

Set No. 1	18P/210/23	103.
Total No. of Printed Pages : 23		estion Booklet No
Roll No. (To be filled up	by the candidate by blue/bl	ack ball-point pen)
NOTENO.		
Roll No. (Write the digits in words	(2018	<u></u>
Serial No. of OMR Answer Sheet	(acio	/
Centre Code No.		
Day and Date		(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(I se only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet being it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card.
- 3. A separate GMR Answer Sheet is given It should not be folded or mutilated. A second OMR Answer Sheet shall not be provided. Only the OME Answer Sheet will be evaluated.
- 4. Write all extries by blue/black pen in the space provided above.
- 5. On the frost page of the OMR Antiver Sheet, write by pen your Roll Number in the space provided at the top, and by darkining the circles at the ottom. Also, write the Question Booklet Number, Centre Code Number and the Set Number wherever applicable in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR Answer sweet and Roll No. and OMR Answer sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct ention on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the OMR Answer Sheet.
- For each question, darken only one circle on the OMP Answer Sheet. If you darken more than one
 circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11 For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- On completion of the Test, the candidate must handover the OMR Answer Sheet to the Invigilator on the examination room/hall. However candidates are allowed to take away Test Booklet and copy of DMR Answer Sheet with them
- and dates are not permitted to leave the Examination Hall until the end of the Test.
- is a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

ROUGH WORK एक कार्य

No. of Questions: 120

Time: 2 H	lours]	[Full Marks: 360
Note : (1	1) Attempt as many questions as you can	
	marks. One mark will be deducte	ed for each incorrect answer.

Zero mark will be awarded for each unattempted question.

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

1. Milk sugar is called

- (1) Glucose (2) Lactose
- (3) Sucrose
- (4) Galactose

2. The z-DNA helix

- (1) Is the primary form in living organisms
- (2) Is favoured by an alternating G-C sequence
- (3) Is inhibited by the methylation of the bases
- (4) Is a permanent conformation of DNA
- 3. Which of the following is a characteristic of mitochondria?
 - The inner membrane forms cristae and contains small spheres attached by stalks on the inner surface
 - (2) Mitochondria have no role in apoptosis
 - (3) Mitochondrial DNA is similar to nuclear DNA in size and shape
 - (4) Only the outer membrane has transmembrane systems for translocation of metabolites

(1) (Turn Over)

4.	Sorbitol is a	
	(1) Reducing sugar	(2) Sugar alcoho!
	(3) Sugar ester	(4) Glycoside
5.	Chromosomes having equal or almost	equal arms are known as
	(1) Metacentric	(2) Acrocentric
	(3) Concentric	(4) Telocentric
t.	The pentose sugar present in DNA is	
	(1) Ribose	(2) Ribulose
	(3) Sucrose	(4) Deoxyribose
7.	Which of the following cell organelle enzymes?	e is considered to be rich in hydrolytic
	(1) Endoplasmic reticulum	(2) Lysosomes
	(3) Golgi bodies	(4) Mitochondria
8.	Ribosomes are the centers for	
	(1) Respiration	(2) Photosynthesis
	(3) Protein synthesis	(4) Lipid synthesis
9,	HDL is synthesized and secreted from	
	(1) Liver	(2) Muscle
	(3) Kidney	(4) Pancreas
	(2)	(Continued)

0.	Xanthine oxidase is inhibited by	
	(1) Aspirin	(2) Probenecid
	(3) Allopurinol	(4) Colchicine
1.	Osmosis is opposite to	
	(1) Diffusion	(2) Effusion
	(3) Affusion	(4) Coagulation
12.	A lipid bilayer is permeable to	
	(1) Urea	(2) Potassium
	(3) Glucose	(4) Fructose
13.	rRNA in mammalian cells is produ	iced mainly in the
	(1) Nucleus	(2) Nucleolus
	(3) Ribosome	(4) Endoplasmic reticulum
14.	The constituent unit of inulin is	
	(1) Glucose	(2) Fructose
	(3) Mannose	(4) Galactose
15.	Osazones are not formed with	
	(1) Glucose	(2) Fructose
	(3) Sucrose	(4) Lactose

16.	The ac	tive site of an enzyme		
	(1) B	sinds competitive inhibitors		
	(2) Is	s directly involved in binding of	allo	steric inhibitors
	(3) I	s formed after addition of a subs	strate	
		tesides in a few adjacent amino	aci	d residues in the primary sequence
17.	Lactate	e dehydrogenase is		
	(1) Li	igase	(2)	Lyase
	(3) Is	omerase	(4)	Oxidoreductase
18.	Carbon	nic anhydrase is an example of		
	(1) Li	poprotein	(2)	Phosphoprotein
	(3)° Cl	hromoprotein	(4)	Metalloprotein
19.	The mi	lk protein casein is		
	(1) No	cleoprotein	(2)	Phosphoprotein
	(3) Gl	ycoprotein	(4)	Chromoprotein
20.	Renin o	converts casein to paracasein in	pres	ence of
	(1) Ca	++	(2)	Mg [↔]
	(3) Na	4.	(4)	K ⁺

21.	Pep	sinogen is con	verted	to pepsin by			
	(1)	HCI			(2)	Bile salts	
	(3)	Ca ⁺⁺			(4)	Enterokinase	
22.	The	immunoglobu	lin ha	ving the longes	t hal	f-life is	
	(1)	IgA	(2)	IgM	(3)	IgG	(4) IgE
23.	Con	nplement fixat	ion re	gion can be act	ivate	d by binding of	antigen to
	(1)	IgA	(2)	IgD	(3)	lgM	(4) IgE
24.	Hist	tidine is conve	rted in	nto histamine b	у		
	(1)	Carboxylation	ı		(2)	Decarboxylati	on
	(3)	Methylation			(4)	Hydroxylation	ı
25.	NH	, is detoxified	in bra	in as			
	(1)	Urea			(2)	Uric acid	
	(3)	Creatinine			(4)	Glutamine	
26.	Whi	ich of the follo	wing	protein is rich	in cy	stine?	
	(1)	Keratin			(2)	Collagen	
	(3)	Elastin			(4)	Fibrin	

Rar	ncidity is due to the presence o	f			
(1)	Cholesterol		(2)	Vitamin E	
(3)	Lipid peroxides		(4)	Phenolic compounds	
Die	tary fibres are rich in				
(1)	Cellulose		(2)	Starch	
(3)	Glycogen		(4)	Proteoglycans	
Lip	id stores are mainly present in			V	
(1)	Liver		(2)	Brain	
(3)	Muscles		(4)	Adipose tissues	
α-0	xidation of fatty acids occur m	ainly	in		
(1)	Liver		(2)	Brain	
(3)	Muscles		(4)	Adipose tissues	
Нур	ocholesterolemia can occur in	1			
(1)	Hyperthyroidism		(2)	Diabetes mellitus	
(3)	Nephrotic syndrome	٠	(4)	Obstructive Jaundice	
Hip	puric acid is formed from				
(1)	Benzoic acid and alanine				
(2)	Benzoic acid and glycine				
(3)	Glucuronic acid and alanine				
(4)	Glucuronic acid and glycine				
		(6)			(Continued)
	(1) (3) Die (1) (3) Lip (1) (3) α-ο (1) (3) Hyp (1) (3) Hip (1) (2) (3)	 Cholesterol Lipid peroxides Dietary fibres are rich in Cellulose Glycogen Lipid stores are mainly present in Liver Muscles α-oxidation of fatty acids occur m Liver Muscles Hypocholesterolemia can occur in Hyperthyroidism Nephrotic syndrome Hippuric acid is formed from Benzoic acid and alanine Benzoic acid and glycine Glucuronic acid and glycine Glucuronic acid and glycine 	(3) Lipid peroxides Dietary fibres are rich in (1) Cellulose (3) Glycogen Lipid stores are mainly present in (1) Liver (3) Muscles α-oxidation of fatty acids occur mainly (1) Liver (3) Muscles Hypocholesterolemia can occur in (1) Hyperthyroidism (3) Nephrotic syndrome Hippuric acid is formed from (1) Benzoic acid and alanine (2) Benzoic acid and glycine (3) Glucuronic acid and alanine	 (1) Cholesterol (2) (3) Lipid peroxides (4) Dietary fibres are rich in (1) Cellulose (2) (3) Glycogen (4) Lipid stores are mainly present in (1) Liver (2) (3) Muscles (4) α-oxidation of fatty acids occur mainly in (1) Liver (2) (3) Muscles (4) Hypocholesterolemia can occur in (1) Hyperthyroidism (2) (3) Nephrotic syndrome (4) Hippuric acid is formed from (1) Benzoic acid and alanine (2) Benzoic acid and glycine (3) Glucuronic acid and glycine (4) Glucuronic acid and glycine 	(1) Cholesterol (2) Vitamin E (3) Lipid peroxides (4) Phenolic compounds Dietary fibres are rich in (1) Cellulose (2) Starch (3) Glycogen (4) Proteoglycans Lipid stores are mainly present in (1) Liver (2) Brain (3) Muscles (4) Adipose tissues α-oxidation of fatty acids occur mainly in (1) Liver (2) Brain (3) Muscles (4) Adipose tissues Hypocholesterolemia can occur in (1) Hyperthyroidism (2) Diabetes mellitus (3) Nephrotic syndrome (4) Obstructive Jaundice Hippuric acid is formed from (1) Benzoic acid and alanine (2) Benzoic acid and glycine (3) Glucuronic acid and glycine (4) Glucuronic acid and glycine

33.	Ketone	bodies are synthesized in		
	(1) Li	ver	(2)	Kidney
	(3) H	eart	(4)	Intestine
34.	Which	of the following is not an essent	ial fa	atty acid?
	(1) Li	inoleic acid	(2)	Linolenic acid
	(3) A	rachidonic acid	(4)	Oleic acid
35.	The ke	y regulatory enzyme in choleste	rol b	iosynthesis is
	(1) H	MG CoA synthetase	(2)	HMG CoA reductase
	(3) S	qualene synthetase	(4)	Mevalonate kinase
36.	The m	ost active metabolite of vitamin	D is	
	(1) 2	5-hydroxycholecalciferol		
	(2) 1	,25-dihydroxycholecalciferol		
	(3) 2	4,25-dihydroxycholecalciferol		
	(4)	,25,26-trihydroxycholecalcifer	ol	
37.	Vitam	in K is found in		
	(1)	Green leafy vegetables	(2)	Meat
	(3) F	ish	(4)	Milk

(Turn Over)

38.	Tocopherols prevent the oxidati	ion of
	(1) Vitamin A	(2) Vitamin C
	(3) Vitamin D	(4) Vitamin K
39.	Retinoic acid is involved in the	synthesis of
	(1) Rhodopsin	(2) Iodopsin
	(3) Porphyrinopsin	(4) Glycoproteins
40.	Folate deficiency causes	
	(1) Microcytic anemia	(2) Hemolytic anemia
	(3) Iron deficiency anemia	(4) Megaloblastic anemia
41.	Which of the following ion activ	ates salivary amylase activity?
	(1) Sodium	(2) Potassium
	(3) Chloride	(4) Bicarbonate
12.	Mitochondrial membrane is free	ely permeable to
	(1) Pyruvate	(2) Malate
	(3) Oxaloacetate	(4) Fumarate
3.	The source of all the carbon ator	ns of cholesterol is
	(1) Acetyl CoA	(2) Bicarbonate
	(3) Succinyl CoA	(4) Propionyl CoA

4.	The enzyme hexokinase is a	
	(1) Hydrolase	(2) Oxidoreductase
	(3) Transferase	(4) Ligase
45.	Lactate dehydrogenase is a	
	(1) Monomer	(2) Dimer
	(3) Tetramer	(4) Hexamer
46.	An allosteric inhibitor of pyruva	ate dehydrogenase is
	(1) Acetyl CoA	(2) AIP
	(3) NADH	(4) Pyruvate
47.	Which of the following carbol strict vegetarians?	ydrates would be most abundant in the diet of
	(1) Amylose	(2) Lactose
	(3) Cellulose	(4) Maltose
48	. Which of the following antibo	dy can cross the placenta?
	(1) IgA	(2) IgE
	(3) Ig G	(4) Ig M
49	. The immunoglobulins are class	ssified on the basis of
	(1) Light chains	(2) Heavy chains
	(3) Carbohydrate content	(4) Electrophoretic mobility
		(9) (Turn Over)

50.	The	trace element catalyzing hemoglo	bin s	ynthesis is
	(1)	Manganese	(2)	Magnesium
	(3)	Copper	(4)	Selenium
51.	An	onspecific intracellular antioxidant	is	
	(1)	Chromium	(2)	Magnesium
	(3)	Nickel	(4)	Selenium
52.	Dur	ing an overnight fast, the major so	urce	of blood glucose is
	(1)	Gluconeogenesis		
	(2)	Hepatic glycogenolysis		
	(3)	Muscle glycogenolysis		
	(4)	Dietary glucose from the intestin	e	
53.	Pant	othenic acid is a constituent of the	coen	zyme involved in
	(1)	Acetylation	(2)	Decarboxylation
	(3)	Oxidation	(4)	Reduction
4.	An a	mino acid required for porphyrin s	ynth	esis is
	(1)	Proline	(2)	Glycine
	(3)	Serine	(4)	Histidine

55.	Iron	is transported	in blo	od in the f	orm of	rm of			
	(1)	Ferritin			(2)	Haemo	siderin		
	(3)	Transferrin			(4)	Haemo	globin		
56.	Spe	cific Dynamic	Action	n (SDA) of	protein	is about			
	(1)	5%	(2)	13%	(3)	20%	(4) 309	%	
57.	The	principal catio	on of e	xtracellula	r fluid is	3			
	(1)	Na ⁺	(2)	K*	(3)	H*	(4) Ca	++	
58. A hormone used for the detection of pregnancy is									
	(1)	Estrogen			(2)	Proges	sterone		
	(3)	Oxytocin			(4)	Choric	onic gonadotrop	in	
59.	Sor	matotropin is s	ecrete	d by					
	(1)	Hypothalam	us		(2)	Anteri	or pituitary		
	(3)	Posterior pit	tuitary		(4)) Thyroi	id gland		
60.	Ins	ulin stimulates	S			91			
	(1)	Hepatic gly	cogeno	olysis	(2) Hepat	ic glycogenesis	;	
	(3)	Lipolysis			(4) Gluco	neogenesis		
					(11)			(Turn Over)	

61.	Αh	ormone which cannot cross the blo	od bi	rain barrier is
	(1)	Epinephrine	(2)	Aldosterone
	(3)	ACTH	(4)	TSH
62.		ich of the following compound ser I cycle and the urea cycle?	ves a	as a primary link between the citric
	(1)	Malate	(2)	Succinate
	(3)	Fumarate	(4)	Citrate
63.	Wh	ich of the following is a coenzyme	?	
	(1)	Glucose-6-phosphate	(2)	Calcium ion
	(3)	Lipoic acid	(4)	UDP-glucose
64.	The	major source of extracellular chol	ester	ol for human tissues is
	(1)	Low density lipoproteins		
	(2)	Very low density lipoproteins		
	(3)	High density lipoproteins		
	(4)	Albumin		
65.	Puri	ne nucleotide biosynthesis can be i	nhib	ited by
	(1)	Adenosine monophosphate		
	(2)	Uridine monophosphate		
	(3)	Adenosine triphosphate		
	(4)	Guanosine triphosphate		

66.	The direction of a chemical reaction is best predicted by				
	(1) Enthalpy change				
	(2) Entrophy change				
	(3) Free energy change				
	(4) Energy of activation change				
67.	The cell theory is not applicable to				
	(1) Bacteria	(2) Algae			
	(3) Virus	(4) Fungi			
68.	Extranuclear DNA is found in				
	(1) Nucleus	(2) Ribosome			
	(3) Chloroplast	(4) Endoplasmic reticulum			
69.	Prokaryotic cells does not possess	3			
	(1) Cell wall	(2) Cytoplasm			
	(3) Nuclear membrane	(4) Plasma membrane			
70.	Plasma membrane is composed of				
	(1) Protein	(2) Lipids			
	(3) Cellulose	(4) Protein and lipids			

collegedunia India's Largest Student Review Platform

	•	
1.	Ribosomes help in	
	(1) Protein synthesis	(2) Photosynthesis
	(3) Lipid synthesis	(4) Respiration
72.	All of the following classes of lip except	ids are components of biological membranes
	(1) Cholesterol	(2) Phospholipids
	(3) Glycolipids	(4) Triacylglycerols
73.	The main function of centrosome	e is
	(1) Secretion	
	(2) Osmoregulation	
	(3) Protein synthesis	
	(4) Formation of spindle fibre	
74.	Fungus without mycelium is	
	(1) Puccinia	(2) Rhizopus
	(3) Saccharomyces	(4) Mucor
75.	Double fertilization is found in	
	(1) Bryophytes	(2) Angiosperms
	(3) Gymnosperms	(4) Pteridophytes

(Continued)

76.	Xaı	nthophyll is a pigment containing		
	(1)	Yellow color	(2)	Green color
	(3)	Red color	(4)	Blue color
77.	Per	oxisomes and glyoxisomes are		
	(1)	Energy transducers	(2)	Membrane-less organelles
	(3)	Microbodies	(4)	Basal bodies
78.	Dic	tyosome is also known as		
	(1)	Golgi apparatus	(2)	Ribosome
	(3)	Lysosome	(4)	Peroxisome
79.	The	vitamin which is essential for bloo	d clo	otting is
	(1)	Vitamin A	(2)	Vitamin B
	(3)	Vitamin C	(4)	Vitamin K
80.	Kup	offer cells are present in		
	(1)	Liver	(2)	Small intestine
	(3)	Pancreas	(4)	Thyroid gland
81.	Retr	roviruses have		
	(1)	Only RNA as genetic material		
	(2)	Only DNA as genetic material		
	(3)	Both DNA and RNA as genetic ma	teria	ıl
	(4)	Genes on nucleoprotein complexe	es as	genetic material
		(15)		(Turn Over)

32.	A prominent prebiotic substan	nce is	
	(1) Starch	(2) Cellulose	
	(3) Pectin	(4) Fructooligosaccharide	
83.	Which one of the following is	a cobalt containing vitamin?	
	(1) Vitamin B,	(2) Vitamin B ₃	
	(3) Vitamin B ₆	(4) Vitamin B ₁₂	
84.	E.coli bacteria are beneficial	to human because they	
	(1) Convert pepsinogen to p		
	(2) Absorb water from the	large intestine	
	(3) Produce vitamins and a	mino acids	
	(4) Synthesize urea from th	e breakdown of amino acids	
85.	The specificity of an antibod	y against an antigen is determined by	
	(1) The amino acid loops in	n its variable domain	
	(2) The amino acid loops in	n its constant domain	
	(3) The concentration of ar	ntibodies and antigens	
	(4) The Y-shaped structure	of immunoglobulins	
86.	α-amanitin inhibits		
	(1) RNA polymerase I	(2) RNA polymerase II	
	(3) DNA polymerase I	(4) DNA polymerase II	
		(16)	(Continuec

7.	Hydroxylation of proline and lysine in	collagen molecule requires
	(1) Vitamin D	(2) Vitamin K
	(3) Vitamin C	(4) Vitamin E
88.	Sickle cell anemia occurs due to	
	(1) Silent mutation	(2) Missense mutation
	(3) Nonsense mutation	(4) Frameshift mutation
89.	Enzyme required to release the tension	imposed by uncoiling of DNA strand is
	(1) DNA helicase	(2) DNA ligase
	(3) DNA gyrase	(4) Endonuclease
90.	If the DNA sequence is ATG, the se would be	equence of bases in anticodon t-RNA
	(1) CAU (2) AUG	(3) TAC (4) UAC
91.	The non-reducing sugar is	
	(1) Glucose	(2) Sucrose
	(3) Lactose	(4) Maltose
92.	All of the following polysaccharides of	contain glucose, except
	(1) Glycogen	(2) Starch
	(3) Inulin	(4) Cellulose

(17)

(Turn Over)

93.	All of the following are amphipathic	molecule except
	(1) Cholesterol	(2) Glycolipids
	(3) Phospholipids	(4) Triacylglycerols
94.	Which one of the following molecule	act as local hormone?
	(1) Essential fatty acids	(2) Prostaglandins
	(3) Cholesterol	(4) Phospholipids
95.	Which region of mRNA contains Shir	e-Dalgarno sequence?
	(1) 5' untranslated region	(2) 3' untranslated region
	(3) Protein coding region	(4) Promotor region
96.	$\alpha\text{-}D$ glucose and $\beta\text{-}D$ glucose are	
	(1) Epimers	(2) Anomers
	(3) Optical isomers	(4) Keto-aldose isomers
97.	Photosynthesis is a	
	(1) Reductive, endergonic and catab	olic process
	(2) Reductive exergonic and anaboli	c process
	(3) Reductive, endergonic and anabo	olic process
	(4) Reductive, exergonic and catabo	lic process

98.	Whic	h one of the following proteins	are associated with DNA struct	ure?
	(1)	Albumins	(2) Globulins	
	(3)	Collagen	(4) Histones	
99.	Ther	natural reservoir of Ebola virus i	s	
	(1)	Fruit bat	(2) Dog	
	(3)	Pig	(4) Sheep	
100	. The	Southern blot technique is used	for	
	(1)	The detection of RNA fragmentantibodies	nts on membranes by specific r	adioactive
	(2)	The detection of DNA fragme	nts on membranes by a radioa	ctive DNA
	(3)	The detection of proteins on m	embranes using a radioactive D	NA probe
	(4)	The detection of DNA fragme antibodies	ents on membranes by specific	radioactive
10	1. Dig	estive enzymes are		
	(1)	Transferases	(2) Hydrolases	
	(3)	Lyases	(4) Ligases	
10	2. Cho	olecalciferol is synthesized in th	e skin by photolysis from	
	(1)	Ergosterol	(2) Lanosterol	
	(3)	Cholesterol	(4) 7-dehydrocholesterol	
		(19)	(Turn Over)

103.	03. Biotin takes part in							
	(1)	Transaminatio	on reac	ctions	(2)	Decarboxylati	ion reactions	
	(3)	Carboxylation	n react	ions	(4)	Deamination	reactions	
104.	The	main function	of sup	eroxide dism	nutase	is to		
	(1)	Catalyze the	conve	rsion of O ₂ to	H ₂ O ₂	and O ₂		
	(2)	Create supero	oxides	by oxidizing	heme			
	(3)	Convert H ₂ O	to wa	ter and O2				
	(4)	Remove H ₂ O	by ox	cidizing gluta	thione	and producing	water	
105.	In ti	ne biosynthesis	of c-I	ONA, the joir	ning e	nzyme ligase re	equires	
	(1)	AIP	(2)	GTP	(3)	CTP	(4) UTP	
106.	Нер	oarin is a						
	(1)	Lipopolysacc	haride		(2)	Glycated lipop	polysaccharide	
	(3)	Sulphated pol	ysaccl	naride	(4)	Sulphated lipo	polysaccharide	
107.	Fish	can survive in	side a	frozen lake b	ecaus	e		
	(1)	Fish hibernat	e in ic	e				
	(2)	Fish are warn	n bloo	ded animals				
	(3)	lce is a good	condu	ictor of heat				
	(4)	Water near th	ne bott	om does not	freez	e		
				(20	0)		(Continue	d)
					100			

108.	Aspa	raginase is used as an		
	(1)	Anti-tumor agent	(2)	Anti-tuberculosis agent
	(3)	Anti-malarial agent	(4)	Anti-diabetic agent
109.	Whic	ch of the following enzyme does no	ot re	quire a primer ?
	(1)	RNA dependent DNA polymerase		
	(2)	DNA dependent DNA polymerase		
	(3)	DNA dependent RNA polymerase		
	(4)	Taq DNA polymerase		
110.	Gly	cosylation of proteins occurs in the	;	
	(1)	Mitochondria	(2)	Endoplasmic reticulum
	(3)	Lysosome	(4)	Peroxisome
111.	Whi	ich of the following amino acids is	code	d by maximum number of codons?
	(1)	Alanine	(2)	Leucine
	(3)	Tryptophan	(4)	Valine
112	. Telo	omeric DNA does not contain		
	(1)	AT rich sequences	(2)	G-rich sequences
	(3)	T and D loops	(4)	Quadruplex

113.	3. The double-helical Watson-Crick structure of DNA was first obtained from				
	(1)	X-ray diffraction from single crystals			
	(2)	Diffraction from single crystals a	and molecular modeling		
	(3)	Fiber diffraction only			
	(4)	Fiber diffraction and molecular n	nodeling		
114.	Gen	nes related through descent from a	common ancestral gene are called		
	(1)	Homologous	(2) Heterologous		
	(3)	Orthologous	(4) Paralogous		
115.		npetitive inhibition of an enzyme lee by simply	by a competitive inhibitor can be over-		
	(1)	Increasing the concentration of su	ubstrate		
	(2)	Decreasing the concentration of	substrate		
	(3)	Increasing the temperature of rea	ction		
	(4)	Decreasing the temperature of re-	action		
16.	Whi	ch one of the following receptors	perceives blue light in plants?		
	(1)	Phytochrome	(2) Cryptochrome		
	(3)	Phototropin	(4) Photopsin		

17.	War	burg effect is characterized by		
	(1)	Increased glycolysis	(2)	Decreased glycolysis
	(3)	Absence of glycolysis	(4)	Malfunctional glycolysis
118.	Deo	xy UMP is converted to TMP by		
	(1)	Methylation	(2)	Carboxylation
	(3)	Decarboxylation	(4)	Deamination
119.	Ops	onization process is involved with		
	(1)	T cells	(2)	B cells
	(3)	Neutrophils	(4)	Macrophages
120.	In a	gel filtration chromatography		
	(1)	The small protein will be eluted i	first	
	(2)	The large protein will be eluted f	irst	
	(3)	Both large and small will elute at	the	same time
	(4)	The small protein with high charg	ge w	ill be eluted first

ROUGH WORK एक कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केतल नीली/काली वाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ट मौजूद हैं और लोई प्रश्न खूटा नहीं है । पुस्तिका दोषगुक्त पाये जाने पर इसकी सूलना लक्काल क्षत्र-निरीक्षक को देखा समार्ग प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें ।
- 2. परीक्षा भवन में प्रचेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें म
- ओ.एम.आर. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोई और न ही विकृत करे। दूसरा ओ.एम.आर. उत्तर-पत्र नहीं दिया जायेगा। केवल ओ.एम.आर. उत्तर-पत्र का ही मृत्यांकन किया जायेगा।
- 4. सभी प्रविष्टियाँ प्रथम आवरण-पृष्ठ पर नीली/काली पेन से निर्धारित स्थान पर ग्लिएँ ।
- ओ.एम.आर. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिएों तथा नीचे दिये वृत्तों को गाड़ा कर हैं। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक, केन्द्र कोड़ नम्बर तथा सेट का नम्बर उच्चित स्थानों पर लिखें।
- 6. औ.एम.आर. उत्तर-पत्र पर अनुक्रमांक संख्या, प्रश्न-पुश्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुश्तिका पर अनुक्रमांक संख्या और औ.एम.आर. उत्तर-पत्र संख्या की प्रतिष्टियों में उपरिलेखन की अनुमति नहीं है।
- े. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक ारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रश्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको औ, एम, आर. उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ट पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें । एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा ।
- 10. ध्यान में कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप फिली प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खासी छोड़ में एसे प्रश्नों पर शून्य अंक दिये आयें।
- १३. एक कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अन्तर वाला गृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा की समाप्ति के बाद अभ्यर्थी अपना ओ.एम.आ६. उत्तर-पत्र परीक्षा कक्ष/हाल में कक्ष निरीक्षक को सींप रे अभ्यर्थी अपने साथ प्रश्न पुस्तिका तथा ओ.एम.आ६. उत्तर-पत्र की प्रति ले जा सकते हैं।
- अध्यर्थी को परीक्षा समाप्त होने से पहले परीक्षा भवन में बाहर जाने की अनुमित नहीं होगी !
- 14. यदि कोई अभ्यर्थी परिशा में अमित्र महाले का मानेन --- A -- - -

