Opned at 01:45 pm for evaluation

Total No. of Printed Pages: 13

(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2019

SUBJECT: Mathematics Hons. (Five Year)-(SET-X)

C		Şr. No.	10763
Time: 11/4 Hours (75 minutes)	Total Questions : 100		Max. Marks : 100
Roll No. (in figures)	(in words)	//	
Name	Day	e of Birth	St.
Father's Name	Mother's Name		
Date of Exam			
(Signature of the Candidate)	D.	(Signature	of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory and carry equal marks. The candidates are required to attempt all questions.
- 2. The candidate must return this question booklet and the OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / misbehaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
- 4. Question Booklet along-with answer key of all the A, B, C and D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case will be considered.
- 5. The candidate *must not* do/any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers *must not* be ticked in the question booklet.
- 6. Use only black or blue ball point pen of good quality in the OMR Answer-Sheet.
- 7. There will be **no negative** marking. Each correct answer will be awarded **one** full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete question booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)

- Start

Roman

1.	The graph of the function $y = f(x)$ is symmetrical about the line $x = a$, then which of
	the following is <i>true</i> ?

$$(1) f(x+a) = f(x-a)$$

(2)
$$f(x) = f(-x)$$

(3)
$$f(a+x) = f(a-x)$$

(2)
$$f(x) = f(-x)$$

(4) $f(x) = -f(-x)$

2. Let
$$f: R \to R$$
 be a function defined by $f(x) = \frac{x^2 + 2x + 5}{x^2 + x + 1}$, then f is:

(1) one-one and onto

- (2) one-one and into
- (3) many one and onto

(4) many one and into

3.
$$\sin \lambda x + \cos \lambda x$$
 and $|\sin x| + |\cos x|$ are periodic of same fundamental period, if $\lambda =$

- (1) 4
- (2) 0
- (3) 2
- (4) 1

4. Let R be a relation on the set N of natural numbers defined by
$$nRm \Leftrightarrow n$$
 is a factor of m (i.e. n/m). Then R is:

(1) equivalence

- (2) transitive and symmetric
- (3) reflexive and symmetric
- (4) reflexive, transitive but not symmetric

5. If
$$\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$
, then $x = \frac{\pi}{2}$

- (1) 4
- (3) 5
- (4) 2

$$\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$$
, is:

- (1) x = 0
- (2) x = 1
- (3) x = -1
- (4) $x = \pi$

7. The value of
$$\tan\left(\frac{1}{2}\cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right)$$
 is:

- (1) $3+\sqrt{5}$ (2) $3-\sqrt{5}$ (3) $\frac{1}{2}(3-\sqrt{5})$ (4) $\frac{1}{2}(\sqrt{5}+3)$

8. Solution of
$$\sin^{-1} x - \cos^{-1} x = \cos^{-1} \frac{\sqrt{3}}{2}$$
 is :

- (1) $x = \frac{1}{2}$ (2) $x = \frac{1}{\sqrt{3}}$ (3) $x = \frac{\sqrt{3}}{2}$
- (4) x = 1

9.	If $A =$	1 -1	.07	and $A^2 = 8A + KI_2$, then the value of K is	:
----	----------	---------	-----	--	---

- (1) -1 (2) 1
- (3) 7
- (4) -7

10. If $1, w, w^2$ are cube roots of unity, inverse of which of the following matrices exists?

- (1) $\begin{bmatrix} w & w^2 \\ w^2 & 1 \end{bmatrix}$ (2) $\begin{bmatrix} 1 & w \\ w & w^2 \end{bmatrix}$ (3) $\begin{bmatrix} w^2 & 1 \\ 1 & w \end{bmatrix}$ (4) None of these

11. The line x + y = 4 divides the line joining (-1, 1) and (5, 7) in the ratio K : 1, then the value of K is:

- (1) 1/4
- (2) 4/3
- (3) 1/2
- (4) 2

12. If the foot of the perpendicular from the origin to a straight line is at the point (3, -4). Then the equation of the line is:

(1) 3x - 4y = 25

(2) 4x - 3y = 25

(3) 4x + 3y = 25

(4) 3x + 4y = 25

The distance between the parallel lines 6x - 3y - 5 = 0 and 2x - y + 4 = 0 is:

(1) $3/\sqrt{5}$

(2) $\sqrt{5}/3$

(3) $17/3\sqrt{5}$

(4) $17/\sqrt{3}$

14. The points (K + 1, 1), (2K + 1, 3) and (2K + 2, 2K) are collinear, then K =

- (1) -1

- (2) $\frac{1}{3}$ (3) $\frac{1}{2}$ (4) $-\frac{1}{2}$

15. The equation of the circle of radius 5 whose centre lies on x-axis and passing through (2, 3) is:

- (1) $x^2 + y^2 4x 21 = 0$
- (2) $x^2 + y^2 + 4x 21 = 0$
- (3) $x^2 + y^2 + 4x 17 = 0$
- (4) $x^2 + y^2 4x + 21 = 0$

16. If the parabola $y^2 = 4$ ax passes through (3, 2), then the length of its latus-rectum is :

- (1) 2/3
- (2) 3/4
- (3) 4
- (4) 4/3

17. The eccentricity of the hyperbola $16x^2 - 3y^2 - 32x + 12y - 44 = 0$ is :

- (1) $\sqrt{13}$
- (2) $\sqrt{7}$ (3) $\sqrt{\frac{17}{3}}$ (4) $\sqrt{\frac{19}{3}}$

		ù.		3
18.	The eccentricity of	the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$	= 1 whose latus-rectu	m is half of its major axis,
	is:	a- v-		
	(1) $\frac{\sqrt{3}}{2}$	(2) $\frac{\sqrt{3}}{4}$	(3) $\frac{1}{\sqrt{2}}$	(4) $\frac{1}{2}$
19.	The ratio in which	the yz-plane divides	the segment joining	g the points (-2, 4, 7) and
D)	(3, -5, 8) is: (1) 7:8	(2) -7:8	(3) 2:3	(4) -3:2
20.				e positive directions of the
	(1) 0	en $\sin^2 \alpha + \sin^2 \beta + s$ (2) 1	$\sin^{-} \gamma = $ (3) 2	(4) 3
21.		S 400 N2	B has 7 elements.	The minimum number of
	elements in the set. (1) 21		(3) 7	(4) Can not say
22.		sets, then $A \cap (A \cup A)$	JB) ^C (where 'C' der	notes complement) is equal
	to: (1) \phi	(2) A	(3) B	(4) A - B
23.	Let $A = \{0, 1, 2, 3, R^{-1} \text{ is } :$	4, 5} and a relation	R is defined by xRy	such that $2x + y = 10$. Then
	(1) {(4, 3), (2, 4), ((5, 0)}	(2) {(4, 3), (2, 4),	
	$(3) \{(3,4), (4,2), (4$	(5, 0)}	$(4) \{(3,4), (4,2), (4$	(0,5)
24.	If $A + C = B$, then	tan A tan B tan C =		
	$(1) \tan A + \tan B + (2) + (3) + (3) + (4) + $		$(2) \tan A + \tan B -$	12
	(3) tan B – tan C –		$(4) \tan B + \tan C -$	- tan A
25.	$ \begin{aligned} &\text{If } \sin x + \sin^2 x = 1 \\ &\text{(1)} 0 \end{aligned} $, then $\cos^8 x + 2 \cos^6$ (2) 1	$x + \cos^4 x =$ (3) -1	(4) 2
			(3)	(.) -
26.	If $4 \sin^2 x = 1$, then	the values of x are:	*	
	$(1) n\pi \pm \frac{\pi}{3}$		$(2) n\pi \pm \frac{\pi}{4}$	
	$(3) 2n\pi \pm \frac{\pi}{6}$		$(4) n\pi \pm \frac{\pi}{6}$	

PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)

27.	If $n \in N$, then 3^{3n} – (1) 4	-26n - 1 is divisible (2) 3	by: (3) 9	(4) 15
28.	If $z = (K+3) + i \sqrt{1}$ (1) a straight line	$\sqrt{5-k^2}$, then the loc (2) a parabola	tus of z is: (3) an ellipse	(4) a circle
29.	If 1, w and w^2 at $(x-1)^3 - 8 = 0$ are		roots of unity, then	the roots of the equation
	(1) $2, 2w, 2w^2$		(2) $3, 2w, 2w^2$	
	(3) $3, 1 + 2w, 1 +$	$2w^2$	(4) $2, 1-2w, 1-$	$2w^2$
30.	The smallest posit	ive integer n for wh	ich $\left(\frac{1+i}{1-i}\right)^n = 1$, is:	
	(1) 4	(2) 3	(3) 2	(4) 1
31.	The unit vector pe	rpendicular to the v	ectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$	is/are:
	(1) $\pm \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{i})$	\hat{k})	(2) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$)
	(3) $\pm \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{i})$	$\hat{k})$	$(4) \ \frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$	
32.		$+3\hat{k}$ is rotated thrown $-2(\hat{j}+2\hat{k})$. The value		loubled in magnitude, then it
	(1) $\frac{1}{3}$	(2) -3	(3) $\frac{2}{3}$	$(4) -\frac{2}{3}$
33.		$\vec{3} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and the angle between its		the adjacent sides of a
12	(1) $\pi/6$	(2) $\pi/3$	(3) $\pi/2$	(4) $\pi/4$
34.	subjected to $x \ge 6$	min $Z = 6x + 10y$ $5, y \ge 2, 2x + y \ge 10;$ raints in this LPP ar		
	$(1) \ x \ge 0, y \ge 0$		$(2) 2x + y \ge 10$	
10	(3) $x \ge 6, 2x + y$	≥ 10	(4) None of thes	se
DC T	FF_2019/(Mathema	itics Hons.)(Five Y	r.)-(SET-X)/(C)	

35 . T	The angle	between	the lines	having	direction	ratios 4.	-3, 5	5 and 3.	, 4, 5 i	is:
---------------	-----------	---------	-----------	--------	-----------	-----------	-------	----------	----------	-----

- (1) $\pi/3$
- (2) $\pi/4$
- (3) $\pi/6$
- (4) $2\pi/3$

(1) $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$

(2) $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$

(3) $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = \frac{1}{3}$

(4) $\frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 3$

37. The image of the point
$$(1, 3, 4)$$
 in the plane $2x - y + z + 3 = 0$ is :

(1) (3, 5, 2)

(2) (3, 5, -2)

(3) (-3, 5, 2)

(4) (3, -5, 2)

38. The lines
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ are :

(1) intersecting

(2) parallel

(3) coincidental

(4) skew

39. The distance between the line
$$\vec{r} = 2\hat{i} - 2\hat{j} + 3\hat{k} + \lambda(\hat{i} - \hat{j} + 4\hat{k})$$
 and the plane $\vec{r} \cdot (\hat{i} + 5\hat{j} + \hat{k}) = 5$ is:

- (1) $\frac{10}{3\sqrt{3}}$ (2) $\frac{10}{\sqrt{3}}$ (3) $\frac{10}{3}$

- $(4) \frac{3}{3\sqrt{3}}$

40. The lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if $k = \frac{y-4}{2} = \frac{z-5}{1}$

41. If
$$x = a \cos^3 \theta$$
, $y = a \sin^3 \theta$, then $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} =$

- (1) $\sec^2\theta$
- (2) $tan^2\theta$
- (3) $|\sec \theta|$
- (4) $|\cot \theta|$

42. If
$$e^y + xy = e$$
, then the value of $\frac{d^2y}{dx^2}$ for $x = 0$, is:

- (1) e^2
- (2) $\frac{1}{e^2}$ (3) $\frac{1}{e}$

PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)

43.	If x^y . $y^x = 16$, then	$\frac{dy}{dx}$ at (2, 2) is:		
	(1) 0	(2) 1	(3) -1	(4) -4
44.	The approximate	value of square root of	of 25.2 is:	
	(1) 5.01	(2) 5.02	(3) 5.03	(4) 5.04
45.	The tangent at (1,	1) on the curve $y^2 = 3$	$x(2-x)^2$ meets it again	n at the point:
	(1) (-3, 7)	(2) (4, 4)	$(3) \left(\frac{3}{8}, \frac{9}{4}\right)$	$(4) \left(\frac{9}{4}, \frac{3}{8}\right)$

46. The distance between the origin and the normal to the curve $y = e^{2x} + x^2$ at x = 0 is :

 $f(x) = |x^2 - a^2|, (a > 0), \text{ is } :$ (4) $a\sqrt{2}$ (3) 4a(2) 3a(1) 2a

48. If the function $f(x) = \sqrt{3} \sin x - \cos x - 2ax + b$ decreases for all real values of x, then the value of a is given by:

(1)
$$a < 1$$
 (2) $a < \sqrt{2}$ (3) $a \ge \sqrt{2}$ (4) $a \ge 1$

50.
$$\int \frac{3+2\cos x}{(2+3\cos x)^2} dx =$$

$$(1) \frac{\sin x}{2+3\cos x} + c \quad (2) \frac{\cos x}{2+3\cos x} + c \quad (3) \frac{2\sin x}{2+3\cos x} + c \quad (4) \frac{2\cos x}{2+3\cos x} + c$$

 $\mathbf{51.} \quad \lim_{x \to 1} (1-x) \tan \left(\frac{\pi x}{2}\right) =$

(1)
$$\frac{\pi}{2}$$
 (2) $\frac{2}{\pi}$ (3) $\frac{\pi}{4}$ (4) 1

 $\lim_{n\to\infty} \frac{(1-2+3-4+5-6....-2n)}{\sqrt{n^2+1}+\sqrt{4n^2-1}} =$

(1)
$$-2$$
 (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (4) $-\frac{1}{3}$

53.
$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2} =$$
(1) π (2) $\pi/2$

 $(3) -\pi$

(4) 1

54. If
$$f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5}, & x \neq 1 \\ -\frac{1}{3}, & x = 1 \end{cases}$$

then the derivative of f(x) at x = 1, is:

(1) $\frac{9}{2}$

(2) $\frac{-9}{2}$ (3) $\frac{-2}{9}$

 $(4) \frac{2}{9}$

The mean of n terms is \bar{x} . If the first term is increased by 1, second by 2 and so on, then the new mean is:

 $(1) \ \overline{x} + \frac{n+1}{2} \qquad (2) \ \overline{x} + \frac{n}{2} \qquad (3) \ \overline{x} + n$

(4) $\bar{x} + \frac{n-1}{2}$

56. The standard deviation of 25 numbers is 40. If each of the numbers which is greater than the standard deviation, is increased by 5, then the new standard deviation will be:

(1) 45

(2) 40

(3) 65

(4) 40.75

57. The sum of 10 items is 12 and the sum of their squares is 18, then the standard deviation is:

(1) 3/5

(2) 4/5

 $(3) \ 3/10$

(4) 2/5

58. There are n persons sitting in a row. Two of them are selected at random. The probability that two selected persons are not sitting together, is:

(1) $\frac{2}{n-2}$ (2) $\frac{n}{n+2}$ (3) $\frac{2}{n}$

Seven digits from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are written in a random order. The probability that this seven digit number is divisible by 9, is:

(2) $\frac{2}{7}$

(3) $\frac{1}{9}$

60. The coefficients of a quadratic equation $ax^2 + bx + c = 0$ ($a \ne b \ne c$) are chosen from first three prime numbers, the probability that roots of the equation are real, is:

(1) 2/3

(2) 1/3

(3) 1/4

 $(4) \ 3/4$

 $\int x^x \left(1 + \log x\right) dx =$

(1) $x^{x} + c$

 $(2) x^x \log x + c \qquad (3) x \log x + c$

(4) none of these

PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)

62. $\int \sin \sqrt{x} dx =$

- (1) $(\cos\sqrt{x} \sin\sqrt{x}) + c$
- $(2) \ (\sqrt{x}\cos\sqrt{x} \sin\sqrt{x}) + c$
- (3) $-2(\sqrt{x}\cos\sqrt{x}-\sin\sqrt{x})+c$
- $(4) \ \ 2(\sqrt{x}\cos\sqrt{x} \sin\sqrt{x}) + c$

 $63. \quad \int \frac{1}{\sqrt{\sin^3 x \cos x}} dx =$

(1) $2(\tan x)^{-\frac{1}{2}} + c$

(2) $(\tan x)^{\frac{1}{2}} + c$

(3) $(\tan x)^{-\frac{1}{2}} + c$

(4) $2(\tan x)^{1/2} + c$

64. If $I_n = \int_0^1 x^n e^{-x} dx$ for $n \in \mathbb{N}$, then $I_n - n I_{n-1} =$

- (1) 1/e
- (2) -1/e
- (3) e
- (4) -2/e

65. If $\int_{\pi/2}^{\theta} \sin x \, dx = \sin 2\theta$, then the value of θ satisfying $0 < \theta < \pi$, is:

- (1) $\pi/6$
- (2) $\pi/4$
- (3) $\pi/2$
- (4) $5\pi/6$

66. $\int_0^{[x]} (x - [x]) dx =$

- (1) $\frac{1}{2}[x]$ (2) [x]
- (3) 2[x]
- (4) -2[x]

67. $\int_0^{\pi/4} \log(1 + \tan x) dx =$

- (1) $\frac{\pi}{4} \log 2$ (2) $\frac{\pi}{8} \log 2$ (3) $\frac{\pi}{2} \log 2$
- (4) $\pi \log 2$

The area bounded by the curve $y = x \sin x$ and x-axis between x = 0 and $x = 2\pi$, is:

(1) π sq. units

(2) $\frac{\pi}{2}$ sq. units

(3) 2π sq. units

(4) 4π sq. units

69. If the area bounded by the curves $y^2 = 4ax$ and y = mx is $a^2/3$ sq. units, then the value of m is:

- (1) 2
- (2) -2
- (3) 1/2
- (4) 3/2

70. Solution of $\frac{dy}{dx} = \cos(x+y)$ is:

 $(1) \sin(x+y) = x+c$

(2) $\tan\left(\frac{x+y}{2}\right) + x = c$

(3) $\cot\left(\frac{x+y}{2}\right) = x+c$

(4) $\tan\left(\frac{x+y}{2}\right) = x+c$

71. Solution of $ydx + (x - y^3) dy = 0$ is :

(1) $xy + \frac{y^2}{2} = c$

(2) $xy = \frac{y^2}{2} + c$

(3) $xy = \frac{y^2}{4} + c$

(4) $xy = \frac{x^2}{4} + c$

72. The differential equation $y \frac{dy}{dx} = x + a$ (a being constant) represents a set of:

- (1) circles having centre on the x-axis
- (2) circles having centre on the y-axis

(3) ellipses

(4) hyperbolas

73. From a bag containing 2 white, 3 red and 4 black balls, two balls are drawn one by one without replacement. The probability that at least ones ball is red, is:

- $(1) \frac{5}{12}$
- (2) $\frac{7}{12}$ (3) $\frac{5}{8}$ (4) $\frac{3}{7}$

74. A box contains 15 items in which 4 items are defective. The items are selected at random, one by one, and examined. The ones examined are not put back. The probability that 9th one examined is the last defective, is:

75. A person is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. The probability that it is actually a six, is:

- (1) $\frac{7}{36}$
- (2) $\frac{11}{36}$ (3) $\frac{3}{8}$
- (4) $\frac{5}{8}$

PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)

collegedunia

76.	Four numbers are multiplied together. The probability that the product will be divisible by 5 or 10, is:							
	(1) $\frac{123}{625}$	023	(3) $\frac{357}{625}$	$(4) \ \frac{369}{625}$				
77 .	The least number of least one head is at l	f times a fair coin m lest 0.8, is :	ust be tossed so th	at the probability of getting at				
	(1) 3	(2) 5	(3) 6	(4) 8				
78.	If $P(A \cup B) = \frac{3}{4}$ an	and $P(\overline{A}) = 2/3$, then	$P(\overline{A} \cap B) =$					
	(1) $\frac{7}{12}$	(2) $\frac{5}{12}$	$(3) \frac{1}{12}$	(4) $\frac{1}{6}$				
79.	If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $ \vec{a} $	$=3, \vec{b} =5, \vec{c} =7, \text{ th}$	nen the angle between	een \vec{a} and \vec{b} is:				
	(1) $\pi/3$		(2) $2\pi/3$					
	(3) $\pi/6$		(4) $5\pi/3$					
80.	Let \vec{a} and \vec{b} be two vector if $\alpha =$	o unit vectors and o	3	ween them, then $\vec{a} + \vec{b}$ is a unit				
	(1) $\pi/2$	(2) $\pi/3$	(3) $2\pi/3$					
81	. The value of K fo	r which one of the	roots of $x^2 - 3x +$	2K = 0 is double of one of the				
	roots of $x^2 - x + K$ (1) 2	f = 0, is: (2) -2	(3) -1	(4) 1				
82	. The interior angle	es of a regular polyg	gon measure 160°	each. The number of diagonals				
	of the polygon are (1) 105	(2) 135	(3) 145	(4) 147				
83	3. The number of w	ays in which 9 ider	ntical balls can be	placed in three identical boxes,				
	is: (1) 9	(2) 12	(3) 55	(4) 27				
8	4. In the expansion	of $\left(x^2 - \frac{1}{3x}\right)^9$, the t	erm independent o	of x is:				
	(1) 5th	(2) 6th	(3) 7th	(4) 4th				
PG	PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)							

85.	If the coefficients of rth	and $(r +$	1)th	terms in	n the	expansion	of (3	$+7x)^{29}$	are equal.
	then $r =$	*				•	•		6

- (1) 14
- (2) 15
- (3) 18
- (4) 21

86. Three numbers forms an increasing G.P. If the middle number is doubled, then the new numbers are in A. P. The common ratio of the G. P. is:

(1) $2 + \sqrt{3}$

(2) $3 + \sqrt{2}$

(3) $\sqrt{3} + 1$

(4) $3-\sqrt{2}$

87. If $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$ to $\infty = \frac{\pi^2}{6}$, then $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}$

- (1) $\frac{\pi^2}{3}$ (2) $\frac{\pi^2}{4}$ (3) $\frac{\pi^2}{8}$ (4) $\frac{\pi^2}{12}$

88. If a, b, c are in A.P. as well as G.P., then which of the following is true?

(1) a = b = c

(2) $a = b \neq c$

(3) $a \neq b = c$

(4) $a \neq b \neq c$

89. If the AM of the roots of a quadratic equation in x is A and their GM is G, then the quadratic equation is:

- $(1) x^2 Ax + G^2 = 0$
- (2) $x^2 Ax + G = 0$
- (3) $x^2 2Ax + G = 0$

(4) $x^2 - 2Ax + G^2 = 0$

90. A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3, then its y-intercept is:

- (1) 2/3
- (2) 4/3
- (3) 4/5
- $(4) \ 3/4$

91. If A an orthogonal matrix, then which of the following is true?

(1) |A| = 0

(2) $|A| = \pm 1$

(3) $|A| = \pm 2$

(4) $|A| = \pi/2$

92. If $A(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then $A(\alpha) A(\beta) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$

(1) $A(\alpha) + A(\beta)$

(2) $A(\alpha) - A(\beta)$

(3) $A(\alpha + \beta)$

(4) $A(\alpha - \beta)$

PG-EE-2019/(Mathematics Hons.)(Five Yr.)-(SET-X)/(C)

14

.17

If A and B are two matrices such that AB = B and BA = A, then $A^2 + B^2 =$

- (1) A + B
- (2) AB
- (3) 2AB

94. If K is a real cube root of -2, then the value of $\begin{vmatrix} 1 & 2K & 1 \\ K^2 & 1 & 3K^2 \\ 2 & 2K & 1 \end{vmatrix}$ is equal to:

- (1) -10
- (2) -12 (3) -13
- (4) -15

95. The equations Kx - y = 2, 2x - 3y = -K, 3x - 2y = -1 are consistent if K =(1) 2, -3 (2) -2, 3 (3) 1, -4 (4) -1, 4

96. If $f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix}$, then $f(2x) - f(x) = ax^2 - ax - a$ (1) ax(3a+2x) (2) ax(2a+3x) (3) a(2a+3x) (4) x(3a+2x)

97. Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, $x \neq \pi/4$ and $x \in [0, \pi/2] = a$, $x = \pi/4$

If f(x) is continuous in $[0, \pi/2]$, then a =

- (1) 1/2
- (2) -1/2
- (3) 1
- (4) 0

Let $f(x) = 1 + x (\sin x) [\cos x]$, $0 < x \le \pi/2$, where [.] denotes the greatest integer function. Then which of the following is true?

- (1) f(x) is continuous in $(0, \pi/2)$
- (2) f(x) is strictly increasing in $(0, \pi/2)$
- (3) f(x) is strictly decreasing in $(0, \pi/2)$ (4) f(x) has global maximum value 2

99. If $y = \tan^{-1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}$, $\pi/2 < x < \pi$, then $\frac{dy}{dx} = \frac{1 + \sin x}{1 - \sin x}$

- (1) -1
- (2) 1
- (3) 1/2
- (4) -1/2

100. If $x = e^{y + e^{y} + e^{y} + \dots + \infty}$, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

- (1) $\frac{1-x}{x}$ (2) $\frac{x}{1-x}$ (3) $\frac{1+x}{x}$ (4) $\frac{x}{1+x}$