequency and time		-Board
			domain methods.		
-	L17	III	Ferroelectricity:	T1	PPT Digi
			Ferroelectricity,		Class/Chalk
			Microscopic theory of		-Board
			Ferroelectricity,		-board
	L18		Landau primer of	T1	PPT Digi
	LIO		1	11	ε
			ferroelectricity,		Class/Chalk
					-Board
	L19		Phase transition of	T1	PPT Digi
			ferroelectrics (1 st , 2 nd		Class/Chalk
			and relaxor kind),		-Board
	L20		soft optical phonons,	T1	PPT Digi
			hysteresis loop,		Class/Chalk
					-Board
	L21-		Recoverable energy,	T1	PPT Digi
	24		Piezoelectricity and		Class/Chalk
			-		-Board
					-Dualu
	1.05		transducer		
	L25	IV	Ferromagnetism: Weiss	T2	PPT Digi
			model of a ferromagnet,		Class/Chalk
					-Board
	L26		magnetic	T2	PPT Digi
			susceptibility, effect of a		Class/Chalk
			magnetic field,		-Board
	L27		origin of the molecular	T2	PPT Digi
			field, Weiss model of		Class/Chalk
			antiferromagnet,		-Board
			-		Board
			magnetic susceptibility		

28		effect of a strong magnetic field,	T2	PPT Digi Class/Chalk -Board
29- 30		types of antiferromagnetic order	T2	PPT Digi Class/Chalk -Board
L31- 32		ferrimagnetism, helical order, spin glasses, frustration.	T2	PPT Digi Class/Chalk -Board
L33	V	Multiferroic, magnetoelectric, multiferroic,	Т3	PPT Digi Class/Chalk -Board
L34		magnetodielectric, magnetoelectric coupling, Type I and Type II Multiferroics,	Т3	PPT Digi Class/Chalk -Board
L35		charge-order driven multiferroicity, examples of charge- ordered driven multiferroicity,	Т3	PPT Digi Class/Chalk -Board
L36		lone-pair electron multiferroic systems,	Т3	PPT Digi Class/Chalk -Board
L37- 38		geometric ferroelectricity, frustrated magnetism triggered ferroelectricity,	Т3	PPT Digi Class/Chalk -Board
L39- 40		applications of multiferroics: magnetoelectric switching, multiferroics for spintronics	Т3	PPT Digi Class/Chalk -Board

 Course code: PH 515

 Course title: Theoretical and Computational Condensed Matter Physics

 Pre-requisite(s):

 Co- requisite(s):

 Credits:
 4L: 2 T: 0 P:4

 Class schedule per week:

 Class: I.M.Sc.

 Semester / Level: PE VI / VII

 Branch: PHYSICS

 Name of Teacher:

 Group : B
 Option 5

Same Given As above(in Group A)

Group C	C- Photonics:					
-	Photonic and Optoelectronic Devices	4. Introduction to Nanophotonics				
	Holography and Applications					
3. (Quantum photonics and applications					
	COURSE IN	FORMATION SHEET				
Course	code: PH 521					
	title: Photonics and Optoelectronic Devices	5				
-	uisite(s):					
Co- req Credits:	uisite(s): 4L: 3 T:1 P: 0					
	hedule per week:					
Class sc Class: I						
	r / Level: VI / VII					
Branch	PHYSICS					
	f Teacher:					
-	up : C <u>Option 1</u>					
Code: P	H 521 Title: Photo	onics and Optoelectronic Devices L-T-P-				
~		5. 5.	0 4]			
	Objectives This course enables the students					
		aterial and optical processes in semiconductor.				
		g of liquid crystal displays, optical modulator, and switches.				
	To understand principle & working of light sources and photodetectors.					
	U I	ices and understand its significance for optical computing.				
		•				
	Course Outcomes After the completion of this course, students will be:					
		als and explain optical phenomena occurring in semiconductor				
		the performance of liquid crystal displays, optical modulator,	and			
	witches & solve related numerical problems.	the nonformation of light counses and detectors				
	Fo define the role of different nonlinear optication	the performance of light sources and detectors.				
		erconnect for different operations under different working condit	ion.			
		Electron-hole pair formation and recombination, Direct and				
1		ctural property of crystalline, polycrystalline, amorphous	10			
1	61	quid crystals, compound semiconductors, absorption in				
	A	well structures, Absorption and emission spectra, excitonic				
	effects.					
Module-	Displays, optical modulators, and switcl	hes: Liquid crystal cells (principle), Passive and Active matrix	8			
2		dulator, Magneto-optic modulator, Acousto-optic modulator.				
	Electro-absorption modulators, Mach-Ze	hnder Electrorefraction (Electro-optic) modulators, optical				
	switches.					
Module-	-	emitting diodes, surface- and edge- emitting configuration.	12			
3	• • •	ded lasers, PIN and avalanche photodiodes, Photoconductors,				
		Solar cells (spectral response, conversion efficiency), Charge-				
M 1 1	coupled devices, Characteristics and applie		10			
Module-		nputing: Nonlinear devices, optical bistable devices, SEED	10			
4	Memory: Holographic data storage	, integrated devices, spatial light modulators (SLM), Optical				
Module-		Kerr gates, Nonlinear Directional couplers, Nonlinear optical	10			
uuuuu	I HOLDING SWITCHING AND INCLUDINCUS.	ison gates, nonnieur Directional couplets, nonnieur uptical				

5	loop mirror (NOLM), Soliton logic gates, Free-space optical interconnects, wave-guide interconnects,	
	holographic inteconnections.	

References

- 1. Essentials of optoelectronics, Alan Rogers, 1st Ed., Chapman & Hall.
- 2. Introduction to Fiber Optics, Ghatak & Thyagarajan, Cambridge University press.
- 3. Optoelectronics: An Introduction to Materials and Devices, Jasprit Singh, The McGraw-Hill Companies.
- 4. Semiconductor Optoelectronics Devices, P. Bhattacharya, PHI.
- 5. Optoelectronics and Photonics, principles and practices S. O. Kasap, Prentice Hall
- 6. Photonic switching and Interconnects; Abdellatif Marrakchi, Marcel Dekker, Inc.
- 7. Optical Computing, an Introduction, Mohammad A. Karim and Abdul A. S Awwal, John Wiley & Sons Inc

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	Ν
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment					
Assignment	10					
Seminar before a commitee	10					
Three Quizes	30 (10+10+10)					
End Sem Examination Marks	50					

AssessmentCompoents	CO1	CO2	CO3	CO4	<u>CO5</u>
Quiz 1	\checkmark	\checkmark			
Quiz 2			\checkmark	\checkmark	
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Assignment		\checkmark	\checkmark	\checkmark	

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course	Course Outcomes				
Objective	1	2	3	4	5
А	Н	Н	Н	Н	Н
В	L	Н	Μ	Μ	L
С	M	Н	Н	Μ	Н
D	M	Μ	Н	Н	Н
Е	М	Н	Н	Η	Η

Mapping of Course Outcomes onto Program Outcomes

Course Outcome		Program Outcomes							
	a	b	с	d	e	f			
1	Н	Н	Н	-	Н	М			
2	Н	Н	Н	-	Н	Η			
3	М	Н	Н	-	Н	Н			
4	М	Н	М	-	Н	Η			
5	L	Н	М	-	Н	Н			

	Mapping Between COs and Course Delivery (CD) methods										
CD	Course Delivery methods	Course Outcome	Course Delivery Method								
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1, CD2								
CD2	Tutorials/Assignments	CO2	CD1								
CD3	Seminars	CO3	CD1, CD2								
CD4	Mini projects/Projects	CO4	CD1, CD8								
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD8								
CD6	Industrial/guest lectures										
CD7	Industrial visits/in-plant training										
CD8	Self- learning such as use of NPTEL materials and internets										
CD9	Simulation										

Wee	Lect	Tentativ	Ch.	Topics to be covered	Text	COs	Actual	Method	Remarks
k		e	No		Book /	mappe	Content	ology	by
No.	No.	Date	•		Refere	d	covered	used	faculty if
					nces				any
1	L1		1	Electron-hole pair	R3, R4,	1, 2		CD1,	
				formation and recombination	R5			CD2	
	L2			Direct and indirect	R3, R4,	1		CD1,	
				bandgap semiconductors	R5			CD2	
	L3			structural property of	R3, R4	1		CD1,	
				crystalline,				CD2	
				polycrystalline, amorphous materials,					
	L4			optoelectronic materials	R3, R4,	1		CD1,	
				•	R5			CD2	
2	L5			Liquid crystals,	R3	1		CD1,	
								CD2	
	L6			compound	R4	1		CD1,	
				semiconductors				CD2	
	L7			absorption in	R3, R4,	1		CD1,	
				semiconductors	R5			CD2	
	L8			Stark effects in quantum	R3, R4,	1		CD1,	
				well structures	R5			CD2	
3	L9			Absorption and	R3, R4,	1		CD1,	

			emission spectra	R5		CD2
	L10		excitonic effects	R4	1	CD1,
						CD2
	L11	2	Liquid crystal cells	R3	2	CD1,
			(principle)			CD2
	L12		Passive and Active	R3	2	CD1,
	212		matrix liquid crystal		2	CD2
			displays			CD2
4	L13		Electro-optic modulator	R3, R4,	1,2	CD1,
4	LIJ		Electro-optic modulator	R5, R4, R5	1,2	CD1, CD2
	L4		Magnata antia		1,2	CD2
	L/4		Magneto-optic	R3, R4, R5	1,2	CD1, CD2
	T 1 5		modulator		1.0	
	L15		Acousto-optic	R3, R4,	1,2	CD1,
			modulator	R5		CD2
	L16		Electro-absorption	R3, R4,	1,2	CD1,
			modulators	R5		CD2
5	L17		Mach-Zehnder	R3, R4,	1,2	CD1,
			Electrorefraction	R5		CD2
			(Electro-optic)			
			modulators			
	L18		optical switches	R4	1,2	CD1,
					-,-	CD2
	L19	3	Light emitting diodes	R3, R4,	1,3	CD1,
	217	C		R5	1,0	CD2
	L20		Surface- emitting	R3, R4,	1,3	CD1,
	220		configuration	R5	1,0	CD2
6	L21		edge- emitting	R3, R4,	1,3	CD1,
0	L21		configuration	R5, R4, R5	1,5	CD2
	1.22				1.2	
	L22		Injection laser diodes	R3, R4,	1,3	CD1,
	1.00		· · · · · · · · · · · · · · · · · · ·	R5	1.2	CD2
	L23		gain and index guided		1,3	CD1,
			lasers	R5		CD2
	L24		PIN photodiodes	R3, R4,	1,3	CD1,
				R5		CD2
7	L25		Avalanche photodiodes	R3, R4,	1,3	CD1,
				R5		CD2
	L26		Photoconductors	R3, R4,	1,3	CD1,
				R5		CD2
	L27		Phototransistors	R3, R4,	1,3	CD1,
				R5		CD2
	L28		Noise in photodetector	R3, R4,	1,3	CD1,
				R5		CD2
8	L29		Solar cells (spectral	R3, R4,	1,3	CD1,
			response, conversion	R5		CD2
			efficiency)			
	L30		Charge-coupled	R3, R4,	1,3	CD1,
			devices, Characteristics	R5		CD2
			and applications			
	L31	4	Digital optical	R6, R7	3,4	CD1,
		-	computing	,,	-,.	CD8
9	L32		Nonlinear devices	R4, R6	3,4	CD1,
Ĺ	1.52			1. 1, 1.0	5,7	CD8

	r					[]		1
L33			optical bistable devices	R4	3,4			
							CD8	
L34			SEED devices	R4	3,4		CD1,	
							CD8	
L35			Optical phase conjugate	R6, R7	3,4		CD1,	
			devices				CD8	
L36			integrated devices	R6, R7	3,4		CD1,	
-			0				CD8	
L37								
L38			spatial light modulators	R6, R7	3,4		CD1,	
-			(SLM)				CD8	
L39								
L40			Optical Memory:	R6, R7	4,5		CD1,	
			Holographic data				CD8	
			storage					
L41		5	Kerr gates	R4, R6,	4,5		CD1,	
			C	R7			CD8	
L42			Nonlinear Directional	R6, R7	4,5		CD1,	
-			couplers				CD8	
L43			1					
L44			Nonlinear optical loop	R6, R7	4,5		CD1,	
			mirror (NOLM)				CD8	
L45			Soliton logic gates	R6, R7	4,5		CD1,	
			0 0				CD8	
L46			Free-space optical	R6, R7	4,5		CD1,	
-			interconnects				CD8	
L47								
L48			wave-guide	R6, R7	4,5		CD1,	
-			interconnects				CD8	
L49								
L50			holographic	R6, R7	4,5		CD1,	
			inteconnections				CD8	
	L35 L36 - L37 L38 - L39 L40 L41 L41 L42 - L43 L44 L45 L45 L46 - L47 L48 - L49	L34 L35 L35 L36 - L37 L38 - L39 L40 L40 L41 L42 - L43 L44 L44 L45 L44 L45 L45 L46 - L47 L48 - L49	L34 L35 L36 - L37 L38 - L39 L40 L41 5 L42 - L43 L44 L45 L45 L46 - L47 L48 - L49	L34SEED devicesL35Optical phase conjugate devicesL36integrated devices-spatial light modulators-SEED devices137Spatial light modulatorsL38Coptical Memory: Holographic data storageL40Optical Memory: Holographic data storageL415L42Nonlinear Directional couplersL43Nonlinear optical loop mirror (NOLM)L45Soliton logic gatesL46Free-space optical interconnects-L48-Nolographic	L34SEED devicesR4L35Optical phase conjugate devicesR6, R7L36integrated devicesR6, R7- L37spatial light modulators r (SLM)R6, R7L38Optical Memory: Holographic data storageR6, R7L40Optical Memory: Holographic data storageR6, R7L415Kerr gatesR4, R6, R7L42Nonlinear Directional couplersR6, R7L43Nonlinear optical loop mirror (NOLM)R6, R7L44Free-space optical interconnectsR6, R7L48Wave-guide interconnectsR6, R7L49NolographicR6, R7	L34SEED devicesR43,4L35Optical phase conjugate devicesR6, R73,4L36- L37integrated devicesR6, R73,4L38- L39spatial light modulators (SLM)R6, R73,4L40Optical Memory: Holographic data storageR6, R74,5L415Kerr gatesR4, R6, R74,5L42- L43Nonlinear Directional couplersR6, R74,5L445Kerr gatesR6, R74,5L45Soliton logic gatesR6, R74,5L46- L47Free-space optical interconnectsR6, R74,5L48- L49holographicR6, R74,5	L34SEED devicesR43,4L35Optical phase conjugate devicesR6, R73,4L36 - - L37integrated devicesR6, R73,4L38 - L39spatial light modulators (SLM)R6, R73,4L40Optical Memory: Holographic data storageR6, R74,5L415Kerr gatesR4, R6, 4,5L42 - L43Nonlinear Directional couplersR6, R74,5L44Nonlinear optical loop mirror (NOLM)R6, R74,5L46 - L47Free-space optical interconnectsR6, R74,5L48 - L49Nolographic soliton logic gatesR6, R74,5L48 - L49Nolographic soliton logic gatesR6, R74,5	L34CD8L34SEED devicesR43,4CD1, CD8L35Optical phase conjugate devicesR6, R73,4CD1, CD8L36integrated devicesR6, R73,4CD1, CD8L37spatial light modulators (SLM)R6, R73,4CD1, CD8L38- (SLM)Spatial light modulators data storageR6, R73,4CD1, CD8L40Optical Memory: Holographic data storageR6, R74,5CD1, CD8L415Kerr gatesR4, R6, 4,5CD1, CD8L42- L43Nonlinear Directional couplersR6, R74,5CD1, CD8L445Kerr gatesR6, R74,5CD1, CD8L445Kerr gatesR6, R74,5CD1, CD8L45Nonlinear optical loop mirror (NOLM)R6, R74,5CD1, CD8L46- L47Soliton logic gatesR6, R74,5CD1, CD8L48- L49Nonlinear optical loop mirror (NOLM)R6, R74,5CD1, CD8L49Nonlinear optical loop interconnectsR6, R74,5CD1, CD8L49- holographicR6, R74,5CD1, CD8

Course code: PH 522Course title: Holography and ApplicationsPre-requisite(s):Co- requisite(s):Credits:4 L: 3 T:1 P: 0Class schedule per week:Class: I.M.Sc.Semester / Level: VI / VIIBranch: PHYSICSName of Teacher:Group : COption 2

ode:	Title: Holography and Applications			
H 522	[3]	04		
Course Obj	ectives This course enables the students:			
А.	To understand the basics of holograms and able to differentiate between holography and			
В.	photography To acquire the knowledge of different types of holograms.			
<u>В.</u> С.	To understand different materials used for hologram recordings and its merits and demerits.			
D.	To have an idea of using holographic technique in varieties of diverse applications			
E	To acquire knowledge in holographic optical elements and to estimate how these optical			
Ľ	elements can be utilized.			
	tcomes After the completion of this course, students will be:			
1.	Able to identify the parameters which differentiate holograms from photographs			
2.	Able to distinguish between various types of holograms.			
3.	Able to analyze the different parameters of holographic recording materials.			
<u> </u>	Able to utilize holographic interferometric technique in various new applications			
4. 5.	Able to experiment with holographic elements for various applications.			
Module-1	Basics of Holography: Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms, In line Hologram, off axis hologram, Fourier Hologram, Lenses Fourier Hologram, Image Hologram, Fraunhofer Hologram. Holographic interferometer, double exposure hologram, real-time holography, digital holography, holographic camera.	[10]		
Module-2	Theory of Hologram: Coupled wave theory, Thin Hologram, Volume Hologram, Transmission Hologram, Reflection Hologram, Anomalous Effect.	[8]		
Module-3	Recording Medium: Microscopic Characteristics, Modulation transfer function, Diffraction efficiencies, Image Resolution, Nonlinearities, S/N ratio, Silver halide emulsion, Dichromated gelatin, Photoresist, Photochrometics, Photothermoplastics, photorefractive crystals.	[13]		
Module-4	Applications : Microscopy, interferometry, NDT of engineering objects, particle sizing, holographic particle image velocimetry; imaging through aberrated media, phase amplification by holography; Optical testing; Information storage.	[13]		
Module-5	Holographic Optical Elements (HOE): multifunction, holographic lenses, holographic mirror, holographic beam splitters, polarizing, diffuser, interconnects, couplers, scanners; Optical data processing, holographic solar connectors; antireflection coating, holophotoelasticity;	[8]		
Text bo	ooks:			
	ical Holography, Principle Techniques and applications: P. Hariharan, Cambridge University Pres	S		
T1: Opt	tear fiolography, i finciple reeningues and applications. I. fiarmaran, Cambridge Oniversity ries	0		

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Y
projectors	
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and	Y
internets	
Simulation	N

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz I	\checkmark	\checkmark			
Quiz II					

Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

The prime we									
Course Objectives	1	2	3	4	5				
Α	Н	Μ	L	Η					
В	Н	Н	М	Μ	L				
С	Н	Н	Н	Μ	Μ				
D		Μ	Μ	Η	Η				
Е	L	Μ	М	Н	Н				

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes								
Outcome #	a	b	с	d	e	f				
1	М	Н	Н		L	Н				

2	М	Н	М		М	Н
3	М	Н	Н	L	L	М
4	М	М	Н	L	Н	М
5	М	М	М	L	Н	Н

	Mapping Between COs and Course Delivery (CD) methods							
СD	Course Delivery methods	Course Outcome	Course Deliver Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2					
CD2	Tutorials/Assignments	CO2	CD1 and CD2					
CD3	Seminars	CO3	CD1 and CD2					
CD4	Mini projects/Projects	CO4	CD1 and CD2					
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2					
CD6	Industrial/guest lectures							
CD7	Industrial visits/in-plant training							
	Self- learning such as use of NPTEL materials and							
CD8	internets							
CD9	Simulation							

Week	Lect.	Fentative	Ch.	Fopics to be covered	Гext	Cos	Actual	Methodol	Remarks	by
No.	No.	Date	No		Book / Refere nces	mapped	Content covered	ogy used	faculty if any	
1	L1- L2			Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves	T1, R1	CO1		PPT Digi Class/Ch ock- Board		
	L3- L6			Point source holograms, In line Hologram, off axis hologram, Fourier Hologram, Lenses Fourier Hologram, Image Hologram	T1, R1	CO1		PPT Digi Class/Ch ock- Board		
	L7- L10			Fraunhofer Hologram. Holographic interferometer, double exposure hologram, real-time holography, digital holography Theory of Hologram:	T1, R1	CO1 CO2		PPT Digi Class/Ch ock-oard PPT Digi		
	L114 L14 L15-			Coupled wave theory, Thin Hologram, Volume Hologram Transmission Hologram,	T1, R1	CO2		Class/Ch ock- Board PPT Digi Class/Ch		

L18	Reflection Hologram,			ock-
	Anomalous Effect.			Board
L19-	Recording Medium:	T2, R1	CO3	PPT Digi
L22	Microscopic			Class/Ch
	Characteristics,			ock-
	Modulation transfer			Board
	function, Diffraction			
	efficiencies,			
L23-	Image Resolution,	T2, R1	CO3	PPT Digi
L26	Nonlinearities, S/N			Class/Ch
	ratio, Silver halide			ock-
	emulsion			Board
L27-	Dichromated gelatin,	T2, R1	CO3	PPT Digi
L31	Photoresist,			Class/Ch
	Photochrometics,			ock-
	Photothermoplastics,			Board
	photorefractive crystals.			
L32-	Applications:	T1, R1	CO4	PPT Digi
L35	Microscopy,			Class/Ch
	interferometry, NDT of			ock-oard
	engineering objects,			
	particle sizing,			
L36-	holographic particle	T1, R1	CO4	PPT Digi
L39	image velocimetry;			Class/Ch
	imaging through			ock-
	aberrated media			Board
L40-	phase amplification by	T1, R1	CO4	PPT Digi
L44	holography; Optical			Class/Ch
	testing; Information			ock-oard
	storage			
L45-	Holographic Optical	T1, R1	CO5	PPT Digi
L46	Elements (HOE):			Class/Ch
	multifunction,			ock-
	holographic lenses,			Board
	holographic mirror			
L47-	holographic beam	T1, R1	CO5	PPT Digi
L50	splitters, polarizing,			Class/Ch
	diffuser, interconnects,			ock-
	couplers, scanners			Board
L51-	Optical data processing,	T1, R1	CO5	PPT Digi
L52	holographic solar			Class/Ch
	connectors;			ock-
	antireflection coating,			Board
	holophotoelasticity			

Co- requisite(s): Credits: 4 L: 3 T: 1 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level: VI / VII **Branch: PHYSICS** Name of Teacher: **Group** : C

Option 3

Code:]	PH 523	Title: Quantum photonics and applicationsL-T-P-C
		[3 1 0 4]
Cours	se Obje	ctives :This course enables the students:
	A.	To assess light-matter interaction at the nanoscale (1-100 nm) in terms of photon statistics for identification
		of single photon sources.
	В.	To Identify various plasmonic nanoantenna (nanoparticles, nanorods) for enhanced electromagnetic interaction
	C.	To identify a source of single photons and discuss a method to detect the single photons efficiently.
	D.	To design chip scale devices for propagation of single photons for quantum communications
	E	To assess the present status and future applications of single photons in quantum technology

Course Outcomes : After the completion of this course, students will be

	1.	Able to identify semiconducting quantum dot as a single photon source.				
	2.	To develop skills of designing a suitable metal nanoantenna for enhanced light-matter interaction making single photon source faster and brighter.	n, thus			
Ī	3.	To characterize (theoretically) whether a given source of the photon, is a single photon source.				
	4.	To design (theoretically) photonic circuits for the propagation of single photons on semiconductor and metallic platform.				
	5.	To understand the modern and future scope of quantum communication.				
Modu	le-1	Classical optical communications and their limitations, quantum optical communications, Semiconducting quantum dots, quantum dot single photon sources, classification of light states and photon statistics. Photon detection and correlation function.Single-Photon Pulses and Indistinguishability of Photons.	12			
Modu	le-2	Plasmonic nanoantennas, fabrications, characterizations and applications in quantum communications devices	8			
Modu	le-3	Single photon sources for quantum information: Fabrication and characterizations, Han burry Brown and Twiss measurements (single photons characterization), The Hong–Ou–Mandel effect (indistinguishability test).	12			
Modu	le-4	Resonant excitation of single photon sources, Integrated quantum photonic circuits and devices, semiconductor, metallic platform, single photon filtering and multiplexing.	8			
Modu	le-5	Principles of quantum key distribution (QKD), Implementing QKD, Fiber-based QKD, Free-space QKD, Diamond-based single-photon sources and their application in quantum key distribution, Quantum repeaters	10			

2. Novotny, L. & Hecht, B., Principles of nano-optics, Cambridge university press, 2006

3. Lounis, B., &Orrit, M. (2005). Single-photon sources. Reports on Progress in Physics, 68(5), 1129.

4. Prawer, Steven, and Igor Aharonovich, eds. Quantum information processing with diamond: Principles and applications. Elsevier, 2014.

5. Briegel , H.-J. , Dürr , W. , Cirac , J. I. and Zoller , P. (1998) ' Quantum repeaters: The role of imperfect local operations in quantum communication ', Phys Rev Lett, 81, 5932-5935,

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Y
projectors	

Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and	Y
internets	
Simulation	Ν

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks		\checkmark			
End Sem Examination Marks		\checkmark			\checkmark
Quiz I					
Quiz II				\checkmark	\checkmark

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
Α	Н	Μ	Μ	L	Μ
В	Μ	Н	М	L	L
С	L	L	Н	L	L
D	-	L	L	Н	L
E	L	Μ	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					
	a	b	с	d	e	f	
1	Н	Н	Н	Н	L	Н	
2	Н	Н	Н	Н	М	Н	
3	Н	Н	Н	М	L	М	
4	Н	М	Н	Н	L	М	
5	М	Н	Н	Н	Н	Н	

	Mapping Between COs and Course Delivery (CD) methods							
CD	Course Delivery methods		Course Outcome	Course Delivery Method				
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2				
CD2	Tutorials/Assignments		CO2	CD1 and CD2				
CD3	Seminars		CO3	CD1 and CD2				
CD4	Mini projects/Projects		CO4	CD1 and CD2				
CD5	Laboratory experiments/teaching aids		CO5	CD1 and CD2				
CD6	Industrial/guest lectures		-	-				
CD7	Industrial visits/in-plant training		-	-				
CD8	Self- learning such as use of NPTEL materials and internets		_	-				
CD9	Simulation		_	-				

Week	Lect.	Tentati	Ch.	Topics to be covered	Text	COs	Actual	Methodolo	Remark	s
No.	No.	ve	No.	-	Book /	mapped	Content	gy	by	
		Date			Refere		covered	used	faculty	if
					nces				any	
1	L1-L2		1	Classical optical	T1,	1,2		PPT Digi		
				communications and their	Τ2,			Class/		
				limitations, quantum				Chock		
				optical communications				-Board		
	L3-L7			Semiconducting quantum		1,		Digi		
				dots, quantum dot single				Class/		
				photon sources,				Chock		
								-Board		
	L8-L10			classification of light		1,2		Digi		
				states and photon		,		Class/Ch		
				statistics				ock		
								-Board		
	L11-			Photon detection and		1,2,3		Digi		
	L12			correlation		1,2,0		Class/Ch		
	212			function.Single-Photon				ock-		
				Pulses and				Board		
				Indistinguishability of				Dourd		
				Photons						
	L13-			Plasmonic nanoantennas,		1,2		DigiClass		
	L20			fabrications,		,		/Chock		
				characterizations and				-Board		
				applications in quantum						
				communications devices.						
	L21-			Single photon sources for		1		Digi		
	L32			quantum information:				Class/Ch		
				Fabrication and				ock		
				characterizations, Han				-Board		
				burry Brown and Twiss						
				measurements (single						
				photons characterization),						
				The Hong–Ou–Mandel						
				effect (indistinguishability						

	test).		
L33- L40	Resonant excitation of single photon sources, Integrated quantum photonic circuits and devices, semiconductor, metallic platform, single photon filtering and multiplexing.	2	Digi Class/Ch ock -Board
L41- L50	Principles of quantum key distribution (QKD), Implementing QKD, Fiber-based QKD, Free- space QKD, Diamond- based single-photon sources and their application in quantum key distribution, Quantum repeaters	3	Digi Class/Ch ock -Board

Course code: PH 524 **Course title: Introduction to Nanophotonics Pre-requisite(s): Co- requisite(s):** Credits: **4** L: 3 T: 1 P: 0 Class schedule per week: Class: LM.Sc. Semester / Level: VI / VII **Branch: PHYSICS** Name of Teacher: **Group C Option 4** Code: **Title: Introduction to Nanophotonics** L-T-P-C PH 524 [310 4] Course Objective: Course enables the students: To identify optical phenomenon and tools to understand physics at nanoscales. А To evaluate different quantum systems in zero, one, two and three-dimensional system at the nanoscale. B. To discuss photonic crystals and manifestation of nonlinear optical interactions with it. C. To discuss different types of microstructure fibres and photonic crystal fibre devices. D To identify the manifestation of optical interaction with metallic nanostructures and nanophotonic devices E like microcavity and waveguides. **Course Outcomes :** After the completion of this course, students will be: To solve problems of optical confinement at nanoscales. 1. To evaluate light-matter interaction in Nano-systems (quantum dots, well etc). 2. 3. To design theoretical models for photonic crystals. To design (theoretically) different types of microstructure fibres and photonic crystal fibre devices 4. 5. To assess the field enhancement in metal nanoparticles and its application in surface plasmon waveguides. Further he/she will be able to apply knowledge of light confinement in microcavity for microcavity lasers. Module-1 Foundations for Nanophotonics: similarities and differences of photons and electrons and their 10 confinement. Propagation through a classically forbidden zone: tunnelling. Localization under a periodic potential: Band gap. Cooperative effects for photons and electrons. Nanoscale optical interactions, axial and lateral nanoscopic localization, scanning near-field optical microscopy. Nanoscale confinement of electronic interactions: Quantum confinement effects, nanoscale interaction dynamics, nanoscale electronic energy transfer. Cooperative emissions Module-2 Quantum wells, quantum wired, quantum dots, quantum rings and superlattices. Quantum 10 confinement, density of states, optical properties. Quantum confined stark effect. Dielectric confinement effect, Core-shell quantum dots and quantum-dot-quantum wells. Quantum confined structures as lasing media. Organic quantum-confined structures Module-3 Photonic Crystals: basics concepts, features of photonic crystals, wave propagation, photonic band-12 gaps, light guiding. Theoretical modeling of photonic crystals. Methods of fabrication. Photonic crystal optical circuitry. Nonlinear photonic crystals. Applications of photonic crystals. Microstructure fibers: photonic crystal fiber (PCF), photonic band gap fibers (PBG), band gap guiding, single mode and multi-mode, dispersion engineering, nonlinearity engineering, PCF devices. Plasmonics: Metallic nanoparticles, nanorods and nanoshells, local field enhancement. Collective Module-4 8 modes in nanoparticle arrays, particle chains and arrays. surface plasmons, plasmon waveguides. Applications of metallic Nanostructures Nanophotonic Devices: Quantum well lasers: resonant cavity quantum well lasers and light emitting Module-5 10 diodes, Fundamentals of Cavity OED, strong and weak coupling regime, Purcell factor, Spontaneous emission control, Application of microcavities, including low threshold lasers, resonant cavity LED. Microcavity-based single photon sources. **References:** T1. Nanophotonics, Paras N Prasad, John Wiley & Sons (2004) T2. Fundamentals of Photonic Crystal Fibers; Fredric Zolla- Imperial College Press. T3. Photonic Crystals; John D Joannopoulos, Princeton University Press.

T4 Photonic Crystals: Modelling Flow of Light; John D Joannopoulos, R.D. Meade and J.N.Winn, Princeton University Press (1995)

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP	Y
projectors	
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and	Y
internets	
Simulation	N

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Components	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark		\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark
Quiz I			\checkmark	\checkmark	
Quiz II					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	5
А	Н	М	Μ	L	Μ
В	М	Н	М	L	L
С	L	L	Н	L	L
D	-	L	L	Н	L
Ε	L	М	L	L	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	а	b	с	d	e	f	
1	Н	Н	Н	Н	L	Н	

2	Н	Н	Н	Н	М	Н
3	Н	Н	Н	М	L	М
4	Н	М	Н	Н	L	М
5	М	Н	Η	Н	Н	Н

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods	Course Outcome	Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 and CD2							
CD2	Tutorials/Assignments	CO2	CD1 and CD2							
CD3	Seminars	CO3	CD1 and CD2							
CD4	Mini projects/Projects	CO4	CD1 and CD2							
CD5	Laboratory experiments/teaching aids	CO5	CD1 and CD2							
CD6	Industrial/guest lectures	-	-							
CD7	Industrial visits/in-plant training	-	-							
	Self- learning such as use of NPTEL materials and									
CD8	internets	-	-							
CD9	Simulation	-	-							

Week No.	Lect. No.	Tentati ve Date	Ch. No	Topics to be covered	Text Book / Refere nces	COs mappe d	Actual Content covered	Methodo logy used	Remarks by faculty if any
1	L1-L4		1	Foundations for Nanophotonics: similarities and differences of photons and electrons and their confinement. Propagation through a classically forbidden zone: tunneling. Localization under a periodic potential: Band gap.	T1, T2,	1,2		PPT Digi Class/Ch ock -Board	
	L3-L7			Cooperative effects for photons and electrons. Nanoscale optical interactions, axial and lateral nanoscopic localization, scanning near-field optical microscopy.		1,		Digi Class/Ch ock -Board	
	L8-L10			Nanoscale confinement of electronic interactions: Quantum confinement effects, nanoscale interaction dynamics, nanoscale		1,2		Digi Class/Ch ock -Board	

	electronic energy			
	transfer. Cooperative			
	emissions			
L11-L12	Quantum wells,	1,2,3	Digi	
	quantum wired,		Class/Ch	
	quantum dots,		ock	
	quantum rings and		-Board	
	superlattices. Quantum		-Doard	
	confinement, density			
	of states, optical			
	· 1			
L 12 L 15	properties	1.0	D'	
L13-L15	Quantum confined stark	1,2	Digi	
	effect. Dielectric		Class/Ch	
	confinement effect,		ock	
	Core-shell quantum		-Board	
	dots and quantum-dot-			
	quantum wells.			
L16-L20	Quantum confined	3	Digi	
	structures as lasing		Class/Ch	
	media. Organic		ock	
	quantum-confined		-Board	
	structures		-Dualu	
L21-L25	Photonic Crystals:	3	Digi	
	basics concepts,	5	Class/Ch	
	features of photonic			
			ock	
	crystals, wave		-Board	
	propagation, photonic			
	band-gaps, light			
	guiding. Theoretical			
	modeling of photonic			
	crystals. Methods of			
	fabrication			
L26-L30	Photonic crystal optical	3		
	circuitry. Nonlinear			
	photonic crystals.			
	Applications of			
	photonic crystals.			
	Microstructure fibers:			
	photonic crystal fiber			
	(PCF), photonic band			
	gap fibers (PBG), band			
	gap guiding single mode			
	guiding, single mode			
	and multi-mode,			
	dispersion			
	engineering,			
	nonlinearity			
	engineering, PCF			
	devices			
L31-L35	Plasmonics: Metallic	4		
	nanoparticles,			
	nanorods and			
	nanoshells, local field			
	enhancement.			
	Collective modes in			
	nanoparticle arrays, particle chains and			
	- narricle chains and			
	1			
	arrays. surface plasmons, plasmon			

	waveguides. Applications of metallic Nanostructures		
L36-L50	Nanophotonic Devices:Quantum well lasers:resonantcavityquantum well lasersand lightemittingdiodes,fundamentalsof Cavity QED, strongandweakcouplingregime,Purcell factor,Spontaneousemissioncontrol,Application ofmicrocavities,includinglowthresholdlasers,resonantcavityLED.Microcavity-basedsinglephotonsources.	5	

Group D- Electronics:

1. Microprocessor and Microcontroller Applications

2. Integrated Electronics

3. Microwave Electronics

COURSE INFORMATION SHEET

 Course code: PH 525

 Course title: Microprocessor and Microcontroller Applications

 Pre-requisite(s):

 Co- requisite(s):

 Credits:
 4 L: 3 T: 1 P: 0

 Class schedule per week:

 Class: I.M.Sc.

 Semester / Level:PE VI / VII

 Branch: PHYSICS

 Name of Teacher:

 Group : D
 Option 1

-	ode: H 525	Title:MicroprocessorandMicrocontrollerApplications	L-T-P-C		
			3-1-0-4		
Cour	se Obje	ctives			
This c	course en	ables the students:			
	А.	The first module introduces architecture of 8085 and 8086 Micropi	ocessor.		
	B.	The module-2 is compilation of information about I/O communication	tion Interface.		
	C.	Microcontrollers (8051), its architecture and working is subject of	module-3		
	D.	The 4 th module contains Real time control sequences and microcontroller.	programming of 8051-		
	E.	The AVR RISC microcontroller architecture is covered in module-	5.		

Course Outcomes

After the completion of this course, students will be:

	1. The course intends to impart knowledge of Microprocessors and microcontrollers to enable learner							
	gain the knowledge of basics of Modern computation.							
	2.	Knowledge of 8085/8086 architecture would make learners rich about working and	design of					
	microprocessors and microcontrollers.							
	3.	The course also includes information about microcontrollers, real time control of 8051 and A	AVR RISC					
		microcontroller architecture. This would enable learners to understand fundam	ientals of					
		microcontrollers and implement it to design / use microcontroller for new environments.						
Modul	e-1	8086 Architecture	[15]					
		Introduction to 8085 Microprocessor, 8086 Architecture-Functional diagram.						
		Register Organization, Memory Segmentation. Programming Mode!. Memory						
addresses. Physical memory organization. Architecture of 8086, signal descriptions								

	of 8086-common function signals. Minimum and Maximum mode signals. Timing					
	diagrams. Interrupts of 8086. Instruction Set and Assembly Language Programming					
	of 8086: Instruction formats, addressing modes, instruction set, assembler directives,					
	macros, simple programs involving logical, branch and call instructions, sorting,					
	evaluating arithmetic expressions, string manipulations.					
Module-2	I/O and Communication Interface:	[14]				
	8255 PPI various modes of operation and interfacing to 8086. Interfacing keyboard,					
	display, stepper motor interfacing, D/A and A/D converter. Memory interfacing to					
	8086, Interrupt structure of 8086, Vector interrupt table, Interrupt service routine,					
	Introduction to DOS and BIOS interrupts, Interfacing Interrupt Controller 8259					
	DMA Controller 8257 to 8086. Communication interface: Serial communication					
	standards, Serial data transfer schemes. 8251 USART architecture and interfacing,					
	RS-232, IEEE-4-88, Prototyping and trouble shooting					
Module-3	Introduction to Microcontrollers: Overview of 8051 microcontroller. Architecture.					
	I/O Ports. Memory organization, addressing modes and instruction set of 8051,					
	simple program					
Module-4	8051 Real Time Control: Interrupts, timer/ Counter and serial communication,					
	programming Timer Interrupts, programming external hardware interrupts,					
	programming the serial communication interrupts, programming 8051 timers and					
	counters.					
Module-5	The AVR RISC microcontroller architecture: Introduction, AVR Family					
	architecture, Register File, The ALU. Memory access and Instruction execution. I/O					
	memory. EEPROM. I/O ports. Timers. UART. Interrupt Structure					
TEXT BOOK	S:					
1 D. V.	Hall. Micro processors and Interfacing, TMGH. 2'1 edition 2006.					
2 Kenne	th. J. Ayala. The 8051 microcontroller, 3rd edition, Cengage learning, 2010					
REFERENCE	BOOKS:					
1 Advanced Microprocessors and Peripherals -A. K. Ray and K.M. Bhurchandani, TMH, 2nd edition 2006						
2 The 8051 Microcontrollers, Architecture and programming and Applications -K.						
	i,,Pearson, 2009.					
3 Micro	Computer System 8086/8088 Family Architecture. Programming and Design -By	Liu and GA				
Gibsor	n, PHI, 2nd Ed.,					
4 37						

4 Microcontrollers and application, Ajay. V. Deshmukh, TMGH. 2005

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	Ν
Mini projects/Projects	N
Laboratory experiments/teaching aids	Ν
Industrial/guest lectures	Ν
Industrial visits/in-plant training	Ν
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks			\checkmark		
End Sem Examination Marks			\checkmark	\checkmark	
Quiz I					
Quiz II					

Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives		Course Outcomes					
	1	2	3	4	5		
Α	Н	Μ	Μ	L	Н		
В	Μ	Н	Μ	Μ	Н		
С	L	L	Н	М	L		
D	Μ	L	L	Н	Н		
Е	Η	Μ	L	L	Н		

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes						
	a	b	с	d	e	f	
1	Н	М	Η	М	М	М	
2	L	Н	Н	М	Н	Н	
3	Н	L	М	М	L	М	
4	L	М	Н	М	М	М	
5	L	Η	Η	М	Η	Н	

	Mapping Between COs and Course Delivery (CD) methods								
		Course	Course Delivery						
CD	Course Delivery methods	Outcome	Method						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	C01	CD1 and CD2						
CD2	Tutorials/Assignments	CO2	CD1 and CD2						
CD3	Seminars	CO3	CD1 and CD2						
CD4	Mini projects/Projects	CO4	CD1, CD2 and CD8						
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8						
CD6	Industrial/guest lectures	-	-						
CD7	Industrial visits/in-plant training	-	-						
CD8	Self- learning such as use of NPTEL materials and internets	-	-						
CD9	Simulation	-	-						

Week	Lect.	Fentative	Ch.	Fopics to be covered	Гext	Cos	Actual	Methodol	Remarks
	No.	Date			Book /	mappe	Content	ogy used	by
No.			No.		Refere	d	covered		faculty if

				nces			any
1	L1- L2	1	Introductionto8085Microprocessor,8086Architecture-Functionaldiagram.	T1, R3	CO1	CD1, CD2	
	L3- L5		RegisterOrganization,MemorySegmentation.Programming Model	T1,R3	CO1	CD1, CD2	
2	L6		Memory addresses. Physical memory organization.	T1,R3	CO1	CD1, CD2	
	L7-8		Architecture of 8086, signal descriptions of 8086- common function signals. Minimum and Maximum mode signals.	T1, R3	CO1	CD1, CD2	
3	L9		Timing diagrams. Interrupts of 8086.	T1, R3	CO1	CD1, CD2	
	L10- 11		Instruction Set and Assembly Language Programming of 8086: Instruction formats, addressing modes, instruction set, assembler directives,	T1, R3	CO1	CD1, CD2	
4	L12- 13		macros, simple programs involving logical, branch and call instructions, sorting,	T1, R3	CO1	CD1, CD2	
	L14- 15		evaluating arithmetic expressions, string manipulations.	T1, R3	CO1	CD1, CD2	
5	L16	2	8255 PPI various modes of operation and interfacing to 8086	T2	CO2	CD1, CD2	
	L17- 18		Interfacing keyboard, display, stepper motor interfacing, D/A and A/D converter.	T2	CO2	CD1, CD2	
6	L19- 20		Memory interfacing to 8086, Interrupt structure of 8086, Vector interrupt table, Interrupt service routine,	T2	CO2	CD1, CD2	
	L21- 22		Introduction to DOS and BIOS interrupts, Interfacing Interrupt Controller 8259 DMA Controller 8257 to 8086.	T2	CO2	CD1, CD2	
7	L23- 25		Communication interface: Serial	T2	CO2	CD1, CD2	

			communication standards,			
			Serial data transfer schemes.			
	L26-		8251 USART architecture	T2	CO2	CD1,
	27		and interfacing, RS-232,	12	02	CD1, CD2
			IEEE-4-88,			
8	L28-		Prototyping and trouble	T2	CO2	CD1,
	29		shooting			CD2
	L30-	3	Overview of 8051	T2	CO3	CD1,
	31		microcontroller. Architecture.			CD2
9	L32-		I/O Ports. Memory	T2	CO3	CD1,
	33		organization,		000	CD2
	L33-		addressing modes and	T2	CO3	CD1,
	L34		instruction set of 8051,		000	CD2
	L35		simple program	T2	CO3	CD1,
						CD2
10	L36-	4	Interrupts, timer/ Counter	T2, R2	CO4	CD1,
	37		and serial communication,			CD2
	L38-		programming Timer	T2, R2	CO4	CD1,
	39		Interrupts, programming external hardware interrupts			CD2
11	L40-		programming the serial	T2, R2	CO4	CD1,
	41		communication interrupts			CD2
	L42		programming 8051 timers	T2, R2	CO4	CD1,
			and counters			CD2, and
						CD8
	L43	5	Introduction	R4	CO5	CD1,
						CD2, and
						CD8
	L44-		AVR Family architecture,	R4	CO5	CD1,
	45		Register File, The ALU.			CD2, and
						CD8
12	L46-		Memory access and	R4	CO5	CD1,
	47		Instruction execution.			CD2, and
						CD8
	L48-		Timers. UART. Interrupt	R4	CO5	CD1,
	49		Structure			CD2, and
						CD8

Course code: PH 526 Course title: Integrated Electronics Pre-requisite(s): Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Group : D

Option 2

C	ode:	Title: Integrated Electronics	L-T-P-C				
PI	H 526		3-1-0-4				
Cours	se Objec	tives					
This c	ourse ena	bles the students:					
	A.	First module of the course contains information about various ty logic processing for digital devices.	pe of circuitry to achieve				
	В.	The second module of the course would introduce the learners t being followed in foundry for fabrication of Integrated devices.	o the processes currently				
	C.	The learners should explain different nanoscale devices.					
	D.	The working and construction of nanoscale electronic devices is planned to be covered in Module-4.					
	E.	The final module, module-5 contains an account of functional thin films, nanostructures and their applications. Information contained in this module bridges ongoing research with the course taught.					

Course Outcomes

After the completion of this course, students will be:

Inter		inpletion of this course, students will be.							
	1. This course would introduce students about designing and making process of integrated devices.								
	2.	2. The various fabrication process taught in module-II would enrich their knowledge to various foundry fabrication processes enabling them with skills of nanofabrication.							
	3.	Knowledge of functioning and construction of nanoscale electronic devices would cater the need to keep them update with recent technologies in the field.							
	4.	Knowledge of functioning and construction of nanoscale optoelectronic devices would cater need to keep them update with recent technologies in the field.	the						
	5	Knowledge of various types of functional thin films, nanostructures and their applications we enable learners understand working of presently used various type of sensors and devices.	uld						
Modu	le-1	Logic Families		5					
		Diode Transistor Logic, High Threshold Logic, Transistor-transistor Logic, Resistor- transistor Logic, Direct Coupled Transistor Logic, Comparison of Logic families							
Modu	le-2	Integrated Chip Technology	-	20					
		Overview of semiconductor industry, Stages of Manufacturing, Process and product trends, Crystal growth, Basic wafer fabrication operations, process yields, semiconductor material preparation, yield measurement, contamination sources, clean room construction, substrates, diffusion, oxidation and photolithography, doping and depositions, implantation, rapid thermal processing, metallization. patterning process, Photoresists, physical properties of photoresists, Storage and control of photoresists, photo masking process, Hard bake, develop inspect, Dry etching Wet etching, resist stripping, Doping and depositions: Diffusion process steps, deposition, Drive-in oxidation, Ion implantation, CVD basics, CVD process steps, Low pressure CVD systems, Plasma enhanced CVD systems, Vapour phase epitoxy, molecular beam epitaxy. Design rules and Scaling, BICMOS ICs: Choice of transistor types, pnp transistors, Resistors, capacitors, Packaging: Chip characteristics, package functions, package							

	operations	
Module-3	Nanoelectronic devices	15
	Effect of shrinking the p-n junction and bipolar transistor; field-effect transistors, MOSFETs,	
	Introduction, CMOS scaling, the nanoscale MOSFET, vertical MOSFETs, electrical	
	characteristics of sub-100 nm MOS transistors, limits to scaling, system integration limits	
	(interconnect issues etc.), heterostructure and heterojunction devices, ballistic transport and	
	high-electron-mobility devices, HEMT, Carbon Nanotube Transistor, single electron effects,	
	Coulomb blockade. Single Electron Transistor, Resonant Tunneling Diode, Resonant	
	Tunneling Transistor, applications in high frequency and digital electronic circuits and	
	comparison with competitive devices.	
Module-4	Nano-Optoelectronic devices	5
	Direct and indirect band gap semiconductors, QWLED, QWLaser, Quantum Cascade Laser	
	Integrated Micromachining Technologies for Transducer Fabrication	
Module-5	Applications of Functional Thin Films and Nanostructures	5
	Functional Thin Films and Nanostructures for Gas Sensing, Chemical Sensors, Applications	
	of Functional Thin Films for Mechanical sensing, Sensing Infrared signals by Functional	
	Films.	
Referer		
	s and Reference Books:	
	Taub, Donald L. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977	
	e, Ed, Modern Semiconductor Device Physics, Wiley, New York	
	e and K.K. Ng, Physics of Semiconductor Devices, 3rd Ed, Wiley, Hoboken.	
	and R.N. Tauber, Silicon Processing, vol. 1, (Lattice Press)	
	and R. N. Tauber, Silicon Processing for the VLSI Era. (Lattice Press, 2000)	
	an, B.G. Solid State Electronic Devices, Prentice Hall, Fifth Edition, 2000	
	oering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, CRC Press, Boca	
	ahrner (Editor), Nanotechnology and Nanoelectronics, Materials, Devices, Measurement Technic	•
9 Anis Zr	ibi, Jeffrey Fortin (Editors), Functional Thin Films and Nanostructures for Sensors Synthesis, H	Physics

9 Anis Zribi, Jeffrey Fortin (Editors), Functional Thin Films and Nanostructures for Sensors Synthesis, Physics, and Applications

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Course Assessment tools & Evaluation procedure

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Quiz I	\checkmark	\checkmark			
Quiz II			\checkmark	\checkmark	
Assessment		\checkmark			
Mid Sem Examination Marks		\checkmark			
End Sem Examination Marks		\checkmark			\checkmark

Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives	Course Outcome				
	1	2	3	4	5
А	Н	L	М	Μ	М
В	Μ	Н	Н	Н	Н
С	L	М	Н	Н	М
D	L	М	М	Н	Н
Е	L	М	Н	Н	Н

Mapping of Course Outcomes onto Program Outcomes

Course Outcome		Program Outcomes						
	а	b	с	d	e	f		
1	Н	Н	Н	М	М	М		
2	М	Н	Н	М	Н	Н		
3	М	Н	М	М	Н	М		
4	М	Н	М	М	Н	М		
5	М	Н	Н	М	Н	Н		

	Mapping Between COs and Course Delivery (CD) methods								
			Course	Course Delivery					
CD	Course Delivery methods		Outcome	Method					
CD1	Lecture by use of boards/LCD projectors/OHP projectors		CO1	CD1 and CD2					
CD2	Tutorials/Assignments		CO2	CD1 and CD2					
CD3	Seminars		CO3	CD, CD2 and CD8					
CD4	Mini projects/Projects		CO4	CD1, CD2 and CD8					
CD5	Laboratory experiments/teaching aids		CO5	CD1, CD2 and CD8					
CD6	Industrial/guest lectures		-	-					
CD7	Industrial visits/in-plant training		-	-					
CD8	Self- learning such as use of NPTEL materials and internets		-	-					
CD9	Simulation		-	-					

Week	Lect.	Fentati	Ch.	Fopics to be covered	Гext	COs	Actual Content	Methodolog	Remar
	No.	ve			Book /		covered	У	ks by
No.		Date	No.		Refere	mapped			faculty
								ısed	if any
					nces				

1	L1-L2	1	Diode Transistor Logic, High	R2,	CD1,
1		1	Threshold Logic, Transistor-	R2, R3,	CD2
			transistor Logic	and R6	CD2
	L3-L4		Resistor-transistor Logic,	R2,	CD1,
	LJ-L4		Direct Coupled Transistor		CD1, CD2
			-	and R6	CD2
	1.5		Logic,		 CD1
	L5		Comparison of Logic	R2,	CD1,
			families	R3,	CD2
				and R6	~~ .
	L6-7	2	Overview of semiconductor		CD1,
			industry, Stages of	R5	CD2
			Manufacturing, Process and		
			product trends		
	L8-9		Crystal growth, Basic wafer		CD1,
			fabrication operations,	R4, R5	CD2
			process yields,		
			semiconductor material		
			preparation,		
	L9		yield measurement,	R1,	CD1,
			contamination sources, clean	-	CD2
			room construction,		
	L10-		substrates, diffusion,	R1,	CD1,
	12		oxidation and	R4,	CD2
			photolithography, doping	R5	
			and depositions,	10	
			implantation, rapid thermal		
			processing, metallization.		
	L13-		patterning process,	R1,	CD1,
	14		Photoresists, physical		CD1, CD2
	14			к4, кј	CD2
-	T 15		properties of photoresists,	D 1	 CD1
	L15-		Storage and control of	-	CD1,
	16		photoresists, photo masking	R4, R5	CD2
			process, Hard bake, develop		
			inspect,		
	L17-		Dry etching Wet etching,		CD1,
	18		resist stripping,	R4, R5	CD2
	L19-		Doping and depositions:		CD1,
	20		Diffusion process steps,	R4, R5	CD2
			deposition, Drive-in		
			oxidation, Ion implantation,		
	L21-		CVD basics, CVD process	R1,	CD1,
	22		steps, Low pressure CVD	R4, R5	CD2
			systems, Plasma enhanced		
			CVD systems, Vapour phase		
			epitoxy, molecular beam		
			epitaxy.		
	L23-		Design rules and Scaling,	R1,	CD1,
	24		BICMOS ICs: Choice of		CD2
			transistor types, pnp	,	
		<u> </u>	tunisistor types, plip		

	7	transistors, Resistors,		
		capacitors		
L25	-	Packaging: Chip	R1,	CD1,
		characteristics, package	R4, R5	CD1, CD2
		functions, package	K4, K3	CD2
		operations		
 L26-	3	Effect of shrinking the p-n	R8, R9	CD1,
27	5	junction and bipolar		CD2, and
27		transistor; field-effect		CD8
		transistors, MOSFETs,		CD0
 L28-		Introduction, CMOS scaling,	R8, R9	CD1,
29		the nanoscale MOSFET,		CD2, and
2)		vertical MOSFETs		CD8
 L30-	-	electrical characteristics of	R8, R9	CD1,
31		sub-100 nm MOS transistors,		CD2, and
51		limits to scaling, system		CD8
		integration limits		020
		(interconnect issues etc.)		
L32-	-	heterostructure and	R8, R9	CD1,
33		heterojunction devices,		CD2, and
		ballistic transport and high-		CD8
		electron-mobility devices,		
L34-		HEMT, Carbon Nanotube	R8, R9	CD1,
L35		Transistor, single electron		CD2, and
		effects, Coulomb blockade.		CD8
L36-		Single Electron Transistor,	R8, R9	CD1,
38		Resonant Tunneling Diode,		CD2, and
		Resonant Tunneling Transistor		CD8
 L39-	-	applications in high	R8, R9	CD1,
40		frequency and digital		CD2, and
		electronic circuits and		CD8
		comparison with competitive		020
		devices		
L41	4	Direct and indirect band gap	R8, R9	CD1,
		semiconductors		CD2, and
				CD8
L42-	1	QWLED, QWLaser,	R8, R9	CD1,
43		Quantum Cascade Laser		CD2, and
				CD8
L44-	1	Integrated Micromachining	R8, R9	CD1,
45		Technologies for Transducer		CD2, and
		Fabrication		CD8
L46-	5	Functional Thin Films and	R9	CD1,
48		Nanostructures for Gas		CD2, and
		Sensing, Chemical Sensors		CD8
L49-	1	Applications of Functional	R9	CD1,
50		Thin Films for Mechanical		CD2, and
		sensing, Sensing Infrared		CD8
		signals by Functional Films		

Course code: PH 527 Course title: Microwave Electronics Pre-requisite(s): Co- requisite(s): Credits: 4L: 3 T: 1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Group : D

Option 4

Code: PH 527	Title: Microwave Electronics	L-T-P-C					
Course (Dbjectives	L					
This cour	se enables the students:						
А.	Module-1 contains information about Transmission lines and wave-guides.						
В.							
C.	C. Module-III contains information about various types of stripline, microstrip lines and Netwo analysis.						
D.	Knowledge about Micro-wave passive components and methods to measure various mic	crowave					
	parameters are planned to be covered in Module-IV.						
E.	Module-V contains information about design, fabrication and working of microwave in	tegrated					
	circuit technology.	-					
	Putcomes completion of this course, students will be:						
1.	Leaner would gain knowledge about working, design and application of microwave fre electronics.	quency					
2.	The course is intended to enrich the learner about Microwave transmission lin waveguides. Through it students would be able to understand the propagation of micr through transmission lines and Waveguides.						
3.	3. Learner would gather understanding of devices used for microwave generation, detect microwave network analysis						
4.	Learner would also enrich their knowledge in terms of various microwave passive components,						
	microwave parameters and microwave integrated circuit technology						
Aodule-1	Transmission lines and Waveguides	12					
	Introduction of Microwaves and their applications. Types of Transmission lines, Characterization in terms of primary and secondary constants, Characteristic impedance, General wave equation, Loss less propagation, Propagation constant, Wave reflection at discontinuities, Voltage standing wave ratio, Transmission line of finite length, The Smith Chart, Smith Chart calculations for lossy lines, Impedance matching by Quarter wave transformer, Single and double stub matching. Rectangular Waveguides: TE and TM wave solutions, Field patterns, Wave impedance and Power flow.						
Module-2		7					
	Microwave Linear-Beam (O type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies, Klystron, Multicavity Klystron Amplifiers, Reflex Klystrons, Helix Travelling-wave tubes, magnetron Oscillators. Tunnel diode, TED ¬Gunn diode, Avalanche transit time devices IMPATT (also TRAPAT) and parametric devices.						

Module-3	Stainling and microsofthin lings and Naturally analysis	11
wiodule-3	Stripline and microstrip lines and Network analysis	11
	Dominant mode of propagation, Field patterns, Characteristic impedance, Basic design	
	formulas and characteristics. Parallel coupled striplines and microstrip lines-Even-and	
	odd-mode excitations. Slot lines and Coplanar lines. Advantages over waveguides.	
	Microwave Network Analysis: Impedance and Admittance matrices, Scattering matrix,	
	Parameters of reciprocal and Loss less networks, ABCD Matrix, Scattering matrices of	
	typical two-port, three-port and four-port networks, Conversion between two-port	
	network matrices.	
Module-4	Microwave Passive Components and measurements	14
	Waveguide Components: E-plane and H-plane Tees, Magic Tee, Shorting plunger,	
	Directional couplers, and Attenuator. Stripline and Microstrip line Components: Open	
	and shorted ends. Half wave resonator, Lumped elements (inductors, capacitors and	
	resistors) in microstrip. Ring resonator, 3-dB branchline coupler, backward wave	
	coupler, Wilkinson power dividers and rat-race hybrid ring. Low pass and band pass	
	filters. Microwave Measurements: Detection of microwaves, Microwave power	
	measurement, Impedance measurement, Measurement of reflection loss (VSWR), and	
	transmission loss in components. Passive and active circuit measurement &	
	characterization using network analyser, spectrum analyser and noise figuremeter	
Module -5	Microwave Integrated Circuit Technology	6
	Substrates for Microwave Integrated Circuits (MICs) and their properties. Hybrid	
	technology – Photolithographic process, deposited and discrete lumped components.	
	Microwave Monolithic Integrated Circuit (MMIC) technology-Substrates, MMIC	
	process, comparison with hybrid integrated circuit technology (MIC technology).	
RECOMM	ENDED BOOKS:	
	ctromagnetic Waves and Radiating Systems – E.C. Jordan & K.G. Balmain, Prentice Hall, In	nc
	rowave Devices and Circuits -S. Y. LIAO, PHI	lie.
	oduction to Microwave Theory and Measurements – L. A. Lance, TMH	
	ismission lines and Networks – Walter C. Johnson, McGraw Hill, New Delhi	
	works Lines and Fields – John D. Ryder	
	•)alh;
	rowave Engineering: Passive Circuits -Peter A. Razi, Prentice Hall of India Pvt. Ltd, New I	Jenni.
	veguides – H.R.L. Lamont, Methuen and Company Limited, London	
	ndations for Microwave Engineering – Robert E. Collin, McGraw Hill Book Company, New	w Deini
9 Micro	owave Engineering – Annapurna Das, TMH, New Delhi	

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	Ν
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	Ν

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Quiz I					
Quiz II			\checkmark	\checkmark	
Assesment		\checkmark	\checkmark	\checkmark	\checkmark
Mid Sem Examination Marks			\checkmark		
End Sem Examination Marks		\checkmark	\checkmark	\checkmark	\checkmark

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Course Objectives		Course Outcomes				
	1	2	3	4	<u>5</u>	
Α	Н	Μ	Μ	L	Н	
В	Н	Н	Μ	L	Н	
С	М	L	Η	L	L	
D	Н	L	L	Η	Н	
Е	L	Μ	L	L	Н	

Mapping of Course Outcomes onto Program Outcomes

Course Outcome		Program Outcomes				
	а	b	с	d	e	f
1	Н	М	Н	М	Н	Н
2	Н	Н	Н	М	Н	Н
3	Н	L	М	М	L	М
4	Н		Н	М	М	М
5	М	Н	Н	М	Н	Н

	Mapping Between COs and Cou	rse Delivery (CD)	methods
CD	Course Delivery methods	Course Outcome	Course Delivery Method
	Lecture by use of boards/LCD		
CD1	projectors/OHP projectors	CO1	CD1 and CD2
CD2	Tutorials/Assignments	CO2	CD1 and CD2
CD3	Seminars	CO3	CD1 and CD2
CD4	Mini projects/Projects	CO4	CD1 and CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1, CD2 and CD8
CD6	Industrial/guest lectures	-	-
CD7	Industrial visits/in-plant training	-	-
	Self- learning such as use of NPTEL		
CD8	materials and internets	-	-
CD9	Simulation	-	-

Lect. No. L1-L2	Tentati ve Date	Cn. No.	1	Text Book /	COs	Actual	Methodology	
		NO.						C 14 °C
L1-L2	Date					Content	used	faculty if any
L1-L2				Refere	d	covered		
L1-L2				nces				
		1	Introduction of Microwaves		,CO1		CD1, CD2	
			11	and R7				
L3-L5			Types of Transmission		,CO1		CD1, CD2	
			lines, Characterization in	and R7				
			terms of primary and					
			secondary constants,					
			Characteristic impedance					
L6			General wave equation,	R1, R4,	,CO1		CD1, CD2	
			Loss less propagation,	and R7				
			Propagation constant, Wave					
			reflection at discontinuities,					
L7			Voltage standing wave	R1, R4,	,CO1		CD1, CD2	
			finite length,					
L8			-	R1, R4,	CO1		CD1, CD2	
			Chart calculations for lossy	and R7				
			lines,					
L9			Impedance matching by	R1, R4,	CO1		CD1, CD2	
			-					
L10-12				R1, R4,	CO1		CD1, CD2	
			Field patterns, Wave					
			-					
L13-14		2	_	R2	CO2		CD1. CD2	
							,	
			· · · · · · · · · · · · · · · · · · ·					
L15		-	1	R2	CO2		CD1. CD2	
-			5				- , -	
			-					
L16-17			5	R2	CO2		CD1. CD2	
			e				- , -	
			e e					
L18		_		R2	CO2		CD1 CD2	
210					002		001,002	
L19				R2	CO^2		CD1 CD2	
			\$					
L20-21		3		R4 R5	CO1		CD1 CD2	
		Ĩ						
1.22		-	÷	R4 R5	CO1		CD1 CD2	
			e	IX T , IXJ			CD1, CD2	
I 22		-		D/ D5			CD1 CD2	
	L7 L8 L9 L10-12 L13-14	L7 L8 L9 L10-12 L10-12 L13-14 L15 L16-17 L18 L19 L20-21 L22	L7 L8 L9 L10-12 L10-12 L13-14 L15 L15 L16-17 L18 L19 L20-21 3 L22	Losslesspropagation, Propagation constant, Wave reflection at discontinuities, VoltageL7Voltagestandingwave ratio, Transmission line of finite length,L8The Smith Chart, Smith Chart calculations for lossy lines,L9ImpedancematchingL10-12RectangularWaveguides: TE and TM wave solutions, Field patterns,L13-142Microwave Linear-Beam (O type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies,L15Klystron,Multicavity Klystron Amplifiers, Reflex KlystronsL16-17HelixTravelling-wave tubes, magnetron Oscillators.L18Tunnel diode, TED ¬Gunn diode,L19Avalanche transittime devicesL20-213Dominant mode of propagation, Field patterns, Characteristic impedance, Basic design formulas and characteristics.	Losslesspropagation, and R7Propagation constant, Wave reflection at discontinuities,NotagestandingwaveR1, R4, ratio, Transmission line of and R7L7Inite length,The Smith Chart, SmithR1, R4, Chart calculations for lossy and R7Inite length,L9Impedance matching byR1, R4, Quarter wave transformer, and R7L10-12Rectangular Waveguides: R1, R4, TField patterns, Wave impedance and Power flow.L13-142Microwave Linear-Beam (OR2 type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies,L15Klystron, MulticavityR2 Klystron Amplifiers, Reflex KlystronsL16-17Helix Travelling-waveR2 tubes, magnetron Oscillators.L18Tunnel diode, TED ¬GunnR2 diode,L20-213Dominant mode of R4, R5 propagation, Field patterns, Characteristic impedance,L22Basic design formulas andR4, R5 characteristics.	Losslesspropagation, and R7Propagation constant, Wave reflection at discontinuities,Voltagestandingwave R1, R4, CO1 ratio, Transmission line of and R7 finite length,L8The Smith Chart, SmithR1, R4, CO1 Chart calculations for lossy and R7 lines,ImpedancematchingL9Impedancematching,R4, CO1L10-12Rectangular Waveguides: R1, R4, CO1 TE and TM wave solutions, and R7 Field patterns, Wave impedance and Power flow.R4, CO1L13-14Microwave Linear-Beam (OR2) to conventional tubes at microwave frequencies,CO2 type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies,CO2 type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies,CO2 tubes, magnetron Oscillators.L15Klystron, Multicavity R2 CO2 tubes, magnetron Oscillators.CO2 tubes, magnetron Oscillators.CO2 tubes, CO2 tubes, MPATT (also TRAPAT) and parametric devices.CO2 topogagaion, Field patterns, CO3 Characteristic impedance,CO1, propagation, Field patterns, CO3L20-213Dominant mode of R4, R5 CO1, propagation, Field patterns, CO3CO3	Losslesspropagation, and R7Propagation constant, Wave reflection at discontinuities,	Losslesspropagation, and R7 Propagation constant, Wave reflection at discontinuities,L7VoltagestandingwaveR1, R4, CO1 ratio, Transmission line of and R7 finite length,CD1, CD2 CD1, CD2L8The Smith Chart, SmithR1, R4, CO1 Chart calculations for lossy and R7 lines,CD1, CD2 CD1, CD2L9Impedancematching by R1, R4, CO1 Quarter wave transformer, and R7 Single and double stub matching.CD1, CD2L10-12Rectangular Wave solutions, and R7 Field patterns, Wave impedance and Power flow.CD1, CD2L13-142Microwave Linear-Beam (OR2 type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies,CO2CD1, CD2L15Klystron, Multicavity R2CO2CD1, CD2CD1, CD2L16-17Helix Travelling-waveR2CO2CD1, CD2L18Tunnel diode, TED ¬Gum R2 diode,CO2CD1, CD2L19Avalanche transit timeR2 devices.CO2CD1, CD2L20-213Dominant mode of R4, R5 Raracteristic impedance, Basic design formulas and R4, R5CO1, CO3CD1, CD2L22basic design formulas and R4, R5CO1, CO3CD1, CD2

r					
			and microstrip lines-Even-	CO3	
			and odd-mode excitations.		
	L24		Slot lines and Coplanar R4, R5	CO1,	CD1, CD2
			lines. Advantages over	CO3	
			waveguides		
7	L25-27		Microwave Network R4, R5	CO1,	CD1, CD2
			Analysis: Impedance and	CO3	
			Admittance matrices,		
			Scattering matrix,		
	L28		Parameters of reciprocal and R4, R5	CO1,	CD1, CD2
			Loss less networks, ABCD	CO3	
			Matrix,		
8	L29		Scattering matrices of R4, R5	CO1,	CD1, CD2
Č	227		typical two-port, three-port	CO3	
			and four-port networks,	005	
	L30		Conversion between two-R4, R5	CO1,	CD1, CD2
	L30		port network matrices.	CO1, CO3	
	I 21 22		μ		
	L31-32	4	Waveguide Components: E-R6, R8	CO4	CD1, CD2
			plane and H-plane Tees,		
			Magic Tee, Shorting		
			plunger, Directional		
			couplers, and Attenuator.		
9	L33-34		Stripline and Microstrip line R6, R8	CO4	CD1, CD2
			Components: Open and		
			shorted ends.		
	L35-36		Half wave resonator, R6, R8	CO4	CD1, CD2
			Lumped elements		
			(inductors, capacitors and		
			resistors) in microstrip.		
10	L37-38		Ring resonator, 3-dBR6, R8	CO4	CD1, CD2
10	20,00		branchline coupler,		
			backward wave coupler,		
			Wilkinson power dividers		
			and rat-race hybrid ring.		
	L39		Low pass and band passR6, R8	CO4	CD1, CD2
	L39		filters.	CO4	CD1, CD2
11	I 40 42				
11	L40-42		Microwave Measurements: R6, R8	CO4	CD1, CD2
			Detection of microwaves,		
			Microwave power		
			measurement, Impedance		
			measurement, Measurement		
			of reflection loss (VSWR),		
			and transmission loss in		
			components.		
	L43-44		Passive and active circuit R6, R8	CO4	CD1, CD2
			measurement &		
			characterization using		
			network analyser, spectrum		
			analyser and noise		
			figuremeter		
12	L45	5	Substrates for MicrowaveR9	CO5	CD1, CD2
1 2	L+J	5	Integrated Circuits (MICs)		
	I AC AT		and their properties.	C05	CD1 CD2
	L46-47		Hybrid technology – R9	CO5	CD1, CD2,

	Photolithographic process, deposited and discrete lumped components.		and CD8	
L48	Microwave Monolithic R9 Integrated Circuit (MMIC) technology-Substrates	CO5	CD1, CD2, and CD8	
L49-50	MMIC process, comparisonR9 with hybrid integrated circuit technology (MIC technology).	CO5	CD1, CD2, and CD8	

Group E- Plasma Sciences:

1. Theory of Plasmas

2. Plasma Confinement

3. Waves and Instabilities in Plasma

4. Physics of Thin Films

COURSE INFORMATION SHEET

Course code: PH 528 Course title: Theory of Plasmas Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T: 1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI/ VII Branch: PHYSICS Name of Teacher: Group : E Option 1

Code:	Title: Theory of Plasmas	L-T-P-C
PH 528		[3-1-0-4]
Plasma T	heory	
Course O	bjective	
	rn about the similarity of plasma with fluid.	
	rn about the diffusion and mobility of plasma.	
	rn about the resistivity and single fluid MHD equation of plasma.	
	rn about the Boltzmann and the Vlasov equation.	
	rn about the different type of discharges.	
Course O		
	niliar about the method by which plasma can be treated as a fluid.	
	niliar with the diffusion and mobility process.	
	le to derive the set of single fluid MHD equation.	
	le to describe plasma with Boltzmann and Vlasov equation.	
5. Be far	miliar with the different type of electrical discharges.	
Module-1	Relation of plasma physics to ordinary electromagnetic field, Fluid equation of	[8]
	motion, Fluid drifts perpendicular to B, Fluids drifts parallel to B, Plasma	
	approximation.	
Module-2	Diffusion and mobility in weakly ionized gases, Decay of a plasma by diffusion,	[8]
	steady state solution, Recombination, diffusion across a magnetic field, collision	
	in fully ionized plasma.	
Module-3	Mechanics of coulomb collisions, Physical meaning of resistivity, Numerical	[8]
	value of resistivity, Single fluid MHD equations, Diffusion in fully ionized	
	plasma, Bohm diffusion and Neoclassical diffusion.	
Module-4	Concepts of elementary kinetic theory of plasmas, The meaning of distribution	[8]
	function, Boltzmann and Vlasov equation	
Module-5	Electrical discharges, Electrical breakdown in gases, glow discharge, Self	[8]
	sustained discharges, Paschen curve, High frequency electrical discharge in	
	gases, electrode less discharge, capacitively and Inductively coupled plasmas,	
	ECR Plasmas, Electrical arcs.	
Reference		
	as Discharge Physics, Y P Raizer, Springer, 1997	
	troduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press	
	indamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 20	04
4 Pl	asma Physics (Plasma State of Matter) S. N. Sen. Pragati Prakashan, 1999	

4. Plasma Physics (Plasma State of Matter) S. N. Sen , Pragati Prakashan, 1999

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Direct Assessment

Direct Hissessment	
Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks				\checkmark	\checkmark
Quiz I				\checkmark	
Quiz II					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

Mapping between Course Objectives and Course Outcomes								
Course Objectives	1	2	3	4	5			
А	Н	L	L	L	L			
В	Μ	Н	L	L	L			
С	Μ	М	Н	L	L			
D	Μ	L	L	Н	L			
Е	L	L	L	L	Η			

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes										
Outcome #	a	В	С	d	E	f	g	Н	i	j	K	1
1	Μ	Н	Μ	Μ	Μ	H						
2	М	Η	L	Μ	Μ	H						
3	Μ	Η	Н	Μ	Μ	H						
4	Μ	Η	Н	Μ	Μ	H						
5	Μ	Н	L	М	М	H						

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods	Course Outcome	Course Deliver Method	ry						
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2							

CD2	Tutorials/Assignments	CO2	CD1 CD2
CD3	Seminars	CO3	CD1 CD2
CD4	Mini projects/Projects	CO4	CD1 CD2
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2
CD6	Industrial/guest lectures		
CD7	Industrial visits/in-plant training		
CD8	Self- learning such as use of NPTEL materials and internets		
CD9	Simulation		

Week	Lect	Fentative	Ch	Topics to be covered	Tex	t	COs	Actual	Methodo	Remarks
No.	No.	Date	No.	-	Boo Ref		mapped	Content covered	logy used	by Faculty if
					Nce			lovereu	useu	-
1	T 1			Relation of plasma						any
1	L1-			1	T2	T3				
	L5			physics to ordinary electromagnetic field,	R1					
				Fluid equation of motion,						
	L6-			Fluid drifts perpendicular	T2	T3				
	L0- L10			to B, Fluids drifts parallel	R1	15				
	LIU			to B, Plasma	K1					
				approximation						
	L11-			Diffusion and mobility in	T2	T3				
	L15			weakly ionized gases,	R1					
				Decay of a plasma by						
				diffusion,						
	L16-			steady state solution,	T2	T3				
	L20			Recombination, diffusion	R1					
				across a magnetic field,						
				collision in fully ionized						
				plasma.						
	L21-			Mechanics of coulomb	T2	T3				
	L25			collisions, Physical	R1					
				meaning of resistivity, Numerical value of						
				resistivity,						
	L26-			Single fluid MHD	T2	T3				
	L20- L30			equations, Diffusion in	R1	15				
	L30			fully ionized plasma,	K1					
				Bohm diffusion and						
				Neoclassical diffusion.						
	L31-			Concepts of elementary	T2	T3				
	L35			kinetic theory of plasmas,	R1					
	L36-		1	The meaning of	T2	T3				
	L40			distribution function,	R1	-				
	1			Boltzmann and Vlasov						
				equation						
	L41-			Electrical discharges,	T1 I	R1				
	L45			Electrical breakdown in						
	1			gases, glow discharge,						
	1			Self sustained discharges,						
	.			Paschen curve,	T 1 -					
	L46-			High frequency electrical	T1 I	K 1				
	L50			discharge in gases,						
				electrode less discharge,						

	capacitively Inductively plasmas, ECR I Electrical arcs.	and coupled Plasmas,			

Course code: PH 529 Course title: Plasma Confinement Pre-requisite(s): Co- requisite(s): Credits: 4L: 4T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : E **Option 2** Title: Plasma Confinement Code: L-T-P-C PH 529 [4-0-0-4] **Course Objective** 1. To learn about the fundamental and basics of plasma confinement. 2. To learn about the Magnetic confinement scheme and related heating machanicsm. 3. To learn about the transport of plasma. 4. To learn about plasma-surface interaction. 5. To learn about the Magnetohydrodynamics generator. **Course Outcome** 1. Will be familiar with the plasma confinement for thermonuclear fusion. 2. Will have an idea how plasma can be confined magnetically. 3. Be familiar with the transport of plasma and its role in thermonuclear fusion. 4. Be familiar with plasma surface interaction and its role in fusion. 5. Be familiar with the energy generation by MHD generator. Module-1 Nuclear Fusion and plasma physics: Fusion as energy source, Fusion reactions, [8] Controlled thermonuclear fusion and fusion reactor, Lawson criterion, Ignition, Fuel resources, Reactor economics, Plasma confinement schemes, Magnetic confinement, Inertial confinement, Laser-Fusion. Magnetic confinement: Larmor orbits, particle drifts, Magnetic mirror, Z-pinch, Module-2 [8] Theta-pinch, spheromak, Tokamak, safety factor, plasma beta, Aspect-ratio, Flux surfaces, plasma current, Grad-Shafranov equation, collisions, kinetic equation, Fokker-Planck equation, collision times, resistivity, plasma heating, Ohmic heating, RF heating, Neutral beam heating. Collisional Transport: Classical transport – minimal dissipation, diffusion, random Module-3 [8] walk estimate, heat conductivity, Fluid evolution in a torus - transport closure, radial fluxes, neoclassical transport, Surface flows, Axis symmetric fluxes. Module-4 Plasma-surface interaction: Plasma surface interactions, Boundary layer, [8] Recycling, Atomic and molecular processes, Desorption and wall cleaning, Sputtering, Arcing, Limiters, Divertors, Heat flux, Evaporation and heat transfer, Tritium inventory. Radiation from Plasma MHD Generator: Magnetohydrodynamic Generator, Basic theory, Principle of Module-5 [8] working, The fuel in MHD, Magnet in MHD Generator. References

1. Plasma Physics (Plasma State of Matter) S. N. Sen, Pragati Prakashan, 1999

2. Magnetic Fusion Technology, T J Dolan, 2014

3. Plasma Physics and Fusion energy, J P Freidberg Cambridge University Press, 2008

4. Tokamaks, J wessen, Oxford Science Publication, 1987

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Direct Assessment

Assessment Tool	% Contribution during CO Assessment
Assignment	10
Seminar before a commitee	10
Three Quizes	30 (10+10+10)
End Sem Examination Marks	50

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks	\checkmark	\checkmark	\checkmark		
End Sem Examination Marks	\checkmark	\checkmark	\checkmark		\checkmark
Quiz I			\checkmark		
Quiz II					

Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

Mapping between Objectives and Outcomes

Mapping between Course Objectives and Course Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Н	Μ	L	L	L
В	М	Н	L	L	L
С	L	L	Н	L	L
D	L	Μ	Μ	Н	L
Ε	L	М	L	L	Н

	Mapping of Course Outcomes onto Frogram Outcomes											
Course		Program Outcomes										
Outcome #	а	b	c	d	E	f	g	Н	Ι	j	k	1
1	Μ	Н	Μ	Μ	Н	Η						
2	М	Η	Μ	Μ	Н	Η						
3	Μ	Η	Μ	Μ	Н	Η						
4	Μ	Н	Μ	Μ	Н	Η						
5	М	Η	Μ	Μ	Н	Н						

Mapping of Course Outcomes onto Program Outcomes

	Mapping Between COs and Course Delivery (CD) methods									
CD	Course Delivery methods	Course Outcome	Course Delivery Method							
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2							
CD2	Tutorials/Assignments	CO2	CD1 CD2							
CD3	Seminars	CO3	CD1 CD2							
CD4	Mini projects/Projects	CO4	CD1 CD2							
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2							
CD6	Industrial/guest lectures									
CD7	Industrial visits/in-plant training									
CD8	Self- learning such as use of NPTEL materials and internets									
CD9	Simulation									

		ISC LCSSUI	i pian	ning Details.					
Week	Lect.	Tentative	Ch.	Topics to be covered	Text	COs	Actual	Methodology	Remarks
No.	No.	Date	No.		Book	mapped	Conten	Used	by
					/		t		faculty
					Refere		covere		if any
					Nces		d		
1	L1-			Nuclear Fusion and					
	L5			plasma physics:					
				Fusion as energy					
				source, Fusion					
				reactions, Controlled					
				thermonuclear fusion					
				and fusion reactor,					
				Lawson criterion,					
				Ignition,					
	L6-			Fuel resources,					
	L10			Reactor economics,					
				Plasma confinement					
				schemes, Magnetic					
				confinement, Inertial					
				confinement, Laser-					
				Fusion .					
	L11-			Magnetic confinement:					
	L15			Larmor orbits, particle					
				drifts, Magnetic					
				mirror, Z-pinch,					
				Theta-pinch,					
				spheromak, Tokamak,					
				safety factor, plasma					

	beta, Aspect-ratio,		
L16-	Flux surfaces, plasma		
L20	current, Grad-		
	Shafranov equation,		
	collisions, kinetic		
	equation, Fokker-		
	Planck equation,		
	collision times,		
	resistivity, plasma		
	heating, Ohmic		
	heating, RF heating,		
	Neutral beam heating.		
L21-	Collisional Transport:		
L25	Classical transport –		
	minimal dissipation,		
	diffusion, random		
	walk estimate, heat		
	conductivity,		
L26-	Fluid evolution in a		
L30	torus – transport		
	closure, radial fluxes,		
	neoclassical transport,		
	Surface flows, Axis		
	symmetric fluxes		
L31-	Plasma-surface		
L35	interaction: Plasma		
100	surface interactions,		
	Boundary layer,		
	Recycling, Atomic and		
	molecular processes,		
L36-	Desorption and wall		
	_		
L40	cleaning, Sputtering,		
	Arcing, Limiters,		
	Divertors, Heat flux,		
	Evaporation and heat		
	transfer, Tritium		
	inventory. Radiation		
	from Plasma	 	
L41-	MHD Generator:		
L45	Magnetohydrodynami		
	c Generator, Basic		
	theory,		
L46-	Principle of working,		
L50	The fuel in MHD,		
	Magnet in MHD		
	Generator.		

Course code: PH 530 Course title: Waves and Instabilities in Plasma Pre-requisite(s): Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : E Option 3

Code: PH 530	Title: Waves and Instabilities in PlasmaL-T[3-1-	-P-C 0-4]			
Course O					
	arn the fundamental and basics of Plasma waves.				
	arn about the electromagnetic waves.				
	arn about the Landau Damping.				
	arn about the different type of instabilities.				
5. To lea	arn about the MHD stability.				
Course of	utcome:				
	be familiar with the plasma waves.				
2. Be ab	le to handle electromagnetic waves mathematically.				
3. Be ab	le to derive mathematically Landau damping related concept.				
4. Will b	be familiar with the different type of instabilities.				
5. Be ab	le to handle MHD stability mathematically.				
	Module-1 Representations of waves, group velocity, Plasma Oscillations, Electron plasma wave sound waves, ion waves, validity of plasma approximations, comparison of ion an electron waves, electrostatic electron oscillations perpendicular to B.				
Module-2	Electrostatic ion waves perpendicular to B, The lower hybrid frequency, electromagnetic waves with B=0, Experimental applications, electromagnetic waves perpendicular to B, Cutoffs and resonances, electromagnetic waves parallel to B, Whistler mode, Faraday rotation.				
	Hydromagnetic waves, Magnetosonic waves, Alfven waves, Plasma oscillations and Landau damping, A physical derivation of Landau damping.	[8]			
	Equilibrium and stability, Hydromagnetic equilibrium, Diffusion of magnetic field into a plasma, Classification of instabilities, two stream instability, The gravitational instability, Resistive drift waves.				
	MHD stability, Energy principle, Kink instability, Internal kink, tearing modes, Resistive layer, Tearing stability, Mercier criterion, Ballooning modes, Beta limit.	[8]			
Reference	es				
1. T	okamaks, J Wessons, 1987, Oxford Science Publication.				
2. Ir	troduction to Plasma Physics f F Chen.				
3. T	he theory of plasma waves, T H Stix, 1962, McGraw-Hill New York.				
	undamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004				

Course Delivery methods	
Lecture by use of boards/LCD projectors/OHP projectors	Y
Tutorials/Assignments	Y
Seminars	N
Mini projects/Projects	N
Laboratory experiments/teaching aids	N
Industrial/guest lectures	N
Industrial visits/in-plant training	N
Self- learning such as use of NPTEL materials and internets	Y
Simulation	N

Direct Assessment

Assessment Tool	% Contribution during CO Assessment							
Assignment	10							
Seminar before a commitee	10							
Three Quizes	30 (10+10+10)							
End Sem Examination Marks	50							

Assessment Compoents	CO1	CO2	CO3	CO4	CO5
Mid Sem Examination Marks			\checkmark		
End Sem Examination Marks			\checkmark	\checkmark	\checkmark
Quiz I			\checkmark	\checkmark	
Quiz II					

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

<u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and <u>C</u>ourse Outcomes

Course Objectives	1	2	3	4	<u>5</u>
А	Н	Μ	L	L	L
В	Μ	Н	L	L	L
С	Μ	Μ	Н	L	L
D	L	L	L	Н	М
Е	L	L	L	Μ	Н

Mapping of Course Outcomes onto Program Outcomes

Course		Program Outcomes										
Outcome #	a	b	С	D	E	f	g	Н	i	j	k	1
1	Μ	Η	Μ	Μ	Н	Η						
2	М	Н	Μ	Μ	Н	Η						
3	Μ	Η	Н	Μ	Н	Η						
4	Μ	Н	Μ	Μ	Н	Η						
5	L	Н	L	Μ	Н	Η						

	Mapping Between COs and Course Delivery (CD) methods										
CD	Course Delivery methods	Course Outcome	Course Delivery Method								
CD1	Lecture by use of boards/LCD projectors/OHP projectors	CO1	CD1 CD2								
CD2	Tutorials/Assignments	CO2	CD1 CD2								
CD3	Seminars	CO3	CD1 CD2								
CD4	Mini projects/Projects	CO4	CD1 CD2								
CD5	Laboratory experiments/teaching aids	CO5	CD1 CD2								
CD6	Industrial/guest lectures										
CD7	Industrial visits/in-plant training										
CD8	Self- learning such as use of NPTEL materials and internets										
CD9	Simulation										

Week	Lect.	Tent	Ch.	Topics to be covered	Text	COs	Actual	Metho	Remar
No.	No.	ative	No.	•	Book /	Map	Content	dolog	ks by
		Date			Refere	ped	covered	у	faculty
					nces	-		used	if any
1	L1-			Representations of waves, group	T2 T3				
	L5			velocity, Plasma Oscillations, Electron	R1				
				plasma waves, sound waves, ion waves,					
	L6-			validity of plasma approximations,	T2 T3				
	L10			comparison of ion and electron waves,	R1				
				electrostatic electron oscillations					
				perpendicular to B.					
	L11-			Electrostatic ion waves perpendicular to	T2 T3				
	L15			B, The lower hybrid frequency,	R1				
				electromagnetic waves with B=0,					
				Experimental applications,					
	L16-			electromagnetic waves perpendicular to	T2 T3				
	L20			B, Cutoffs and resonances,	R1				
				electromagnetic waves parallel to B,					
				Whistler mode, Faraday rotation					
	L21-			Hydromagnetic waves, Magnetosonic	T2 T3				
	L25			waves, Alfven waves,	R1				
	L26-			Plasma oscillations and Landau					
	L30			damping, A physical derivation of					
				Landau damping					
	L31-			Equilibrium and stability,	T1 T2				
	L35			Hydromagnetic equilibrium, Diffusion	R1				
				of magnetic field into a plasma,					
	L36-			Classification of instabilities, two stream	T1 T2				
	L40			instability, The gravitational instability,	R1				
				Resistive drift waves.					
	L41-			MHD stability, Energy principle, Kink	T1 T2				
	L45			instability, Internal kink,	R1				
	L46-			tearing modes, Resistive layer, Tearing	T1 T2				
	L50			stability, Mercier criterion, Ballooning	R1				
				modes, Beta limit.					

Course code: PH 519 Course title: Physics of Thin Films Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: IV/ PE VI- VII Branch: PHYSICS Name of Teacher: Dr. Sanat Mukherjee

Group : E

Option 4

Same given as above (in Group B)