

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- If [H⁺] in concentration is increased by a factor of 1. 1000. Then pH?
 - (1) Decreased by 3
 - (2) Increased by 3
 - (3) There is no change in pH
 - (4) Decreased by 1

Answer (1)

- Sol. If [H⁺] is increased by 1000 times then pH will be decreased by 3.
- 2. Arrange the following elements in increasing order of metallic character
 - Si, K, Mg and Be
 - (1) Si < Mg < Be < K (2) Be < Mg < Si < K
 - (3) Si < Be < Mg < K (4) K < Mg < Si < Be

Answer (3)

- Sol. Based on the electronegativity of the given elements, the correct increasing order of metallic character is
 - Si < Be < Mg < K
- 3. Which of the following has two chiral centres
 - (1) 2- Bromo 3- deutro butane
 - (2) 1- Bromo 2- deutro butane
 - (3) 1- Bromo 3- deutro butane
 - (4) 1- Bromo 4- deutro butane

Answer (1)

Sol.

2 - Bromo - 3 deutro butane has two chiral centres.

- A: Carbon form two oxides CO and CO₂, where CO 4. is neutral while CO₂ is acidic.
 - **R** : CO₂ will combine with water to give carbonic acid and CO is soluble in water
 - (1) [A] and [R] both are correct and [R] is correct explanation of [A]
 - (2) [A] and [R] both are correct and [R] is not correct explanation of [A]
 - (3) [A] is correct while [R] is false
 - (4) [A] is false while [R] is correct

Answer (2)

- Sol. CO₂ will form carbonic acid with water and it is acidic in nature, while CO is neutral but there is no relation of neutrality with solubility.
- 5. Which of the following element is the weakest reducing agent in aqueous solution.
 - (1) Na (2) K
 - (3) Li (4) Rb

Answer (1)

- Sol. As per the standard reduction potential values, Na is the weakest reducing agent.
- Match List-I with List-II 6.

	(List-I)		List-II
	Amine		pK₀ (Aqueous medium)
a)	Aniline	1.	9.0
b)	Ethanamine	2.	3.29
c)	N-ethylethanamine	3.	3.25
d)	N, N-diethylethanamine	4.	3.0
1)	$a \rightarrow 1, b \rightarrow 2, c \rightarrow 4, d \rightarrow$	3∢	
2)	$a \rightarrow 1, b \rightarrow 4, c \rightarrow 3, d \rightarrow$	>2	
3)	$a \rightarrow 1, b \rightarrow 2, c \rightarrow 3, d \rightarrow$	→ 4	
4)	$a \rightarrow 2, b \rightarrow 3, c \rightarrow 4, d \rightarrow$	→ 1	
er	(1)		
⁻ he	order of basicity is:		
; >	d > b > a		
. р	K_b order is : $\rightarrow c < d < b < d < d < d < d < d < d < d < d$	< a	
	, b) c) d) 1) 2) 3) 4) er Fhe ∵>	Amine Amine a) Aniline b) Ethanamine c) N-ethylethanamine d) N, N-diethylethanamine 1) $a \rightarrow 1, b \rightarrow 2, c \rightarrow 4, d \rightarrow 2$ 2) $a \rightarrow 1, b \rightarrow 4, c \rightarrow 3, d \rightarrow 2$ 3) $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3, d \rightarrow 2$ 4) $a \rightarrow 2, b \rightarrow 3, c \rightarrow 4, d \rightarrow 2$ er (1) The order of basicity is: a > d > b > a	Amine Amine a) Aniline b) Ethanamine c) N-ethylethanamine c) N-ethylethanamine d) N, N-diethylethanamine 4. 1) $a \rightarrow 1, b \rightarrow 2, c \rightarrow 4, d \rightarrow 3$ 2) $a \rightarrow 1, b \rightarrow 4, c \rightarrow 3, d \rightarrow 2$ 3) $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3, d \rightarrow 2$ 3) $a \rightarrow 1, b \rightarrow 2, c \rightarrow 3, d \rightarrow 4$ 4) $a \rightarrow 2, b \rightarrow 3, c \rightarrow 4, d \rightarrow 1$ er (1) The order of basicity is:

JEE (Main)-2023 : Phase-1 (25-01-2023)-Evening

- 7. Select the correct match.
 - A. Hexan-2-one and hexan-3-one Position isomers
 - B. Pentan-3-one and pentan-2-one Functional isomers
 - C. 2-pentene and 1-pentene Metamers
 - D. Pentanoic acid and hexanoic acid Functional isomers
 - (1) A (2) B
 - (3) C (4) D

Answer (1)

- **Sol.** Hexan-2-one and hexan-3-one are position isomers.
- Chloride salt of M is treated with excess of AgNO₃.
 It forms curdly white precipitate 'A'. When 'A' is treated with NH₄OH, it forms a soluble salt 'B'. The A and B respectively is
 - (1) AgCl, [Ag(NH₃)₂]⁺ (2) AgBr, [Ag(OH)₂]⁻
 - (3) AgCl, [Ag(OH)₄]²⁻ (4) AgBr, [Ag(OH)₄]²⁻

Answer (1)

- **Sol.** AgCl forms white ppt. which is soluble in NH₄OH. The correct answer of this question is (1).
- 9. Consider the following reaction

The correct product 'P' is

Answer (1)

- 10. Final oxidation number of Cr when K₂Cr₂O₇ is used in acidic medium during titration.
 - (1) +6 (2) +2 (3) +3 (4) +4

Answer (3)

Sol.
$$Cr_2O_7^{2-} + 14H^+ + 6\bar{e} \rightarrow 2Cr^{3+} + 7H_2O$$

11. Match the following

(I)	Neoprene	(a)	Synthetic Wool
(II)	Acrolein	(b)	Paint
(III)	LDP	(c)	Flexible Pipes
(IV)	Glyptal	(d)	Gaskets

(1) II-(d), IV-(b), III-(a), I-(c)

- (2) II-(d), IV-(b), III-(c), I-(a)
- (3) II-(a), IV-(b), III-(c), I-(d)
- (4) II-(b), IV-(c), III-(d), I-(a)

Answer (3)

Sol. Neoprene is a synthetic rubber. It is used for manufacturing of gaskets.

Acrolein is used for making synthetic wool. LDP is used for making flexible pipes. Glyptal is used for making paints.

12. **Assertion :** BHA is added to butter to increase shelf life.

Reason : BHA reacts with oxygen more than butter.

- (1) Assertion is correct Reason is correct
- (2) Assertion is correct Reason is incorrect
- (3) Assertion is incorrect Reason is correct
- (4) Assertion is incorrect Reason is incorrect

Answer (1)

- **Sol.** Butylated hydroxy anisole (BHA) is an antioxidant. It is added to butter to increase its shelf life from months to years. BHA reacts with O₂ present in air in preference to butter. So, both the assertion and reason are correct.
- A hydrocarbon is having molar mass 84 g mol⁻¹ and 85.8% C by mass. Calculate the number of H atoms in the molecule?

(1) 8	(2) 10
(3) 12	(4) 14

Answer (3)

 $\frac{85.8}{12} = 7 = 1$ 85.8% Sol. C

H 14.2
$$\frac{14.2}{1} = 14 = 2$$

Empirical formula = CH₂

molecular formula = $n \times empirical$ formula

 $\frac{\text{molar mass}}{\text{empirical mass}} = \frac{84}{14} = 6$ n = -

- \therefore molecular formula = C₆H₁₂
- 14. Which of the following options contains the correct match.

		List-I		List-II		
	(A)	Adiabatic	(P)	ΔT = 0		
	(B)	Isothermal	(Q)	Heat exchange is zero		
	(C)	Isochoric	(R)	ΔP = 0		
	(D)	Isobaric	(S)	Work done is zero		
	(1) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$					
	(2) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$					
	(3) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$					
	(4) $A \rightarrow P$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow Q$					
Ans	wer (1)					
Sol.	I. Adiabatic \rightarrow Heat exchange is zero					
	Isothermal $\rightarrow \Delta T = 0$					
	Isobaric $\rightarrow \Delta P = 0$					
	Isochoric \rightarrow Work done is zero					
15.	Consider the following reaction:					
	$ \begin{array}{c} 0 \\ H \\ C \\ H \\ H \end{array} \xrightarrow{\text{OH}} COOH \\ H^{\oplus} \end{array} \xrightarrow{\text{Product 'P'}} Product 'P' $					
	The pro	duct 'P' is				
	(1)		(2			

Answer (1)

16. Find out mass ratio of ethylene glycol (62 g) required to make 500 ml, 0.25 m and 250 M, 0.25 M solution.

(1) 1:1	(2) 1:2
(3) 2:1	(4) 4:1

Answer (3)

Sol. Millimoles of ethylene glycol in 1st case

 $= 500 \times 0.25$

Millimoles of ethylene glycol in second case

$$\therefore \text{ Molar ratio} = \frac{50}{25} = \frac{10}{5}$$

Mass ratio =

- 17. A: Alkali metals show characteristic colour in reducing flame.
 - R : They can be identified by flame test
 - (1) Assertion is true and reason is false
 - (2) Assertion is false and reason is true
 - (3) Both assertion and reason are true reason is the correct explanation of assertion
 - (4) Both assertion and reason are true. But reason is not the correct explanation of assertion

Answer (2)

- Sol. Alkali metals show characteristic colour in oxidising flame.
- 18. Which of the following option contains the correct match?

List-I		List-II		
(Complex)		(λ , absorbed)		
[Co(CN) ₆] ³⁻	(P)	535 nm		
[Co(NH ₃) ₆] ³⁺	(Q)	375 nm		
[Co(NH ₃) ₅ Cl] ²⁺	(S)	600 nm		
(1) $A \rightarrow S, B \rightarrow P, C \rightarrow Q$				
	(Complex) [Co(CN) ₆] ³⁻ [Co(NH ₃) ₆] ³⁺ [Co(NH ₃) ₅ Cl] ²⁺	(Complex) (P) [Co(CN) ₆] ³⁻ (P) [Co(NH ₃) ₆] ³⁺ (Q) [Co(NH ₃) ₅ Cl] ²⁺ (S)		

(2) $A \rightarrow P, B \rightarrow Q, C \rightarrow S$

(3) $A \rightarrow Q, B \rightarrow P, C \rightarrow S$

(4) $A \rightarrow S, B \rightarrow Q, C \rightarrow P$

Answer (3)

Sol. The CFSE value order of the given complexes are:

 $[Co(CN)_6]^{3-} > [Co(NH_3)_6]^{3+} > [Co(NH_3)_5CI]^{2+}$

- \therefore $\lambda,$ absorbed will be in the reverse order.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. How many of the following orbitals is/are considered as axial orbital(s).

$$p_{x}, p_{y}, p_{z}, d_{xy}, d_{yz}, d_{zx}, d_{x^{2}-y^{2}}, d_{z^{2}}$$

Answer (5)

- **Sol.** p_x , p_y , p_z , $d_{x^2-y^2}$ and d_{z^2} orbitals are called axial orbitals.
- 22. Consider the following cell :

Pt | H₂ (1 bar) | H⁺ (1 M) || M³⁺ | M⁺

If the value of $\frac{[M^{3+}]}{[M^{+}]}$ is $10^{x},$ then find the value of

'x'. [Given : $E^o_{M^{3+}/M^+}=2\ V\ \mbox{and}\ E_{cell}=1.1\ V]$

Answer (30)

Sol. 1.1 = 2 -
$$\frac{0.06}{2} \log \frac{[M^{3+}]}{[M^{+}]}$$

0.9 = 0.03 log $\frac{[M^{3+}]}{[M^{+}]}$
∴ $\frac{[M^{3+}]}{[M^{+}]} = 10^{30}$
∴ x = 30

23. For a reaction $A \longrightarrow B$

 $k = 2 \times 10^{-3} s^{-1}$

Consider the following statements for the above reaction.

SI : The reaction is complete in 1000 sec.

SII : Half life of the reaction is 500 sec.

SIII : Units of rate constant is same as that of rate

SIV : Degree of dissociation is $(1 - e^{-kt})$

SV : It is a zero order reaction.

How many statements are incorrect?

Answer (4)

Sol. Except (4), all statements are incorrect

As [B] = a(1 - e^{-kt})

$$\therefore, \left[\alpha = \frac{[B]}{a} = 1 - e^{-kt}\right]$$

24. Consider a mixture of CH4 and C2H4 having volume 16.8 L at 273 k and 1 atm.

It undergoes combustion to form CO_2 with total volume 28 L at the same temperature and pressure.

If the enthalpy of combustion of CH_4 is -900 kJ/mol and enthalpy of combustion of C_2H_4 is -1400 kJ/mol then find the magnitude of heat released on combustion of given mixture in kJ

Answer (925)

Sol.
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O_x$$

 $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O_{16.8-x)}$
 $x + 2(16.8 - x) = 28$
 $x = 5.6 L$
 \therefore Heat released $= \frac{1}{4} \times 900 + \frac{1}{2} \times 1400$
 $= 225 + 700$
 $= 925 \text{ kJ}$
25.
26.
27.
28.
29.
30.