ANSWER KEYS																			
1	(b)	7	(c)	13	(b)	19	(b)	25	(a)	31	(b)	37	(b)	43	(b)	49	(c)	55	(a)
2	(d)	8	(d)	14	(a)	20	(c)	26	(b)	32	(d)	38	(b)	44	(a)	50	(c)		
3	(b)	9	(c)	15	(a)	21	(a)	27	(d)	33	(c)	39	(d)	45	(a)	51	(a)		
4	(b)	10	(a)	16	(d)	22	(a)	28	(a)	34	(d)	40	(b)	46	(c)	52	(b)		
5	(a)	11	(d)	17	(b)	23	(a)	29	(c)	35	(d)	41	(c)	47	(a)	53	(c)		
6	(c)	12	(c)	18	(c)	24	(c)	30	(c)	36	(a)	42	(a)	48	(d)	54	(c)		

SOLUTIONS

1. (b) $\mathrm{W}_{\text {el. }}=\mathrm{q}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)$
or $6.4 \times 10^{-19}=-1.6 \times 10^{-19}\left(\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$
or $\quad \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=-4 \mathrm{~V}$
or $\quad \mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}=-4 \mathrm{~V} \quad\left(\because \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}\right)$
or $\quad V_{C}-V_{A}=4 \mathrm{~V}$
2. (d) For distances far away from centre of dipole
$\mathrm{E}_{\text {axis }}=\mathrm{E}_{\mathrm{a}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \mathrm{p}}{\mathrm{r}^{3}}$
$\mathrm{E}_{\text {equa }}=\mathrm{E}_{\mathrm{e}}=\frac{1}{4 \pi \varepsilon_{0}}-\frac{\mathrm{p}}{\mathrm{r}^{3}}$
$\frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{E}_{\mathrm{a}}\right)=\frac{1}{4 \pi \varepsilon_{0}} 2 \mathrm{p} \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r}^{-3}\right)=-6 \cdot \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{p}}{\mathrm{r}^{4}}$
$\frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{E}_{\mathrm{e}}\right)=\frac{1}{4 \pi \varepsilon_{0}} \mathrm{p} \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{r}^{-3}\right)=-3 \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{p}}{\mathrm{r}^{4}}$
From equations (i) and (ii) the magnitude of change in electric field w.r.t. distance is more in case of axis of dipole as compared to equatorial plane.
3. (b) Current density $\mathrm{J}=\mathrm{I} / \mathrm{A}$
$=50 \times 16^{-6} / 50 \times 10^{-6}=1 \mathrm{Am}^{-2}$
4. (b) Electric field is always zero inside a conductor.

If there is any excess of charge on a hollow conductor it always resides on the outer surface of conductor. Therefore inside a hollow conductor there is no charge and hence charge density is zero.
5. (a) Energy required to charge the capacitor is

$$
W=U=Q V
$$

$$
\Rightarrow \quad U=C V^{2}=\frac{\varepsilon_{0} A}{d} \cdot V^{2}=\frac{\varepsilon_{0} A d}{d^{2}} \cdot V^{2}=\varepsilon_{0} E^{2} \mathrm{Ad}
$$

$$
\left[\because E=\frac{V}{d}\right]
$$

6. (c)
7. (c) $\mathrm{R}=\frac{\rho \ell_{1}}{\mathrm{~A}_{1}}$, now $\ell_{2}=2 \ell_{1}$
$\mathrm{A}_{2}=\pi\left(\mathrm{r}_{2}\right)^{2}=\pi\left(2 \mathrm{r}_{1}\right)^{2}=4 \pi \mathrm{r}_{1}{ }^{2}=4 \mathrm{~A}_{1}$
$\therefore \quad \mathrm{R}_{2}=\frac{\rho\left(2 \ell_{1}\right)}{4 \mathrm{~A}_{1}}=\frac{\rho \ell}{2 \mathrm{~A}}=\frac{\mathrm{R}}{2}$
\therefore Resistance is halved, but specific resistance remains the same.
8. (d)
9. (c) Volume of 8 small drops $=$ Volume of big drop

$$
8 \times \frac{4}{3} \pi R^{3}=\frac{4}{3} \pi R^{3} \Rightarrow R=2 r
$$

As capacity is proportional to r, hence capacity becomes 2 times.
10. (a) $H=I^{2}$ Rt. Here $R_{1}=\rho \frac{1}{\pi r^{2}}$ and
$\mathrm{R}_{2}=\rho \frac{1}{\pi(2 \mathrm{r})^{2}}$ That is, $\mathrm{R}_{1}=4 \mathrm{R}_{2}$. Hence, $\frac{\mathrm{H}_{1}}{\mathrm{H}_{2}}=4$
11. (d) Given : Number of cells, $n=5$, emf of each cell $=E$

Internal resistance of each cell $=r$
In series, current through resistance R
$I=\frac{n E}{n r+R}=\frac{5 E}{5 r+R}$
In parallel, current through resistance R
$I^{\prime}=\frac{E}{\frac{r}{n}+R}=\frac{n E}{r+n R}=\frac{5 E}{r+5 R}$
According to question, $I=I^{\prime}$
$\therefore \frac{5 E}{5 r+5 R}=\frac{5 E}{r+5 R} \Rightarrow 5 r+R=r+5 R$
or $R=r \quad \therefore \frac{R}{r}=1$
12. (c) Kirchhoff's junction rule states that the algebraic sum of all currents into and out of any branch point is zero : $\Sigma \mathrm{I}=0$. By convention, the sign of current entering a junction is positive and current leaving a junction is negative.
$4 \mathrm{~A}+5 \mathrm{~A}-6 \mathrm{~A}+\mathrm{I}_{\mathrm{AB}}=0$, therefore $\mathrm{I}_{\mathrm{AB}}=-3 \mathrm{~A}$. The wire between points A and B carries a current of $3 A$ away from the junction.
13. (b) Magnetic field is given by $B=\frac{\mu_{0} i}{2 \pi r}$ i.e., $B \propto \frac{1}{r}$ which implies that field has cylindrical symmetry.
14. (a) $\mathrm{B}=\frac{\mu_{0} \mathrm{I}}{2 \mathrm{r}} \times \frac{\theta}{2 \pi}=\frac{\mu_{0} \mathrm{I} \theta}{4 \pi \mathrm{r}}$
15. (a) Potential gradient $=\frac{\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}}{\ell}=\frac{\mathrm{i} \times \rho}{\mathrm{A}}=\frac{0.1 \times 10^{-7}}{10^{-6}}$

$$
=10^{-2} \mathrm{~V} / \mathrm{m}
$$

16. (d)
17. (b) $i=\frac{C \theta}{N A B} \Rightarrow i \propto \theta$
18. (c) 19. (b)
19. (c) The field lines remain continuous, emerging from one face of the solenoid and entering into the other face.
20. (a)
21. (a) $\mathrm{e}=\frac{-\mathrm{d} \phi}{\mathrm{dt}}=\frac{-\mathrm{d}}{\mathrm{dt}}\left(6 \mathrm{t}^{2}-5 \mathrm{t}+1\right)=-12 \mathrm{t}+5$

$$
\mathrm{e}=-12(0.25)+5=2 \text { volt }
$$

$$
\mathrm{i}=\frac{\mathrm{e}}{\mathrm{R}}=\frac{2}{10}=0.2 \mathrm{~A}
$$

23. (a) Peak value, $I_{0}=\frac{e_{0}}{R}$
24. (c) 25. (a)
25. (b) Here, $q_{1}=1 \times 10^{-7} \mathrm{C}, q_{2}$ and $2 \times 10^{-7} \mathrm{C}$, $r=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$

$$
\begin{aligned}
F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}} & =\frac{9 \times 10^{9} \times 1 \times 10^{-7} \times 2 \times 10^{-7}}{\left(20 \times 10^{-2}\right)^{2}} \\
& =4.5 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

27. (d)
28. (a) Gauss's law is valid for any closed surface, no matter what its shape or size.
29. (c) $\mathrm{q}=1 \mu \mathrm{C}=1 \times 10^{-6} \mathrm{C}, \mathrm{r}=4 \mathrm{~cm}=4 \times 10^{-2} \mathrm{~m}$

Potential $V=\frac{\mathrm{kq}}{\mathrm{r}}=\frac{9 \times 10^{9} \times 10^{-6}}{4 \times 10^{-2}}=2.25 \times 10^{5} \mathrm{~V}$.
Induced electric field $E=-\frac{\mathrm{kq}}{\mathrm{r}^{2}}$

$$
=\frac{9 \times 10^{9} \times 1 \times 10^{-6}}{16 \times 10^{-4}}=-5.625 \times 10^{6} \mathrm{~V} / \mathrm{m}
$$

30. (c) The network is equivalent to therefore equivalent capacitance $=[2 C$ series $C] / /[C$ series $2 C]$

$=2\left(\frac{2 C \times C}{2 C+C}\right)=\frac{4 C}{3}$
31. (b) Current will be induced,
when e^{-}comes closer the induced current will be anticlockwise when e^{-}comes farther induced current will be clockwise

32. (d) Here, number of turns $\mathrm{n}=1000$; current through the solenoid $\mathrm{i}=4 \mathrm{~A}$; flux linked with each turn $=4 \times 10^{-3} \mathrm{~Wb}$
\therefore Total flux linked $=1000\left[4 \times 10^{-3}\right]=4 \mathrm{wb}$

$$
\phi_{\text {total }}=4 \Rightarrow \mathrm{Li}=4 \Rightarrow \mathrm{~L}=1 \mathrm{H}
$$

33. (c) B and C are at the same potential, therefore potential difference between A and B and that between A and C is same in both the cases. Hence work done is same in both the cases.
34. (d) Impedence of a capacitor is $X_{C}=1 / \omega C$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}=\frac{1}{2 \pi \times 50 \times 2 \times 10^{-6}}=\frac{5000}{\pi}$.
35. (d)
36. (a) We know that impedance of the LCR circuit
$(\mathrm{Z})=\sqrt{\left\{\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}+\mathrm{R}^{2}\right\}}=\sqrt{\left\{(50-50)^{2}+(10)^{2}\right\}}=10 \Omega$
37. (b) If q is the required charge, then
$\frac{q^{2}}{2 C}=\frac{1}{2} \frac{Q^{2}}{2 C}$
$\therefore q=\frac{Q}{\sqrt{2}}$.
38. (b)
39. (d) Magnetic field at the centre of solenoid,
$B_{\text {solenoid }}=\mu_{0} n l$
Given : No. of turns / length,
$n=\frac{N}{L}=\frac{100}{50 \times 10^{-2}}=200$ turns $/ \mathrm{m}$
Current, $I=2.5 \mathrm{~A}$
$\therefore B_{\text {solenoid }}=\mu_{0} n I=4 \pi \times 10^{-7} \times 200 \times 2.5$
$=6.28 \times 10^{-4} \mathrm{~T}$
40. (b)
41. (c) $\phi=\mathrm{LI} \Rightarrow \mathrm{L}=\frac{\phi}{\mathrm{I}}=\frac{\mathrm{y}}{\mathrm{x}}$ henry
42. (a) $\mathrm{N}_{\mathrm{P}}=400, \mathrm{~N}_{\mathrm{S}}=2000$ and $\mathrm{V}_{\mathrm{S}}=1000 \mathrm{~V}$.
$\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{V}_{\mathrm{S}}}=\frac{\mathrm{N}_{\mathrm{P}}}{\mathrm{N}_{\mathrm{S}}}$ of,
$\mathrm{V}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathrm{S}} \times \mathrm{N}_{\mathrm{P}}}{\mathrm{N}_{\mathrm{S}}}=\frac{1000 \times 400}{2000}=200 \mathrm{~V}$.
43. (b) Magnetic moment, $\mathrm{M}=\mathrm{m} \ell$ $\frac{M}{\ell}=m$, where m is the polestrength.

Therefore distance between poles $=\sqrt{(\ell / 2)^{2}+(\ell / 2)^{2}}$
$=\frac{\ell}{\sqrt{2}} \quad$ So, $\mathrm{M}^{\prime}=\frac{\mathrm{m} \ell}{\sqrt{2}}=\frac{\mathrm{M}}{\sqrt{2}}$
44. (a) Induced emf, $e=-\frac{d \phi}{d t}$
45. (a) The restoring torque brings it back to its stable equillibrium.
46. (c)
47. (a) $\frac{\mathrm{dq}}{\mathrm{dt}}=-\frac{1}{\mathrm{R}} \frac{\mathrm{d} \phi}{\mathrm{dt}} \Rightarrow \mathrm{dq}=-\frac{\mathrm{d} \phi}{\mathrm{R}} \Rightarrow \mathrm{q}=\frac{\left(\phi_{1}-\phi_{2}\right)}{\mathrm{R}}$ which is indipendent of time.
48. (d) 49. (c)
50. (c) $r=\frac{\sqrt{2 m K}}{q B}$ i.e. $r \propto \frac{\sqrt{m}}{q}$

Here kinetic energy K and B are same.

$$
\therefore \quad \frac{r_{p}}{r_{\alpha}}=\frac{\sqrt{m_{p}}}{\sqrt{m_{a}}} \cdot \frac{q_{\alpha}}{q_{p}}=\frac{\sqrt{m_{p}}}{\sqrt{4 m_{p}}} \cdot \frac{2 q_{p}}{q_{p}}=1
$$

51. (a) The galvanometer cannot as such be used as an ammeter to measure the value of the current in a given circuit. This is for two reasons (i) Galvanometer is a very
sensitive device, it gives a full-scale deflection for a current of the order of $\mu \mathrm{A}$. (ii) For measuring currents, the galvanometer has to be connected in series and as it has a large resistance, this will change the value of the current in the circuit.
52. (b) In the given case cell is in open circuit $(i=0)$ so voltage across the cell is equal to its e.m.f.
53. (c) $\mathrm{r}=\mathrm{E} / \mathrm{I}=1.5 / 3=0.5 \mathrm{ohm}$.
54. (c) $\frac{100}{\mathrm{R}+\mathrm{r}}=\frac{90}{\mathrm{R}} \Rightarrow \frac{\mathrm{R}+\mathrm{r}}{\mathrm{R}}=\frac{10}{9}$
$\Rightarrow \quad 1+\frac{0.5}{\mathrm{R}}=\frac{10}{9} \Rightarrow \frac{0.5}{\mathrm{R}}=\frac{1}{9} \Rightarrow \mathrm{R}=4.5 \Omega$
55. (a)

$$
E_{\mathrm{net}}=\frac{E_{1} r_{2}-E_{2} r_{1}}{r_{1}+r_{2}} \text { or } \quad E_{\mathrm{net}}=\frac{2-2}{2+1}=0
$$

